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The present work extends the systematics of nuclear charge radii obtained by the method of muonic
atoms to nuclei with 8 <Z,N <20. The accuracy of the measured muonic Lyman transition energies of
generally <10 eV leads to a precision in the model-independent nuclear charge radii differences of 2-3
am for the isotope shifts and 4-9 am for isotone shifts. Both isotope and isotone shifts within the s-d
shell behave “anomalously” with respect to the systematics of heavier nuclei. However, such behavior is
predicted on theoretical grounds, if mixing in the s-d shells and the strong deformation of some of the
nuclei in this region are considered. We compare charge radii from elastic electron scattering data with
muonic atom rms radii and suggest that observed deviations are possibly due to incomplete dispersion

corrections.

PACS number(s): 21.10.Ft, 36.10.Dr, 27.20.+n, 27.30.+t

I. INTRODUCTION

In recent years, our collaboration including the group
of E. B. Shera at Los Alamos National Laboratory has
performed precision measurements of nuclear charge ra-
dii using the muonic atom method. Both absolute nu-
clear charge radii and charge radii differences have been
measured. A detailed comparison of isotope shifts and
isotone shifts with different theoretical models has been
made. In heavier nuclei, mean-field theories are often
employed [1-4], and an extensive systematics with several
typical features can be established [5-12]. In lighter
nuclei, however, mean-field theories are not adequate.
Nuclei in the s-d shell, i.e., with nucleon numbers
8 <Z,N <20, show considerable ground-state correla-
tions between protons and neutrons. Hence, they are not
built upon a hard core '°O nucleus. In addition, due to
large deformation parameters, e.g, $=0.5 for neon and
sodium, and a deformation jump from a strong prolate to
a strong oblate shape at 2*Si, no normal systematic behav-
ior can be expected.

The present work deals with a systematic comparison
of nuclear ground-state charge radii and their differences
in the region of the 1ds,,, 2s,,, and 1d;,, shells using
the muonic atom method. In particular, we have studied
the isotopes '°0, 'F, 2021.22Ne, 2Na, 24,2520\ 2TA],
and "¥'Si. The present analysis also includes results from
our earlier measurements on '21314C [13,14], 3'P, 3234363
[15], 3%3%40Ar [16], and **'K, *“**’Ca [12]. The isotope
shift between %0 and '°0 is taken from the work of
Backenstoss et al. [17]. The results from Ehrlich [18] on
28,29.30G; are used in the analysis of our "'Si measure-
ments. The elastic electron scattering results of de Vries
et al. on "N (Ref. [19]), Miska et al. on '*170 (Ref. [20])
and Briscoe er al. on 3>%'Cl (Ref. [21]) have also been
used.

Section II describes the experimental setup and the
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determination of the transition energies in the various nu-
clei. Section III shows how the nuclear charge radii and
the differences between isotopes or isotones are evaluated.
Section IV compares our results with data from elastic
electron scattering. Section V presents our isotope and
isotone shift results within the s-d shell and compares
them with the systematics obtained for heavier nuclei.
Finally, Sec. VI interprets the nuclear charge radii
differences for nuclei with 8 <Z,N <20 in terms of mixed
shell structure and deformation.

II. EXPERIMENT AND ANALYSIS

The muonic atom measurements have been performed
at the superconducting pE1 channel of the Paul Scherrer
Institute (PSI) at Villigen, Switzerland. The experimental
setup has been described elsewhere [9,22,23]. Here we
only mention details which are peculiar to the present ex-
periment.

To reduce systematic experimental errors, the calibra-
tion was performed on line, and several targets were mea-
sured simultaneously, in various combinations. Two
different target arrangements were used depending on the
physical states of the elements. For the measurements on
gaseous elements (neon and argon), a high-pressure hy-
drogen gas target (200 bars), which takes advantage of
the muon transfer from hydrogen to the noble gas, was
used [24]. The negative muons are stopped in hydrogen
and are subsequently transferred to the noble gas atoms
X, by means of the process (u p)+X—p+(u X)*.
This method allows us to study rare isotopes like *'Ne,
AT, or 3¥Ar. A simultaneous collection of muonic x-ray
calibration lines, e.g., from oxygen and aluminum, could
be achieved by placing solid targets inside the high-
pressure gas target. Their energy spectra were separated
from the noble gas spectra by using the fact that muonic
x rays from solids appear promptly (within about 20 ns)
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after a muon stops in the target, while the transfer pro-
cess produces a delay. When all solid isotopes were mea-
sured, a parallel arrangement of three single targets was
employed, which takes advantage of the 6 X4 cm? cross-
sectional area of the muon beam [9]. Target combina
tions have been chosen redundantly. The separation of
the x rays from each of the three targets was achieved by
the prompt timing signals from the individual scintilla-
tion counters which were placed in front of each target.

