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Elastic scattering phenomenology by inversion: ' O on ' C at 60$ Mev
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Here we introduce a practical approach to optical model phenomenology for heavy ions. The key idea
is the determination of a "spline improved McIntyre" S matrix S(l}which is then subjected to S(l)-to-
V(r) inversion. We apply this to fitting experimental data for ' 0 on ' C at 60S MeV and obtain poten-
tials which are significantly different from those found from a simple optimization of McIntyre parame-
ters followed by inversion. In particular we find quite different results for such qualitatuve features as
8'/V in the nuclear surface. The potential found is compared with that obtained by conventional
analysis. The two-stage procedure has computational advantages for heavy ions.

PACS number(s): 25.70.8c, 24.10.—i

In this paper we demonstrate the feasibility of a new
way of getting precise fits to elastic scattering data, re-
ducing these data to local potentials which contain the
full information content of the data. The idea involves a
particular means of carrying out a procedure advocated
at various times [1] and carried out with varying degrees
of success [2—5]. We refer to the two-stage procedure
whereby the S matrix is determined by a phase-shift
search and then subjected to fixed energy S(l)-to-V(r) in-
version. The recent emergence of a number of practical
methods [6-10] for S(l)-to-V(r) inversion makes the
two-state procedure a feasible alternative to the more
usual direct approach, which arguably fails in many
cases. The two-stage procedure offers the possibility of
gaining insight into the ambiguities which are not fully
explicit in direct optical model (OM) searching where the
high degree of nonlinearity is a compounding of the non-
linearities of theo-to-S(l) andS(l) to V(r) i-nv-ersions.

Of the above references, the one which is closest to the
present. work is that of Allen et al. [3], who invert from
S(l) of McIntyre, Wang, and Becker [11] with parame-
ters previously fitted to the data. Our work differs from
that of Allen et al. [3] in that the aim is the determina-
tion of potentials which give precision fits to elastic-
scattering data. To this end we introduce an S-matrix
fitting procedure [12), SIM, defined below. The work of
Leeb, Fiedeldey, and Lipperheide [4] offers an alternative
approach to the same problem we study here, and a com-
parative evaluation of the procedures should be made in
due course.

For our present purposes, the form of S(l) must be free
to depart from the restrictive form of McIntyre, %ang,
and Becker. There is every reason to believe that an un-

derlying I dependence due to channel coupling, etc., ex-
ists and would be represented in an l-independent poten-
tial by some degree of nonsmoothness. It is axiomatic
that a model with g /X-5 does not work; there will be a
vast number of quite different models which wi11 work
equally badly. Arguably, the most objective test for a
theory (coupled channels, for example) is to reduce it by
inversion to a loca1 potential, which can then be com-
pared with phenomenological local potentials. Phenome-
nology is useful if and only if either y /N-1 is achieved

or one can conclude from the analysis that systematic er-
rors make y /N-I impossible with physically reason-
able models; we shall expand upon this in a paper in
preparation. Here we present a method that not only fits
data for which there are no published exact fits, but
motivates experiments of greater precision and angular
range by showing how the information contained in such
data can be extracted.

The problem of ambiguities in phase-shift fitting is well
known to be profound in principle, but there does seem
to be an approach that for high-energy heavy ions give
consistent results. By starting the search at a local
minimum characterized by a very smooth S(l), it seems
that for very large numbers of partial waves a good fit
can be obtained, retaining this smoothness. The first step
is to fit the data with a five-parameter McIntyre-%ang-
Becker form:

and

IS~(i)l =
1+exp[(lg —I )/6]

argS (I ) = 2p
1+exp[(1 —

lg ) /4'] (2)

S(l)=S (I )+S'(l), (3)

where S'(I) is a spline correction chosen in such a way
that ~S(l)~ does not exceed unity at the knots of the
spline interpolation procedure. The searching is actually
performed on ~S~ and arg S separately to this end. In
practice, there is no problem with unitarity being broken
elsewhere. We henceforth refer to S(l) obtained in this
way as spline-improved McIntyre (SIM).

