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Properties of neutron stars derived from the hybrid derivative coupling model of nuclear field theory
are studied. Generalized beta equilibrium with all baryon types to convergence is allowed. Hyperon
couplings compatible with the inferred binding energy of the lambda hyperon in saturated nuclear
matter predict a large hyperon population, with neutrons having a bare majority population in a 1.5M¢
neutron star. Among the properties studied are the limits on rotation imposed by gravitation-radiation-
reaction instabilities as moderated by viscosity. These instabilities place a lower limit on rotational

periods of neutron and hybrid stars of about 1 ms.

PACS number(s): 21.65.+f, 21.80.+a, 97.60.Jd, 12.38.Mh

1. INTRODUCTION

In this paper we study a broad range of properties of
neutron stars derived from a variant of the derivative
coupling nuclear field theory that was recently shown to
economically describe the bulk properties of nuclear
matter [1]. Relativistic field theories of nuclear matter
and finite nuclei have enjoyed a renaissance in recent
years, and they have the virtue of describing nuclear
matter at saturation, many features of finite nuclei, both
spherical and deformed, and they extrapolate causally to
high density.

The o-0 nuclear field theory has been broadly studied
in both spherical and deformed nuclei. However, in the
linear version [2] it has too small a nucleon effective mass
(~0.55my ) at saturation density of nuclear matter and
too large a compression modulus (~560 MeV). These
properties can be brought under control at the cost of
two additional parameters by the addition of scalar cubic
and quartic self-interactions in the so-called nonlinear
model [3]. Alternatively, it has been recently noticed by
Zimanyi and Moszkowski [1] that, if the scalar field is
coupled to the derivative of the nucleon field, these two
nuclear properties are automatically in reasonable accord
with present knowledge of their values, the two coupling
constants of the theory being fixed by the empirical satu-
ration density and binding as in the linear o-w theory.
The agreement with bulk nuclear properties can be fur-
ther improved by a slight modification of the model of
Zimanyi and Moszkowski, which we shall call the hybrid
derivative coupling model, and which we discuss below.
Renormalization is irrevocably lost in derivative coupling
models, but since (strong interacting) nuclear field theory
is usually regarded as an effective one, this does not seem
to be a weighty objection. Since, in the derivative cou-
pling model, only two coupling constants are needed to
reproduce four nuclear properties (py, B/A ,m* , K), it
is interesting to explore its predictions for neutron star
properties. This we do for a wider range of properties
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than is usual. For example, we calculate the general rela-
tivistic Kepler frequency for the family of stars and the
gravity-wave instabilities as moderated by viscosity. In
addition, we discuss the connection of the A hyperon
binding as inferred from measurements of energy levels in
hypernuclei, and the coupling constants of the theory.
We find, unlike earlier works [4-6], that the coupling in
the two systems, hypernuclei and neutron stars, can be
made consistent. Altogether, the model accounts for the
bulk nuclear properties, po, B/ 4, m*, K, a ., and the A
binding (B /A4),.

Neutron stars are not pure in neutrons, as their name
might imply. The lowest-energy state of cold, charge
neutral matter is not pure neutron matter, but matter
that is in beta equilibrium. At the high densities that
may be present in the cores of the most massive neutron
stars, this equilibrium will involve not only the neutron,
proton, and leptons, but also such higher mass baryons
for which the baryon chemical potential exceeds their
mass (corrected for interactions and electric charge). We
need, therefore, to generalize the Lagrangian for nuclear
matter analogous to the way the earlier theories were
generalized [7,8].

II. HYBRID DERIVATIVE COUPLING
NUCLEAR FIELD THEORY

In place of the purely derivative coupling of the scalar
field to the baryons and vector meson of the Zimanyi-
Moszkowski model, we couple it here by both Yukawa
point and derivative coupling to baryons and both vector
fields. This improves the agreement with the compres-
sion modulus and effective nucleon mass at saturation.
The nuclear matter properties are quoted later. To ac-
count for the symmetry force, we include the coupling of
the rho meson to the isospin current. The rho meson
contribution to this current vanishes in the mean-field ap-
proximation and so we do not write its formal contribu-
tion in the Lagrangian [9]:
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In the first term one sees the coupling of the scalar field Imean-ﬁeld approximation (Hartree) [11]. In this approxi-
to the derivatives of the baryon fields and to the vector  mation, the theory is regarded as an effective one in
mesons. The Yukawa point coupling to the baryon fields ~ which coupling constants are adjusted to properties of
is contained in the second term. In the last line one nuclear matter or finite nuclei, but not to the vacuum in-
recognizes the free scalar, vector, vector-isovector teraction between nucleons. The baryon source currents
mesons, and lepton Lagrangians. The latter must be in the Euler-Lagrange equations for the mesons are re-
present because of charge neutrality. (We use the nota-  placed by their ground-state expectation values. The
tion w,,=d,0,—0d,0, and other conventions of Ref. ground state is defined as having the single-particle
[10].) The baryon Lagrangian is in the first line together momentum eigenstates of the Dirac equations filled to the
with the interaction terms with the above-mentioned  top of the Fermi sea for each baryon species in accord
mesons. The p-mesons coupling constant will be adjusted with the conditions of chemical equilibrium. We describe
to give the empirical symmetry coefficient. The sum on B how this is done below.