The muonic x rays were measured with a 10 cm® Ge
diode that had a resolution of 1.1 keV at an energy of 300
keV. On-line energy calibrations were made using ra-
dioactive sources with well-known y-ray energies, namely
>Se, 13*Ba, and '*?Ta [25,26]. The calibration lines ap-
peared as accidental coincidences in the delayed spectra.
Cross checks using the magnesium and aluminum muon-
ic Lyman series transitions were also performed. The
electronic setup is described in more detail in [22,23].
Both energy and time information relative to the stopped
muon were digitalized and processed by the program DA-
vID [27] via CAMAC and a PDP-11/40 computer. The
latter also provided on-line experiment control.

The centers of gravity of the y lines of interest were
determined using the computer codes DISPLAY and MY-
FIT [28]. As an example, Fig. 1 presents a fit of the
muonic "Mg 2p—1s transitions. To determine the
center of this complex, the calculated fine-structure split-
tings (Ap =2p; ,, —2p, , =195 eV) and the calculated rel-
ative intensities were used for the three isotopes
24.25.26Mg present in "**Mg. Fitting the measured spectra
of the enriched isotopes Mg and 2®Mg (enrichment
>99%) resulted in a y*/F value of approximately 1.

Figure 2 shows a prompt-plus-delayed sum spectrum
from the ’Ne gas target (the 2?Ne muonic Lyman series
and the %2Ta and 7°Se calibration lines). The neon transi-
tions appear delayed with respect to the stopped muon
due to the transfer mechanism used in the high-pressure
hydrogen target as discussed earlier. Only 1 1 of 99.96%
enriched *’Ne gas at STP was employed, which yielded a
concentration ratio for Ne to H, of 8.5X10™*. For *'Ne,
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FIG. 1. Computer fit of the Mg 2p — 1s complex, measured
in prompt coincidence with the incoming muons. Since for the
measurement of **Mg a natural magnesium target was used, the
corresponding transitions of Mg and Mg are also shown.
The lengths of the bars correspond to the relative intensities.
The detector resolution is about five times larger than the (cal-
culated) fine-structure splitting of 195 eV.
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FIG. 2. Sum spectrum (prompt plus delayed) of the ?*Ne K
series including "*Se and '®2Ta calibration lines. The neon tran-
sitions appear mostly delayed with respect to a stopped muon,
since the transfer mechanism p~ p-+Ne—(u " Ne)*+p was
used.

a five times smaller concentration still yielded precise
data [22].

Table I lists the experimental transition energies of the
muonic Lyman series of all stable isotopes (with the ex-
ception of '70) from '%0 to *°Si. The np;,, —1s,,, ener-
gies, which are determined from the measured np-ls
center-of-gravity energy values, using calculated fine-
structure splittings and intensity ratios, are given. The
final errors quoted for these values include statistical er-
rors, uncertainties of the calibration energies, and non-
linearity corrections for the ADC. For the most intense
2p -1s transitions, the errors are less than 10 eV with the
exception of the rare Si isotopes, where they are about
five times larger, due to the employment of a natural sil-
icon target in connection with older isotope shift mea-
surements [18]. The other columns of Table I will be dis-
cussed in the next section.

ITI. EVALUATION OF NUCLEAR CHARGE RADII
AND CHARGE RADII DIFFERENCES

In order to obtain nuclear ground-state charge radii,
the measured transition energies have to be compared
with calculated values. To the former energies, the nu-
clear recoil energy has to be added, according to

E(|i)—>|f))=E,+E,/(2Mc?),

where E., is the measured energy for the muonic transi-
tion |i)—|f) and M stands for the nuclear mass. For
the isotopes considered in this work, this correction
amounts to at most +5eV.

The latter energies are evaluated by numerically solv-
ing the Dirac equation of the muon-nucleus system [29]
using an explicit form for the nuclear charge density p(7).
In general, a two-parameter Fermi distribution

p(r)=1/{1+exp[(r —c)/al}

is used, where the diffuseness parameter a is related to the
skin thickness ¢ by t =4(In3)a and c is the half-density ra-
dius.
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Although the finite nuclear charge extension is the
largest correction to the Dirac point nucleus energies in
the 1s states of the muonic atoms considered here, several
additional corrections have to be calculated. This is done
by adding additional potentials to the Hamiltonian opera-
tor. The most important correction is the vacuum polar-
ization, of the order of the fine-structure constant «
smaller than the muonic 1s energy. In addition, there are
vacuum polarization corrections of higher order, other
QED corrections like Lamb shift or anomalous magnetic
moment, and electron screening corrections. The relativ-
istic treatment of muonic atoms as a two-body problem
requires also, besides the introduction of a reduced mass,
an additional recoil correction. Finally, there is a correc-
tion due to virtual nuclear excitations, analogous to the
dispersion corrections in electron scattering. The dynam-
ical interaction between muon and nucleus leads to a