To obtain the potentials which correspond to the SIM
S(l), we use the IP (inversion procedure) [9,10]. This
yields potentials which precisely reproduce S( I) down to
values of l corresponding to radii much lower than those
which are of significance in the light of current experi-
mental data. The potentials are unique down to such ra-

The second step is to add, to the complex S (1) so deter-
mined, a correction which in our case is expanded in
spline functions of 1:
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FIG.- 1. For 608 MeV ' 0 incident on ' C, the modulus and
argument of the S matrix as found by two alternative pro-
cedures. The dashed line is S(l) as determined by optimizing the
parameters of a McIntyre-Wang-Becker form, the solid line be-
ing the SIM fit (see text).

dii. More details will be given in Ref. [13], where we
shall present such potentials for ' C on ' C for energies as
low as 161 MeV, well below the energies at which WKB
inversion works. Here we confine ourselves to describing
a single case of considerable interest, the scattering of 608
MeV ' 0 from ' C [14].

In Fig. I we compare ~S(1)~ and argS(1} for the
McIntyre-Wang-Becker and SIM fits. The most conspi-
cuous features are the long tail on argS(l) and a bend in
~S(l}~, whereby a generally sharper slope toward unity
with increasing I crosses the McIntyre-Wang-Becker
curve to give a more gradual approach to unity for 1 & 75.
The behavior for l (20 is not well established, and the fits
shown must be considered artifacts of the McIntyre-
Wang-Becker starting form. The long tail on argS(l) is a
most interesting physical feature and lies beyond the
scope of the McIntyre-Wang-Becker form. It is, howev-
er, essential for a fit to the data, the quality of fit being
greatly improved by the objective measure of y /N as
well as by more subjective measures of appearance. The
tail seems particularly essential for a correct representa-
tion of the cross section at the Fraunhofer diffraction
minima at 7' and 11' (see Fig. 2 introduced below. }
Below, we present our fits graphically in terms of the po-
tentials inverted from the S(l}, but we quote here the
quality of fit for the o-to-S(l} fitting state. For the
McIntyre-Wang-Becker S(1}, we obtain y /N=3. 023,
and for SIM, we obtain y /N =0.897, substantially
better.

Whether we start the IP inversion iterations from a

Woods-Saxon or from a zero potential made no difference
to the final potential beyond 1 fm. The quality of the in-
version is reflected in the fact that the final y /N for the
inverted potential was 0.951, close to the value quoted
above for the SIM S(1). For the potential obtained by in-
verting the McIntyre-Wang-Becker S(1), we have

g /N=3. 014 compared with 3.023 for the McIntyre-
Wang-Becker S(1)directly.

One of the key qualitative features characterizing a
heavy-ion potential is the ratio of the imaginary to real
potential in the nuclear surface, here denoted by IV/V.
In this respect the difference between the McIntyre-
Wang-Becker and SIM potentials is notable —W/V in
the surface is entirely different for the two cases. At the
strong absorption radius [SAR, defined using

~S(1}~ =0.5], we found, for SIM, W/V=0. 70 (SAR is at
6.73 fm}, whereas for McIntyre-Wang-Becker
W/V=1. 09 (SAR is at 6.82 fm}. The disparity rapidly
increases with radius (see Table I discussed below. ) Thus
the SIM potential may be classified as surface transpar-
ent, but the potential derived from the McIntyre-Wang-
Becker S(1}is not. As a result, there is a large difFerence
between the McIntyre-Wang-Becker and SIM differential
cross sections regarding the shape of the cross section in
the Fraunhofer interference region. This is responsible
for a large measure of the improvement of the fit. We
have examined the far/near decomposition following the
formalism of Fuller [15] and find that, in going from
McIntyre-Wang-Seeker to SIM, the far component is
enhanced in this region and the near component
depressed. The enhancement of the far component, at
least, would seem to tally with the greater surface tran-
sparency of the SIM potential.

We have applied a notch test to determine the
minimum radius for which the given data determine the
potential; it is about 3 fm. More specifically, a Gaussian
notch of width 0.3 fm and of depth equal to 5% of the lo-
cal real potential increases y /N by a factor of 2 when
centered at 3.6 fm.