is extended over all baryons including their charge states The meson-field equations in uniform static matter, in
to convergence, of which the most obvious are listed in which space and time derivatives can be dropped, are
Table I. The solution is most easily obtained by means of
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simple way of computing such expectation values without
We solve the field equations in the frequently used  the need of constructing the Dirac spinors is described in

TABLE 1. Baryons and their charge states. Spin is J, isospin is 7, its third component I, charge is g,
and strangeness is s.

m J I I, q s
(MeV)
N 939 % % —% 0 0
% 1 0
A 1232 -g— % —% —1
_% 0
? 1
3 2
A 1115 -;— 0 0 0 —1
> 1190 % 1 —1 —1 —1
0 0
1 1
= 1315 % % —% —1 -2
1 0
[0 1673 —;— 0 0 —1 -3
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Ref. [8]. The spacelike components of both vector fields
vanish as can be shown explicitly [8]; they do so for the
physical reasons that the ground state is isotropic and has
definite charge.

The condition of charge neutrality is expressed by

qH+qe=0 )
g =3 (2 +1)ggky /(6m%) , (8)
B

g.=— 3 k3 /37%)=0,
A

where the first sum is over the baryons whose electric
charges are denoted by gz, Fermi momenta by kg, and
the second sum is over the leptons e ~ and p ™.

Chemical equilibrium can be imposed through the two
independent chemical potentials, u,,u,, for the con-
served baryon and (negative) electron charge. Strange-
ness is not conserved on any macroscopic time scale. For
the baryon species, B, we have uz=u, —qgu,. The Fer-
mi momenta for the baryons are the positive real solu-
tions of

tp=eglky) (N equations) , 9)

where N is the number of different baryon species includ-
ing their charge states that are listed in Table I, and the
Dirac eigenvalues eg(k) are defined below. The lepton
Fermi momenta are the positive real solutions of

Vk2+m2=p, , (10)
Vki+m? =p,=p, . (11)
At a chosen baryon density
p: an N (12)
B
ng=(WhWwy)=(2J, + 1)k /(677) , (13)

the solution of the above coupled equations (5)-(12) pro-
vides the values for

T, 00, P03, Bnskbeskes Ky ks Kpskpy oo (14)

of which there are (7+N).
The Dirac equations for the baryons are
(iy, ' —mg —g,pY 0" — 38,87, TP )¥Wp=0. (I5)
Taking account of the vanishing of the spacelike com-

ponents of the vector fields, the eigenvalues can be found
as

5(k)=g,500+8,8posl3p+V k2 +m3? . (16)

In the above equations, I35 is the isospin projection of
baryon charge state B. This completes a description of
the equations that define the solution of the above La-
grangian for charge neutral matter in equilibrium, which
is called neutron star matter.

Once the solution has been found, the equation of state
can be calculated from

241 1
e=imlo’+ sm w0+—mpP03

Wp+1
+3 =2 f V k4 mp Ak
B
1 ky  —
+2—2f0 V k2 +m?kdk (17)
A T

which is the energy density while the pressure is given by
p=— m 02+—m w0+ mppm
2Jp+
27

+13 fo”k4dk/\/k2+m;;2
B
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The theory is simper to solve in the case of symmetric
nuclear matter, and this is a necessary first step in deter-
mining the coupling constants from the saturation prop-
erties. For nuclear matter near saturation, we simply fix
k,=k,=k. The scalar and vector coupling constants
can then be fixed by the known saturation density p, and

binding B/A=(e/p)y—m,. The symmetry energy
coefficient is

o _1 9%(e/p)

sym 2 at2 =0

2
_| g | ke kS
m, | 1222 6(k3+m**)172"’
(19)
t=(py—pp)/p

and serves to fix the p coupling. In the above equation,
k, denotes the Fermi momentum of symmetric nuclear
matter at saturation, p,. The coupling constants that
yield the following properties of symmetric nuclear
matter

po=0.16 fm 3,

B/A=—16.0 MeV ,

aym=32.5 MeV , (20)

K =265 MeV ,

mZ,/m=0.796
are

(g,/m,)*=8.63 fm*,

(g,/m,)*=4.11 fm? , (21)
(g,/m,)*=4.54 fm® .