mixture of muonic and nuclear states, the so-called “nu-
clear polarization” effect. The contributions due to low-
lying nuclear excited states are explicitly taken into ac-
count by the B(EA) matrix elements, while for the high-
lying states, averaging over the isoscalar and isovector gi-
ant resonances with multipolarities 0<A=3 is per-
formed. The nuclear polarization calculations have the
largest uncertainty of all corrections, typically 20-30 %
for absolute nuclear charge radii and 10% for isotope or
isotone shifts [30,31]. The total nuclear polarization
corrections amount to 5 eV for the 1s state of '°0 and to
55 eV for the 1s state of °Si. Table IT shows as an exam-
ple the Dirac point nucleus energy and all corrections in
the case of the muonic 1s levels in **Mg, Mg, and 2Si.
According to a method first developed by Barrett [32],
the differences AV;; of the muon potentials in the initial
(i) and final (f) states are practically independent of the

TABLE 1. Experimental np;,,-1s,,, transition energies. The quoted error includes statistical errors, uncertainties of the calibra-
tion energies, and nonlinearity corrections. Fits for the half-density radius ¢ were made using two-parameter Fermi charge distribu-
tions with a fixed t =2.30 fm. The deduced rms radii are only slightly model dependent due to the low Z. The uncertainties for the
nuclear polarization correction are included in the given error for the Barrett equivalent radius R, ,.

Experimental Barrett
energy Half-density rms k radius
npi,-18y radius radius a —C, Ry .
Transition E., [eV] ¢ (fm) (fm) (fm™Y) (am/eV) (fm)
%0 2p—1s 133 544(4) 2.4174(46) 2.703 2.0285 1.285 3.476(8)
3p—2s 158 425(4) 0.0261
4p —1s 167 128(5)
30 2p—>1s 133 572(9) 2.554(13) 2.778 2.0287 1.258 3.568(14)
3p—1s 158 469(19) 0.0258
4p —1s 167 179(23)
43 2p—1s 168 535(6) 2.7819(37) 2.902 2.0367 0.782 3.731(6)
3p—ls 200 055(5) 0.0292
4p—1s 211091(6)
Ne 2p—1s 207 314(10) 2.9569(68) 3.005 2.0445 0.517 3.864(8)
0.0329
2INe 2p—1s 207461(19) 2.8934(69) 2.968 2.0441 0.520 3.816(8)
0.0330
2Ne 2p—1s 207 544(19) 2.8699(69) 2.954 2.0439 0.1522 3.798(8)
0.0330
Na 2p—1s 250278(7) 2.9361(23) 2.993 2.0484 0.365 3.847(6)
3p—1s 297474(13) 0.0361
4p —1s 313967(8)
Mg 2p—1s 296 602(5) 3.0440(14) 3.057 2.0525 0.262 3.928(4)
3p—1s 352778(9) 0.0387
4p—1s 372417(10)
Mg 2p—1s 296 791(8) 2.9969(25) 3.029 2.0521 0.264 3.892(5)
3p—1s 352972(25) 0.0388
4p —1s 372637(23)
Mg 2p—1ls 296 813(6) 3.0069(18) 3.035 2.0522 0.263 3.899(5)
3p—1ls 353009(15) 0.0387
4p —1s 372 652(19)
A1 2p—1s 346 926(7) 3.0534(13) 3.062 2.0571 0.196 3.934(4)
3p—1s 412903(10) 0.0418
4p—1s 435992(12)
283 2p—1s 400295(9) 3.1529(14) 3.122 2.0620 0.149 4.010(4)
3p—ls 476 860(12) 0.0446
2si 2p—1s 400 375(45) 3.1482(86) 3.120 2.0620 0.149 4.006(9)
30si 2p—1s 400295(44) 3.1720(84) 3.134 2.0622 0.149 4.025(9)

0.0446
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TABLE II. 1s,,, binding energies and corrections for muon-
ic 2*Mg, Mg, and ?*Si (in eV).