The first three properties determine the coupling con-
stants, and the last two properties then follow automati-
cally from the structure of he Lagrangian. It is remark-
able that they are so close to the empirical values [12,13],
although the effective mass is perhaps slightly too large
[14].

For use later in discussing the A hyperon binding in
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nuclear matter, we note that the values of the scalar and
vector field strengths at saturation are

S=g,0=1.08 fm~!, V=g, 0,=0.660 fm~!. (22)

The solution to the equations discussed above for neu-
tron star matter, with hyperon to baryon coupling
strength in accord with the A binding in nuclear matter
(discussed in  detail later in  Sec. IITA),
Xp=X,=8H,/8No=0.7, x,=0.859, which we adopt as a
standard unless noted otherwise, is shown in Figs. 1 and
2. As we discuss later, these couplings are compatible
with the A binding in nuclear matter, with hypernuclear
levels, and moreover, are compatible with present
knowledge of neutron star masses. The meson-field am-
plitudes and chemical potentials are shown in Fig. 1, and
the particle populations (in lieu of Fermi momenta) are
shown in Fig. 2, both as functions of baryon density. It is
interesting to compare these with the fictional case that
the only baryons are neutrons as in Fig. 3. In particular,
notice that the electron chemical potential increases
monotonically as a function of density, whereas, when
the hyperons are taken into account, it saturates at about
200 MeV. 1t is also interesting to see how the composi-
tion of dense charge neutral matter is complex, as com-
pared to the case where the hyperons are ignored. Even
the neutron population is drastically altered, being little
more populous than the proton or A at high density. The
lepton populations are also drastically reduced by the
hyperons because charge neutrality can be achieved
among the baryons to high degree. This could have im-
portant affects on estimates of the transport properties of
neutron star matter, in particular, the conductivity and
the viscosity. These are vital properties that affect the
stability to rotation by damping gravitation-radiation-
reaction instabilities.

In Fig. 4, we show the equation of state for three cases:
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FIG. 1. Field amplitudes and chemical potentials that solve
Egs. (5)-(12) in the case of full equilibrium among all baryons
to convergence. Hyperons are coupled as described in text.
The Fermi momenta that constitute the rest of the solution are
represented by the populations in Fig. 2.
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FIG. 2. Populations in neutron star matter as a function of
density. Hyperon coupling as described in text is in accord with
the A binding in nuclear matter.
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FIG. 3. Similar to Figs. 1 and 2 but equilibrium involves only
nucleons and leptons, with all higher baryon species omitted.
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FIG. 4. Equation of state for three cases: n, only neutrons;
n +p, nucleons in beta equilibrium with leptons; and n +p +H,
nucleons and all other baryons to convergence, and all in equi-
librium with leptons.

(1) pure neutron matter, (2) beta equilibrium between
neutrons, protons, and leptons, and (3) equilibrium be-
tween all baryons to convergence and leptons. The hype-
rons of the third case are coupled as described following
Eq. (22). It is evident that pure neutron matter is not the
lowest-energy state of dense charge neutral matter and
that the existence of hyperons considerably softens the
equation of state, by relieving the Fermi pressure of the
nucleons. In the last one, in actual fact, the baryon
species populated to the highest densities in these neutron
star models are the nucleons and hyperons of Table I
with the exception of ) whose mass is so large that it lies
above the chemical potential. A is not populated for the
same reasons given in Ref. [8], which can be understood
in terms of the isospin symmetry of the nuclear forces
acting within the absolute constraint of charge neutrality.
Briefly, the most favored charge state, A~ is isospin un-
favored by its large negative projection, — 2 (same sign as
the neutron), while the isospin-favored state, +3, A* ¥,

is doubly charge unfavored (same sign as proton). The
threshold condition can be read from Eq. (9),
Kn—qple Z8,pD0T8ppPosl3p T M5 23)

and the field amplitudes appearing in it can be found in
Fig. 1.