24Mg 26Mg ZSSi
Point nucleus energy 403977.6 404 123.9 550611.6
Vacuum polarization
order a(Za) 2216.0 22189 3179.2

order a¥(Za) 16.8 16.8 24.3

order of a(Za)", n=>3 —0.9 —0.9 —1.6
p-vacuum polarization 4.3 4.3 7.3
Relativistic recoil 6.4 5.9 10.5
Electron screening 0.0 0.0 0.0
Nuclear polarization 37.0 37.0 55.0
Finite-size effect —85445 —84455 —15791.0
Binding energy ls,,, 397662.2  397909.7 538012.4

form of the chosen charge density p(r). Each muonic
transition can thus be associated with a different, but
model-independent radial moment k,a of the nuclear
charge distribution, the so-called Barrett moment:

k,—ary — *© k _ 2
(rke—ar) 4‘rrf0 p(r)ir¥exp(—ar)ridr .

The parameter « is kept fixed for each element. The ra-
dius of a homogeneously charged sphere R, , yielding the
same Barrett moment is then given by

3(R )—JIRk‘arke~arr2dr=<rke —ar)
k,a 0 .

Table I presents, for the s-d shell elements from %O to
30si, the rms radii (r2)!/? (k=2,a=0) and the corre-
sponding Barrett equivalent radii R , as well as the fitted
values of k and a [23]. The quoted errors for the Barrett
radii contain not only statistical and nonlinearity errors,
but also nuclear polarization uncertainties. Also shown
are the sensitivities C, (in am/eV) of the Barrett radii to
the measured 2p; /,-1s, , transition energies. If the abso-
lute energy errors are multiplied by C,, the correspond-
ing errors in the radii are obtained. No errors are given
for the rms radii, since these values cannot be determined
model independently. However, for the rather light ele-
ments considered in this work, the differences of rms ra-
dii to equivalent Barrett radii are only of the order of
+%, since the moment k is close to 2 and a=0.

Table IIT lists the rms and R, , radii differences (iso-
tope and isotone shifts) for the same elements as in Table
L. The given errors for the differences AR , contain also,
analogously to the Barrett radii of Table I, nuclear polar-
ization uncertainties, besides the statistical and non-
linearity errors. For a more complete discussion of error
contributions see Ref. [23].

IV. COMPARISON WITH RESULTS FROM
ELASTIC ELECTRON SCATTERING

Nuclear charge radii can also be determined by elastic
electron scattering. A recent compilation of rms radii

TABLE III. Barrett equivalent radii and rms radii
differences between neighboring nuclei (AN=2, AN =1 iso-
topes and AZ =2, AZ =1 isotones). For AR, , all errors are in-
cluded. The radii differences AR, , for isotopes and isotones
heavier than Si are displayed in Figs. 3 and 4 and contained im-
plicitly in the odd-even staggering parameter y (see Table V).
No error is specified (see original publications [12-16,18]).

A|'ms ARk,u
Nuclei (am) (am)
AN=1 20Ne 2INe —37 —48 (7)
21Ne 22Ne —14 —18 (7)
“Mg Mg —28 —36 (2)
BMg Mg 6 7 (3)
28si si -2 —4 (6)
28 308 14 19 (6)
AN=2 160 %0 75 92 (10)
20Ne 22Ne —51 —66 (7)
XMg Mg —22 —29 (2)
285 305 12 15 (6)
AZ=1 50 3 124 163 (14)
YF 0Ne 103 133 (9)
22Ne BNa 39 49 (8)
BNa Mg 64 81 (5)
Mg 27A1 27 35 (5)
27A1 28si 60 76 (4)
AZ=2 %0 ONe 227 296 (19)
2Ne Mg 103 130 (9)
Mg 28g; 87 111 (6)

from elastic electron scattering can be found in [19]. In
addition, we added the data of Knight et al. [33] on ?’Ne
and the result of Soundranayagam [34] on Mg. In gen-
eral, the uncertainties of the rms radii extracted from
elastic electron scattering are larger than those obtained
in muonic atom work. Also, different electron scattering
data for the same nucleus deviate often more than the
quoted errors. Both facts are probably related to abso-
lute normalization problems for electron scattering data.
On the other hand, one should calculate our rms radii
with the skin thickness ¢ obtained from an (e,e) analysis.
Utilizing such a procedure, when data are available, our
rms radii of Table I—which are calculated with a fixed
value of ¢ =2.30 fm—shift, however, less than 2 am.
This is due to the fact that for the relatively light nuclei
of the s-d shell, rms and equivalent Barrett radii are very
similar. Table IV compares our muonic atom radii ry
with radii r,, from elastic electron scattering data. One
observes deviations in both directions of more than the
given errors. More than one-third of the radii differences
show such inconsistencies.