III. NEUTRON STAR STRUCTURE

The equations for the structure of a relativistic spheri-
cal and static star composed of a perfect fluid were de-
rived from Einstein’s equations by Oppenheimer and Vol-
koff [15]. They are

47Tr2dp(r)=_M(r)dM(r)l L p(r) '
r e(r)
o |14 gt } { 2M(r) ]_1,
M(r)
(24)
dM(r)=4mr%e(r)dr . (25)

(We use gravitational units, G=c=1.) Given an equa-
tion of state, they can be integrated from the origin as an
initial value problem for a set of arbitrary choices of the
central density. Therefore, they define a one-parameter
family of stars. Corresponding to the three equations of
state of Fig. 4, we show the three families of neutron stars
in Fig. 5. The equation of state for the case of pure neu-
tron matter lies above the other two because a pure neu-
tron state is not the lowest-energy state of charge neutral
matter. A state containing an equilibrium mixture of nu-
cleons and leptons is lower and one containing an equilib-
rium population of all baryons to convergence is even
lower. The latter two equations of state are coincident up
to the threshold density of the first heavier baryon state
beyond the nucleons. These features are also registered
in the corresponding family of stars for the three cases.

The equations of star structure have to be integrated to
the radius at which the pressure is zero, or very small
compared to the central pressure. This means that the
nuclear equation of state has to be supplemented by one
corresponding to subnuclear densities. As described in
Ref. [8], we use that of Negele and Vautherin [16] for the
subnuclear region of very neutron rich nuclei, and of
Harrison and Wheeler (17) for the lower-density crystal-
line lattice bathed in relativistic electrons.
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FIG. 5. Star families for the three cases of Fig. 4. Density of
normal nuclear matter is denoted by e,.
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A. Hyperon couplings: Constraints
from hyperon binding in nuclei

The ratio of hyperon to nucleon couplings to the
meson fields,

xa:gﬂa/ga’ xwngm/gm: xp=ng/gp, (26)

are not defined by ground-state properties of nuclear
matter and so must be chosen according to other con-
siderations. (For brevity we call gy , simply g,.) In
studies of hypernuclear levels [18—-20] , these ratios are
typically taken to be equal. In that case, small values be-
tween 0.33 and 0.4 are required. These are too small as
regards neutron star masses, as is shown in Fig. 6 and in
Table II. Recall that the most accurately determined
mass (but not necessarily the maximum possible mass) is
the of PSR1913+16 with M /M;=1.442+0.003 [21].
There is another relevant measurement, that of 4U0900-
40 with M /M =1.85733 [22]. However, the error is so
large that many authors take the other measurement as
the limit. The actual number of known masses at the
present time is less than 10 and we cannot exclude that a
more massive neutron star will be found. However, to
the imperfect extent to which the type-II supernova
mechanism is understood, it appears that neutron stars
are created in a fairly narrow range of masses around,
~1.4M ¢, so that whether or not the true equation of
state would support more massive neutron stars, none
may be made in nature.

The hyperons are actually more strongly populated in
dense neutron star matter, the equation of state corre-
spondingly softened, and the limiting mass reduced, the
weaker their coupling to the meson fields [4,6]. Indeed,
even if the coupling is reduced to zero as for a Fermi gas
model, but allowing the populations to reach equilibrium
under the weak interactions, the hyperons are computed
to be present in dense neutron star matter [23]. We can
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FIG. 6. Neutron star families for three values of the hyperon
to nucleon coupling constants identified by x,. (See Table II.)

TABLE II. Values of the hyperon to nucleon scalar and vec-
tor coupling that are compatible with the binding of —28 MeV
for lambda hyperons in nuclear matter and the corresponding
maximum neutron star mass.

Xg X, M/Mo
0.3 0.262 1.08
0.4 0.415 1.13
0.5 0.566 1.23
0.6 0.714 1.36
0.7 0.859 1.51
0.8 1.00 1.66
0.9 1.14 1.79
1.0 1.27 1.88

understand the increase of hyperon populations in dense
matter with a decrease in their coupling relative to the
nucleon since the high-density region is dominated by the
repulsive interaction, so that the energy can be lowered
by shifting baryon populations to hyperons. In the
present theory the way it works is that, if the hyperon
coupling is weaker than the nucleon, the vector field am-
plitude can be reduced by the shifting of the baryon pop-
ulations in favor of those with the weaker coupling, as is
clear from Eq. (5). This, in turn, lowers the energy by re-
ducing the repulsive vector contribution, 1m2 3, in Eq.
(17): weakening the coupling in dense matter amounts
therefore to weakening the repulsion.

As noted above, when hypernuclear levels are analyzed
with the constraint x , =x_, the result is a small hyperon
coupling leading to a neutron star family with much too
small a limiting mass. However, one is not compelled to
take the ratios in Eq. (26) to be equal, but there are large
correlation errors in x,=0.4641+0.255, x,=0.481
10.315, in the published analysis of hypernuclear levels
that leave them uncorrelated [20]. These correlation er-
rors are probably due to the degeneracy with respect to
the A binding in nuclear matter which we derive next.
As noted elsewhere [24], this binding energy serves to
strictly correlate the values of x,,x,, but leaves a con-
tinuous pairwise ambiguity which hypernuclear levels
may be able to resolve. The published analysis so far
does not take account of this [20]. In Ref. [25], the bind-
ing of the A hyperon in nuclear matter is inferred to be
—28 MeV. We derive now the expression for this bind-
ing in our model. From the Weisskopf [26] relation at
saturation between the Fermi energy and the energy per
nucleon of a self-bound system, er=(€/p),, which is a
special case of the Hugenholtz—Van Hove theorem [27],
we obtain for the binding energy of the lowest A level in
nuclear matter

B

4 =x,V+mi—m,

A

xS

Ve
@ 1+x,8/2m, @n

=Xx

where S, V were defined and their values given in Eq. (22)
and we have used Eqgs. (4) and (16). The first line holds
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for both the linear and nonlinear o-w theories as well as
this one. The second line specializes to this one. Thus, as
far as the A binding in nuclear matter is concerned, the
scalar and vector ratios x,,x, need not be equal, but
when so, they must be small, about 0.37. We show a few
typical values in Table II and also in Fig. 6. Since the
neutron star mass limit must exceed about
(1.44-1.5)M, and as it depends on the hyperon cou-
pling, we infer that x, > 0.65 and corresponding value of
x,, as given by Eq. (27). There are additional constraints
that can be invoked. There is good reason to believe [28]
that these ratios are less than unity. Moreover, according
to the analysis of hypernuclear levels in finite nuclei, it is
found that when the ratios are taken unequal, the max-
imum likely value is x, <0.719 [20]. It is not clear how
strong this last constraint is because it applies to the non-
linear field theory [3] whose results would carry over only
approximately to the present one. For such relatively
simple theories of matter, perhaps one should not insist
that when the interest is focused on bulk matter, the level
spacings of finite nuclei are compelling constraints. In
any case, for x,,x, chosen to be compatible with the A
binding in nuclear matter, neutron star masses place a
lower bound on the coupling, and hypernuclear levels ap-
pear to place an upper bound, but so far less well deter-
mined. Within this range, as we shall see in the next sec-
tion, hyperons have a large population in neutron stars
and neutrons have a bare majority.

We have assumed that other hyperons in the lowest oc-
tet have the same coupling as the A, and also we have ar-
bitrarily taken x,=x,. This choice produces results very
close to another possible one, x,=x,,.

We add here a parenthetical note on the analysis of hy-
pernuclei, involving both the A or any other hyperon.
We quoted above the ~50% correlation error found in
the least-squares fit of x,,x, to the hypernuclear levels
when the parameters are treated independently [20]. But
these are not independent parameters as we derived
above. They are correlated in a specific way to the bind-
ing of the A in saturated nuclear matter, a binding that
can be inferred quite accurately by an extrapolation from
hypernuclear levels in finite 4 nuclei [25]. The correla-
tion found in the least-squares fit is simply a reflection of
the fact that, as a function of A, the finite nuclei are
“pointing” to this binding in 4 — o« matter. It is clear,
therefore, that it would be advantageous in the analysis of
hypernuclei to take into account the relation that x,,x
must obey, if the A binding in nuclear matter is to come
out right. In the linear [2] and nonlinear scalar [3] ver-
sions of nuclear field theory, the difference in masses
entering the first line of Eq (27) is mjg—my=—x_S,
whereas in the present hybrid derivative coupling model
it is given by the second line of Eq. (27).

B. Baryon populations

Since we have a covariant theory that accounts rather
well for the ground-state properties of nuclear matter and
for which the hyperon couplings are constrained by the
following data, (1) neutron stars of mass at least 1.442M
exist, (2) the A binding in saturated nuclear matter, and
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FIG. 7. Populations in the maximum mass star for case
x,=0.7 in Fig. 6. Central baryon density is 1.28 fm 3.

(3) hypernuclear levels in finite nuclei, we now note the
predicted hyperon populations in neutron stars. The
populations of the maximum-mass star of 1.51M corre-
sponding to the coupling x, =0.7 of Table II, as a func-
tion of radius, are shown in Fig. 7 for the case of full
equilibrium of all baryons. This coupling falls in the
small acceptable range. Although the neutron is the larg-
est of the populations, it has a bare majority. The core it-
self is dominated by hyperons. Integrated over the whole
star, the hyperons amount to 29% of the baryon popula-
tion in this maximum-mass model, the neutrons to 54%,
and the protons to 17%. Nevertheless, the hyperons
alter drastically the interior, up to a radius of 6-7 km,
shifting negative charge from leptons to hyperons as can
be seen by comparison with Fig. 8. This will certainly
affect the electrical conductivity of the star, which is
relevant to the decay rate of the magnetic field of pulsars.
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FIG. 8. Populations in the maximum mass star correspond-
ing to n+pin Fig. 5. Central baryon density is 1.1 fm 3.
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We have already noted in connection with Fig. 5 that
the hyperons reduce the limiting neutron star mass under
what would be calculated in a pure neutron approxima-
tion by about My and by about 1M under the case
that beta equilibrium only with respect to nucleons and
leptons is accounted for.