Before drawing conclusions about systematic devia-
tions between these two methods [35], one should keep in
mind that for elastic electron scattering data dispersion
corrections have to be applied. In order to understand
this situation, a detailed analysis including dispersion
corrections calculated by Friar et al. [36] and elastic
electron scattering measurements of the energy depen-
dence of dispersion corrections for >C has been made by
Offermann et al. [37]. In this analysis also the precise
muonic x-ray data from '2C measured with a crystal spec-
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trometer [38] have been included. They came to the con-
clusion that the agreement of the results from these two
methods is excellent in the case of '>C.

V. BEHAVIOR OF NUCLEAR CHARGE RADII
IN THE s -d SHELL

Due to the lesser accuracy of elastic electron scattering
results and the lack of data from optical work, we shall
concentrate in the following on a systematics of nuclear
charge radii differences in the s-d shell obtained mostly
from muonic atoms. Together with the results of Table
III, we employ our former measurements on the isotopes
of carbon, phosphorus, sulphur, and argon [13-16] and
the radii data of other authors on oxygen, silicium,
chlorine, potassium, and calcium [17,18,21,12]. In this
way, a complete and accurate study of nuclear charge ra-
dii differences for practically all stable isotopes and iso-
tones in the s -d shell becomes possible for the first time.

We first discuss the nuclear charge radii systematics
when adding pairs of neutrons (isotope shifts), then when
adding pairs of protons (isotone shifts). Finally, we study
the so-called “odd-even staggering” effect.

TABLE IV. Comparison of elastic electron scattering radii
r... with our muonic atom results 7,. The differences of the ra-
dii r, —r,, are in 40% of the cases not in agreement within the
given errors (see text).

rms radius rms radius

QU atom (e,e) | Pt

Nucleus (fm) (fm) (am)
160 2.703(6) 2.728(8) —25
2.730(25) —27
2.718(21) —15
30 2.778(11) 2.727(20) +51
VR 2.902(5) 2.900(15) +2
0Ne 3.005(6) 3.040(25) —35
3.004(25) +1
2.992(25) +13
22Ne 2.954(6) 2.951(27) +3
2.969(21) —15
BNa 2.993(5) 2.940(60) +53
“Mg 3.057(3) 3.080(50) —23
3.057(15) 0
2.985(30) +72
Mg 3.029(4) 3.110(50) —81
3.003(11) +26
2%6Mg 3.035(4) 3.060(50) —-25
2.960(4) +75
7A1 3.062(3) 3.060(90) +2
3.050(50) +12
3.035(15) +27
283i 3.122(3) 3.150(40) —28
3.086(18) +36
3.106(30; +16
8 3.120(7) 3.130(50) —10
3.079(21) +41
308 3.134(7) 3.176(22) —42

A. Isotope shifts

The behavior of nuclear charge radii has been studied
by our group together with Shera and his collaborators
for nuclei above the s-d shell over the past years
[5-12,24]. Several systematic regularities have become
apparent if one looks at the differences of the Barrett
equivalent radii AR, , between two isotopes with N and
N +2 neutrons at the respective abscissa values N +1 in
the region 20=< N = 86.

(1) For the same neutron number, the change of nu-
clear charge radii when adding a pair of neutrons is only
weakly dependent on the respective proton configuration.
This fact is not obvious, since nuclear radii are defined
via radial moments of their ground-state charge distribu-
tions. Additional neutrons must therefore interact more
strongly with the proton core than with the valence pro-
tons [5].

(2) After the closing of a magic neutron shell (N =20,
28, 50, or 82), there is a sudden increase of the radii
differences, reflecting the shell structure of the atomic nu-
clei. In high-precision data, also subshell structures may
be seen [8,9].

(3) In-between magic numbers, addition of a pair of
neutrons results in an almost linear decrease of the radii
differences AR, ,. Even a shrinking of charge radii may
be observed, e.g., just below the magic neutron number
N =50 [5,6]. Such a decrease in AR, , is generally relat-
ed to a decrease in intrinsic nuclear deformation.

If we now apply the above-mentioned regularities to
nuclei of the s -d shell, we obtain the dashed line of Fig. 3.
Obviously, the real behavior of these nuclei is drastically
different. The anomaly immediately starts at N =8 with

Isotope Shifts upon addition of two neutrons

for 6< N <22
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FIG. 3. “Anomalous” isotope shifts (see text) within the s-d
neutron shell for even-even isotopes including the radii
differences *C-'2C and “°Ar-*Ar. Plotted are the differences of
the “model-independent” (see text) equivalent Barrett radii
AR, , between two neighboring isotopes with N and N +2 neu-
trons at the respective neutron numbers N +1. The drawn-in
solid curve guides the eye. The dashed curve indicates the ex-
pected “normal” trend.
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the radii difference between '*0 and 90, which is, with a
value of +92 am, larger than any other difference be-
tween two even isotopes measured up till now. Next, the
difference between 2?Ne and °Ne turns out to be by 40
am more negative than the most negative radius
difference within the “normal” systematics. Also nega-
tive is the difference between 2Mg and 2*Mg, before the
radii differences become positive again. The sulphur iso-
topes *273%S and the argon isotopes *®*Ar finally are
consistent again with the normal systematics. Before
these results are interpreted, we turn to the systematics of
isotone shifts.