C. Mass-radius relation, Kepler frequency,
moment of inertia

The mass-radius relation is an important one because it
can be used to estimate how rapidly the stars in the fami-
ly belonging to a given equation of state can rotate
without shedding mass at the equator. Such relations for
the three cases of Fig. 6 are shown in Fig. 9. The curves
marked in m are such that stars falling below a given
curve can rotate without mass loss to at least the period
marked on the curve. These periods correspond to the
relativistic Kepler frequency of the limiting mass star in
the sequence belonging to an equation of state, and can

be approximated [29,30] by

Qx=0.65Q, ,
172 (28)
M/Mg .

Q. =VM/R’=3.7X10° | ——
(R /km)

where Q. is the Newtonian Kepler frequency at which
centrifuge and gravity balance. The factor 0.65 is empiri-
cal, approximate, and is particular to typical limiting-
mass neutron star models, and has its origin in the gen-
eral relativistic dragging of the local inertial frame [31],
the centrifugal effects being determined by the difference
in the angular velocity of the star and the angular veloci-
ty of the local inertial frames [32]. We see from the figure
that some stars in all these families can rotate at 1.5 ms
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FIG. 9. Mass-radius relation for the same star families as in
Fig. 6.

but none at 0.5 ms so far as the limitation of mass loss at
the equator is concerned.

We have also carried out a general relativistic calcula-
tion of the Kepler frequency using the Hartle-Thorne
perturbative method of solving the equations for rotating
stellar structure [33,32]. When this method is supple-
mented by a self-consistency condition on the frequency
that was first introduced into the method in Ref. [34], the
perturbative method is found to be in accord with an ex-
act numerical calculation of Einstein’s equations, as
shown in Ref. [31], up to the highest frequency that neu-
tron stars, limited by gravity-wave instabilities, can have
[35].

The ingredient missing from earlier applications of
Hartle’s method is the transcendental equation for the
general relativistic Kepler frequency. It is given by [36]

Qr=e""W(Qg)+o(Qy), (29)
, , , 21172
V(Qg)=2eV "+ | L4 |2 e (30)

A v |29

Equations (29) and (30) are to be evaluated at the star’s
equator. The quantity V denotes the orbital velocity
measured by an observer with zero angular momentum in
the ¢ direction. Primes refer to derivatives with respect
to the radial coordinate. The quantity o denotes the fre-
quency of the local inertial frame (dragging effect). An
essential feature is that ¥ and o (like the metric functions
v and v¥) depend on Q. Therefore, to find the Kepler
frequency, a self-consistent solution of Hartle’s equations
that satisfies the above transcendental relation for Qg
must be constructed. Details of how this can be done are
given in Ref. [34].

We show the relativistic Kepler frequency for the se-
quence of stars belonging to x =x,=x,=x,=0.82 in
Fig. 10 and compare it with the classical result Q, of Eq.
(28). (This representative case differs from the case
x,=0.7, x,=0.859 of Table I, by <0.02% in mass and

15000

classical

0 (1/sec)

FIG. 10. Kepler angular velocity in classical and general re-
lativity physics for two sequences of stars, a neutron star,
(n+p+H), and quark hybrid star.
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radius over the whole family.) The relativistic frequency
is lower than the classical one because of the
phenomenon in general relativity know as dragging of the
local inertial frame by the rotation of the star, and be-
cause of centrifugal flattening of the star, the two effects
contributing about equally [31]. While unimportant in
most stars, frame dragging becomes significant in rapidly
rotating neutron stars. The centrifugal effects are given
by the excess of the rotational frequency of the star over
the (radially dependent) frame dragging frequency. Also
shown in the figure is the case discussed in the next sec-
tion in which the core of the star is in the mixed phase of
hadronic and quark matter. This figure also shows how
the limiting mass of a sequence belonging to a particular
equation of state is increased by rotation at the Kepler
frequency, from 1.5M¢ to 1.7M, in the case of the star
at the limit.