B. Isotone shifts

In a similar way as isotope shifts, we have studied iso-
tone shifts, i.e., nuclear charge radii changes when adding
pairs of protons for nuclei with 20<Z <62 (see Refs.
[5,6]). It should be emphasized that only the method of
muonic atoms is currently precise enough to reveal the
subtle effects of isotone shifts. The characteristics of the
systematics of isotone shifts are quite similar as for iso-
tope shifts. Hence, a forth feature can be added to the
former three mentioned in Sec. V.

(4) The behavior of isotone shifts is analogous to the
behavior of isotope shifts. Both the sudden increase at
the begining of a major proton shell and the nearly linear
decrease within major shells are present. Due to the ad-
ditional proton charges, all radii differences are shifted
upwards with respect to the corresponding neutron case.
While additional neutrons essentially change the polar-
ization of the nuclear proton core, more protons obvious-
ly add on additional charge. Finally, and again analo-
gous to the isotope shifts, the respective neutron
configuration does not have a large influence on the iso-
tone shifts.

Figure 4 shows the nuclear charge radii changes when
adding pairs of protons for the region 6<Z <22. In-
terestingly enough, the isotones in the s -d shell behave in
a similar “anomalous” way as the isotopes of the same
shell (see Fig. 3). There is also an excessive radius
difference at Z =810 and strongly diminished
differences for Z =10—12 and Z =12—>14. The effect
of the “anomalous” behavior has almost the same size for
isotopes and isotones. In addition, the systematics at
Z =16— 18 and Z =18—20 behaves again ‘“normally.”

C. Odd-even staggering

In order to find out if the “anomalous’ behavior of the
nuclear charge radii in the s-d shell when adding pairs of
nucleons is related to the first or the second nucleon add-
ed, we have to study the so-called “odd-even staggering”
effect. This quantity is in muonic atom work usually
defined as

[Rk,a(A +1)_Rk,a(A)]
T[R4 +2)—R, (A)]

y(A4+1)=

where A4 means an even mass number and R k,« 1S the Bar-
rett radius. If the radius change for the first and the
second nucleon is the same, then y is equal to 1. Usually,
v is smaller than 1, so that the contribution of the second

Isotone Shifts upon addition of proton pairs
for 6 <Z < 22
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FIG. 4. “Anomalous” isotone shifts (see text) within the s-d
proton shell for even-even isotones including the radii
differences '0-1*C and Ti-Ca. Plotted are the differences of the
“model-independent” (see text) equivalent Barrett radii AR, ,
between two neighboring isotones with Z and Z +2 protons at
the respective proton numbers Z + 1. The drawn-in solid curve
guides the eye. The dashed curve indicates the expected “nor-
mal” trend.

unpaired nucleon dominates. This is the reason for the
term “odd-even staggering.” In the region of “normal”
nuclear charge radii systematics, the ¥ parameters take
on values between 0.2 and 0.8.

By now, it should not come as a surprise that the s-d
shell nuclei show large variations in the y parameter. As
can be seen from Table V, the odd-even staggering for
isotopes varies from y = —0.53 to ¥ = +2.48 and for iso-
tones from y=+0.64 to y=-+1.94. The y parameter
for isotones cannot be negative since the addition of new
charge always results in an increase of the nuclear charge
size. Table V shows not only the muonic atom data, but
also electron scattering data on the odd oxygen [20] and
the odd chlorine [21] isotopes. If the radii changes
within the s-d shell are compared when adding the first
or the second unpaired nucleon, respectively, similar
curves as a function of mass numbers are obtained as in
Figs. 3 and 4 (for details see Ref. [23]). This fact can be
interpreted as a similar contribution of the unpaired nu-
cleons to the “anomalous” behavior within this shell.
Hence, the anomaly cannot be explained by the odd-even
staggering.

VI. INTERPRETATION OF THE RESULTS

In the preceding section, we have seen that the isotopes
and isotones of the s-d shell behave in an “anomalous”
way, that is, they do not follow the trend observed ‘with
heavier nuclei. In this section, we consider to what ex-
tent the s -d shell “anomaly” can be explained by theoret-
ical considerations.

Semiempirical models like the “droplet model” of
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TABLE V. “Odd-even staggering” parameter y for isotopes and isotones in the s -d shell.

z Isotopes Y N Isotones Y
8 160-170-180 —0.21 8 14C.I5N-1¢0 0.76
10 200-'Ne-2Ne 1.46 10 130-19F-2Ne 1.10
12 “Mg-PMg-*Mg 2.48 12 22Ne-PNa-*Mg 0.75
14 2861-2981-20S{ —0.53 14 %Mg-27A1-28Si 0.64
16 30gj-31p.32g 0.86
18 348-35C1-Ar 1.94
20 368.3C1-3¥Ar 1.54
20 BAr-K-4Ca 0.88

Myers et al. [39], parametrizations as in Wesolowski
[40], or correlations with binding energies by Angeli
et al. [41], while reproducing the global trend of nuclear
sizes, are generally not applicable for light nuclei. On the
other hand, shell-model calculations [1-3], spherical
Hartree-Fock calculations [4], and relativistic mean-field
theories [42] are more promising, in particular, if defor-
mation effects are taken into account.

For an understanding of the anomalous behavior of the
nuclear charge radii in the s-d shell, a look at the sub-
shell occupation numbers is revealing. These numbers
have been calculated by Brown et al. [1] for both protons
and neutrons for even-even nuclei. They are shown in
Table VI. Obviously, there is strong mixing beyond the
10 core between the three subshells, i.e., 1ds,,, 25,5,
and 1d,,,, and there is also a strong similarity between
protons and neutrons. For instance, the two additional
neutrons in 2?Ne (compared to *°Ne) and in 2Mg (com-
pared to >*Mg) are preferentially added to the “inner”
1ds,, subshell. By means of strong interaction with the
protons, these two neutrons pull nuclear charge into the
interior of the nucleus so that the heavier nuclei 3Ne and
2Mg become smaller in size than J)Ne and 2} Mg, respec-

TABLE VI. Shell occupation numbers of protons and neu-
trons beyond the 'O core for the even-even nuclei of the s-d
shell as calculated by Brown et al. [1]. The lengths of the
drawn-in bars are proportional to the respective occupation
numbers.

nucleus protons neutrons

1ds2 252 1dyp 1dy; 22 ldyp
20Nejo | 1.21 0.51 0.28 1.21 9_.51 0.28
22Ne;, | 1.40 0.42 0.18 3.18 0.39 0.43
#Mgi2 | 2.99 0.45 0.56 2.99 0.45 256
2Mg1q | 3.20 0.35 0.45 4.82 0.56 0.62
#Sig | 4.62 0.70 0.68 4.62 0_.70 &68
NSie | 4.74 0.68 0.58 5.15 141 144
3216 | 542 1.42 1.16 5.42 _112 i,iﬁ
34S1s | 5.61 1.66 0.73 5.76 ﬂ 2.48
JAns | 5.54 1.78 2.68 5.54 1.78 2.68

tively. An analogous explanation holds for the isotone
shifts between 10=<Z <14, specifically for the isotone
pairs 3Mg-73Ne and 23Si-2$Mg, accounting for the dip in
the isotone curve of Fig. 4. Toward the end of the s-d
shell, i.e., for Z, N > 14, the 1ds,, subshell becomes prac-
tically saturated. The successive population of the
higher-lying 2s,,, and 1d;,, subshells then leads to “nor-
mal” charge radii increases, as expected from the sys-
tematics of heavier nuclei.

Besides strong subshell mixing, the nuclei in the s-d
shell are also characterized by strong intrinsic deforma-
tions. These deformations change from an oblate, disk-
like shape to a prolate shape as manifested by the sign of
their ground-state quadrupole moments. Diminishing de-
formations towards the end of a given shell have already
been evoked as a reason for smaller nuclear charge radii
when adding pairs of neutrons [5,24].

In order to compare the results of the spherical shell-
model calculations of Carchidi et al. [3] or the Hartree-
Fock (HF) calculations of Friedrich [4] with our experi-
mentally measured charge radii, the contributions due to
intrinsic nuclear deformations have to be taken explicitly
into account. For this purpose, we correct the calculated
spherical rms radii by a deformed part. Specifically, we
employ the “pairing-plus-quadrupole model” of Reehal
and Sorensen [43], where the nuclei are described by
homogeneously charged rotational ellipsoids, with the de-
formation limited to the quadrupole contribution. The
rms radii can then be written as

<r2>s+d=(r2>s

»

S i
1+ o (B3

where the indices s and d stand for “spherical” and ‘“‘de-
formed,” respectively. The quadrupole deformation pa-
rameter {B3) is given by [43]

2

4T 1 -

- —Z—2(<r2>s) 2B(E2,0" >21) .