It is relevant to note that the shortest period so far ob-
served is 1.6 ms for PSR1937+21, discovered in 1982
[37]. It is clear that this period poses no constraint on
the theory of matter when the shortest period is estimat-
ed as the Kepler (mass shedding) period. We will later
discuss gravitational-radiation instabilities that limit the
shortness of the period of rotation even more severely
than mass shedding.

The moment of inertia in general relativity is given by

8 R e(r)+p(r) — Q—ow(r)
[= d 4 o(r) , 31
3 ‘[0 rr V l—zm(r)/re Q ( )

where o(r) is the angular velocity of the local inertial
frame (frame dragging), and for slow rotation is much
smaller than the stars angular velocity, ). We therefore
neglect it in the calculation of I. The function ®(r) is re-
lated to the metric function g, =e>® and is the solution
of

dd _ m(r)+477r3g(r) (32)
dr rlr—2m(r)] ~’
2—_ = @
~ ]
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FIG. 11. Moment of inertia, I, for the same star families as in
Fig. 6.
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FIG. 12. Surface redshift as a function of neutron star mass
for the same families as in Fig. 6.

with boundary condition

2M

2®&(R)=1In I—T , (33)

where M,R are the star’s mass and radius. For the three
couplings of hyperons of Fig. 6, we show the moment of
inertia in Fig. 11. Little is known about the moments of
inertia of neutron stars. However, assuming, as is likely,
that the energy required to power the crab nebula, about
4Xx10% ergs™!, is provided by the loss of rotational ener-
gy by the pulsar, its moment of inertia is at least 40M
km? [38]. This can be accounted for by all of the cou-
plings shown in this figure.

There is a constraint relating the mass and surface red-
shift as determined from gamma-ray bursters. It is, at
present, a very weak constraint because the redshift is not
measured for any neutron star whose mass is also known.
All we know is that the surface redshifts seem to lie in the
range z=AA/A=0.2-0.5 [39] while masses seem to lie in
the range M /Mg =1-1.85 with an error of +0.3 at both
ends [22]. In any case, eventually a redshift for a star
whose mass is also known may be measured, so we show
in Fig. 12 the surface redshift,

z=1/V1-2M /R —1, (34)
as a function of mass.

IV. GRAVITATIONAL-RADIATION-REACTION
INSTABILITY

The Kepler frequency, above which centrifuge
overwhelms gravity at the equator of a rotating star, pro-
vides only an absolute upper bound on frequency. There
is another instability that sets in at lower frequency
which therefore provides a more stringent and realistic
limit [40]. It originates in counter-rotating surface vibra-
tional modes, which at sufficiently high rotational fre-
quency of the star are dragged forward. In this case,
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gravitational radiation, which inevitably must accom-
pany the aspherical transport of matter, does not damp
the modes, but rather drives them [41,42]. Viscosity
plays the important role of damping such gravitational-
wave—driven instabilities at a sufficiently reduced fre-
quency such that the viscous damping rate and power in
gravity waves are comparable [43]. We have found re-
cently that these viscosity modified gravitational-
radiation instabilities may set in at a significantly small
fraction (60-70 %) of the Kepler frequency and there-
fore set a more realistic upper bound than the latter
[34,35].

Of course, the normal modes of a star corresponding to
a specific equation of state are numerically very difficult
to obtain, and approximation schemes based on Maclau-
rin spheroids have been developed. The modes are taken
to have the dependence expliw,,(Q)t +im¢—t /7,,(Q)],
where w,, is the frequency of the m =I surface mode
which also depends on the angular velocity, 2 of the star,
¢ is the azimuthal angle, and 7,, is the time scale for the
mode which determines its growth or damping. The ro-
tation frequency  at which it changes sign is the critical
frequency for the particular mode, m. It is conveniently
expressed as the frequency, Q,,, that solves [40]

1/(2m +1)
@,,(0) "

m

TG, m

a,(Q,)+y,,(Q,,)

V,m

(35)

In this equation, the frequency of the vibrational mode in
a nonrotating star is given by [44]
172

2m(m—1) (36)

om(0)=0, { 2m+1

where Q_ was given in Eq. (28). The time scale for gravi-
tational radiation reaction is [45]

L _22m=D[@m+ 1P | 2m+1 "
Gm 3 (m+1)m+2) 2m(m—1)
XQ—Z(m+1)R—(2m+1) 37)
(4 ’
and that for viscous damping is [46]
2 —
R £ (38)