2) —
(B3) 5

If the B (E2) matrix elements are evaluated from the life-
times and the branching ratios of the respective excited
nuclear states [44,45], and if the spherical rms radii (r2),
are taken from theory, e.g., from the HF calculations of
Friedrich [4,46], Table VII is obtained. In this table,
volume and deformation contributions to the rms radii
calculated in the manner described above are presented
for all stable even-even nuclei of the s-d shell. Also
shown are the deformation factors
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FIG. 5. Comparison of our measured isotopes shift A{r2)!/2

(the curve guides the eye) within the s-d neutron shell with
deformation-corrected HF calculations of Friedrich et al. [4,46]
deformation-corrected harmonic-oscillator-(HO-) and Woods-
Saxon- (WS-) type shell-model calculations of Carchidi et al.
[3], and relativistic mean-field calculations of Furnstahl et al.
[42] (rel. HF).
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and the resulting increase of the rms radii. It is interest-
ing to note that the changes due to deformation can be at
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FIG. 6. Comparison of our measured isotone shifts A{r2)!/?

(the curve guides the eye) within the s-d proton shell with
deformation-corrected HF calculations of Friedrich et al.,
deformation-corrected harmonic-oscillator- (HO-) and Woods-
Saxon- (WS-) type shell-model calculations of Carchidi et al.,
and relativistic mean-field calculations of Furnstahl et al. (rel.
HF).

least as important as the changes in the spherical parts
between neighboring nuclei. The next two figures (5 and
6) compare these deformation-corrected HF calculations
of Friedrich with our muonic atom radii changes for the
even isotopes and isotones of the s-d shell. There is gen-

TABLE VII. Volume and deformation contributions to the total rms radii. The spherical radii are
taken from the Hartree-Fock calculations of Friedrich [4,46]; the deformed parts are calculated accord-
ing to the pairing-plus-quadrupole model [43] with the deformation factor [1+(5/47){B})]'/2.

Spherical Arms rms Arms
rms by radius
radius Deformation deformation (r3)12, (fm)

Nucleus (fm) factor (fm) (fm)

10 2.742
+0.061

3o 2.734 1.0253 0.069 2.803
+0.274

#Ne 2.928 1.0509 0.149 3.077
—0.056

2Ne 2.905 1.0398 0.116 3.021
+0.149

#Mg 3.029 1.0466 0.141 3.170
—0.051

#Mg 3.018 1.0334 0.101 3.119
+0.079

28si 3.125 1.0233 0.073 3.198
. —0.013

308i 3.134 1.0164 0.051 3.185
. +0.114

163 3.249 1.0153 0.050 3.299
“ +0.002

3g 3.268 1.0102 0.033 3.301
36 +0.002

16S 3.290 1.0041 0.013 3.303
y +0.095

¥Ar 3.366 1.0094 0.032 3.398
. +0.001

18AT 3.381 1.0053 0.018 3.399
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erally good agreement between experiment and theory.
In both cases, the dip around N,Z =12, including the
negative values in the isotope shifts, is reproduced. Also
presented in these figures are harmonic-oscillator and
Woods-Saxon shell-model calculations by Carchidi et al.
[3], corrected for deformation. They both show also the
s -d shell anomaly, but agree somewhat less with our data.
Finally, the relativistic mean-field calculations of
Furnstahl et al. [42], which already contain deformation,
also yield negative rms changes for the isotope shifts, but
are not in accordance for the isotone shifts.

Regarding odd-even staggering, i.e., the different
influences of the first and the second unpaired nucleon on
the charge radii, we have compared the shell-model cal-
culations of Carchidi et al. [3] with our muonic atom
data. Again, there is a reasonable agreement with theory,
if the intrinsic deformations are explicitly taken into ac-
count. In particular, the harmonic-oscillator-type calcu-
lations yield closer agreement with experiment than the
Woods-Saxon-type calculations. Figures are not given in
this paper; for more details see Ref. [23].

Hence, we can conclude that our nuclear charge radii
differences measured by means of the muonic atom x-ray

method within the s -d shell are reasonably well described
by theoretical Hartree-Fock and shell-model calculations,
if both configuration mixing between the three subshells
(1ds,5, 28,5, and 1d;,,) as well as deformation changes
are taken into account. The ‘“‘anomaly” within the s-d
shell with respect to the “normal” systematics of the nu-
clear charge radii of heavier nuclei can thus be under-
stood.
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