T om+m—1) q

where p=M /(4mR?). The shear viscosity is denoted by
71 and depends on the temperature of the star, being small
in very hot and therefore young stars and larger in cold
stars. The functions «,, and y,, contain information
about the pulsation of the rotating star models and are
difficult to determine [40,47]. However, it turns out that
they are rather weakly dependent on the equation of state
and are close to unity and have sometimes been approxi-
mated as such. Here we take «,,(Q,,) and 7,,(Q,,) as
calculated in Refs. [48,49] (for the oscillations of rapidly
rotating inhomogeneous Newtonian stellar models; po-
lytropic index n=1) and Ref. [40] (for uniform-density
Maclaurin spheroids, i.e., n=0, respectively. In the

above approximation scheme, the properties of the par-
ticular model star enter through its mass and radius
which occurs in the above equations, not on other details
of the equation of state except insofar as it determines
these quantities. Indeed, in a study of polytropes, it has
been confirmed that Q,, depends much more strongly on
the radius and mass of the neutron star model (through
Q., Ty,m » and 7g,,) than on the polytropic index as-
sumed in calculating a,, [50].

To relate the temperature and viscosity of a star, we
adopt the expression [51,47]

n=347p""*/T?, (39)

where j is the density in g/cm?, T is temperature in K,
and 7 is the shear viscosity in g/(cms). Bulk viscosity
has a different temperature dependence [52] and may be
important at high temperature before it falls below
T ~10'!' K in a newly born star. If so, then the minimum
stable period of a hot star could be less than our estimate.

In Fig. 13 is shown the minimum stable period that the
family of neutron stars corresponding to hyperon cou-
pling x =0.82 can have in the face of viscosity moderated
gravitation-reaction instabilities. It is a very strong func-
tion of the mass and radius of the star. The minimum
stable period of a hot star establishes the limit of the star
during its lifetime so long as it is isolated and remains so.
(The presence of a binary companion is easily detected in
the frequency modulation of the pulses of a pulsar.) For
the limiting-mass star, the minimum period is about 1
ms. It is a strong function of the mass of the star, through
the dependence on radius. For comparison, from Fig. 10,
the Kepler period of the limiting mass star is P ~0.63 ms
(and similarly for the hybrid star). So the gravity-wave
instabilities set a much more stringent limit on stable ro-
tation than the mass shedding limit for stars whose histo-
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FIG. 13. Minimum period that is stable against
gravitational-radiation-reaction for hot and cold stars for a fam-
ily of neutron stars. See also discussion of Fig. 10.



854 N. K. GLENDENNING, F. WEBER, AND S. A. MOSZKOWSKI 45

ry has left them isolated from a companion. The T=10°
K curve of Fig. 13 is relevant to old cold stars that have
acquired a companion, and spin up by accretion. In this
case, gravitational-radiation instability is closer to the
Kepler mass-shedding instability.

V. SUMMARY

We have computed a large number of neutron star
properties, perhaps more than has been computed for any
other single model. In this case the model corresponds to
the derivative coupling Lagrangian involving the ex-
change of scalar, vector, and vector-isovector mesons. It
describes quite accurately the five bulk properties of sym-
metric nuclear matter in the mean-field approximation.
For the description of charge neutral equilibrium matter
(neutron star matter), we include all baryon states to con-
vergence at the highest densities appearing in the corre-
sponding neutron star models. These turn out to be nu-
cleons and hyperons, but not deltas. Several different
hyperon couplings were employed. The dependence is
similar to that found in Refs. [8,4,6], namely, the smaller
the hyperon to nucleon coupling, the more strongly the
hyperons contribute. This seemingly inverted behavior
actually is a logical consequence of the fact that the
high-density equation of state is dominated by the repul-
sion of the vector mesons. There is a small range in
which hyperon couplings are compatible with bounds
place by (1) observed neutron star masses, (2) the binding
of the A hyperon in saturated nuclear matter, and (3) hy-
pernuclear levels, which, in the published literature, pro-
vide a weaker constraint than the foregoing. In this

range, hyperons are a large population in 1.5M neutron
stars and neutrons are a bare majority population. It is
clear that the mass limit computed for neutron stars is
sensitive to the presence of hyperons with coupling so
chosen to agree with the above constraints and it is sub-
stantially below the value that would be obtained with
their neglect, by about 1My compared to a model in
which beta equilibrium only between nucleons and lep-
tons is allowed for.

We also computed the minimum rotational period im-
posed by gravitational-radiation-reaction instabilities,
which is appreciably larger than the Kepler period, and
therefore sets the minimum rotational period of neutron
star models. According to our finding here and earlier
[34,35], the gravitational-wave instability effectively lim-
its the period of neutron stars to P> 1 ms unless, as cold
stars, they have been spun up by accretion. Then the
period can be slightly smaller. The period of the fastest
pulsar known so far [37] with P=1.56 ms is easily ac-
commodated by the theory of dense matter discussed
here whether or not a phase transition to quark matter
has occurred.
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