The y values quoted above show that the fits for the
SIM-derived potential are much better than for the po-
tential derived from the McIntyre-Wang-Becker S(l).
We compare our potential with a standard OM potential,
exploiting the published parameters of Brandan [16]. In
Fig. 2 we compare our SIM fit (solid line) with that of
Brandan (dotted line), which we find to give yi/N =4.72;
the Fraunhofer interference region between 10' and 20' is
fitted much better by SIM, with oscillations of greater
magnitude. There are weak oscillations in the shape be-
tween 20 and 30' which are missed by the conventional
potential. We do slightly worse only at the maximum
near 6'. Figure 2 also compares the SIM and McIntyre-
Wang-Becker (dashed line) fits; the SIM potential gives a
very much better fit than the McIntyre-Wang-Becker po-
tential to o at the Fraunhofer region between 5 and 15;
we mentioned above the origin of this in the relative
strengths of far and near amplitudes.

We have not presented figures comparing the
differential cross sections calculated directly from
McIntyre-Wang-Becker or SIM S(1) with cross sections
calculated from the respective inverted potentials; in both
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FIG. 2. For 608 MeV ' 0 incident on ' C comparing the SIM
fit to the data (solid line) with the conventional optical model fit
of Brandan and Satchler (dotted line). The McIntyre-Wang-
Becker fit to the data is given by the dashed line.
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cases they are virtually indistinguishable over the entire
angular range where there is experimental data.

Improved OM fits, reaching g /N close to unity, have
been obtained by using generalized Woods-Saxon (WS)
shapes and spline real potentials [17], but the present
comparison serves well to demonstrate one of our con-
clusions: that an uncorrected McIntyre-Wang-Becker S(1)
can lead to erroneous qualitative results. In Fig. 3 we
compare our SIM potentials with those Brandan and
Satchler and with that derived from the McIntyre-
Wang-Becker form. For r ~5 fm the agreement of the
real part of the SIM with that of Brandan and Satchler is
remarkable, but not complete: We find a long tail that is
an evident concomitant of the SIM argS(l); the real part
of the McIntyre-Wang-Becker potential, also shown in
Fig. 3, entirely lacks such a long tail.

The fundamenta1 disagreement between McIntyre-
Wang-Becker and SIM potentials is more evident in
Table I, which also shows that the SIM and Woods-
Saxon potentials have the same general II'/V behavior.
The disagreement between SIM and McIntyre-Wang-
Becker results, the agreement between SIM and Woods-
Saxon results, and the much better fit for the SIM poten-
tial all taken together suggest that potentials derived
from the McIntyre-Wang-Becker S(l) can lead to in-
correct conclusions concerning qualitative features such
as surface transparency. This is an important point and

FIG. 3. Potentials corresponding to the fits of Fig. 2. The
SIM potential is the solid line, the McIntyre-Wang-Becker po-
tential is the dashed line, and the Brandan-Satchler potential is
the dotted line. The scale is expanded in the nuclear surface.

underlines the essential difference between our work and
that of Ref. [3].

The inverted potentials shown in Fig. 3 should not be
taken seriously for radii below 3 fm, the repulsion at r =0
being a clear artifact of the underlying McIntyre-Wang-
Becker form, which the data could not discriminate
against. There is evidence to suggest that data over a
wider angular range might actually lead to information
concerning the behavior of the potential around 3 fm or
below. We mentioned above the notch test relating to the
effect upon y /N; it turns out that the quantity
o = g&~h(S(l))~ that we use [10] to study the quality
of the inversion is sensitive to perturbations in the poten-
tial down to about 2 fm.

Further applications. The procedure described here is
of wide applicability: Papers are in preparation describ-
ing our analysis of ' C on ' C at laboratory energies from
161 to 2400 MeV; unlike the WKB inversion procedure
employed by Allen et al. [3],our method has no difficulty
with precise inversions below 500 MeV and works well
for the 161-MeV case. Allen et al. remark that the WKB
method requires smooth S(l); whether the behavior of
the SIM S(l) of this paper around 1=75 is smooth in
their sense, it gives no trouble for the IP inversion, and

TABLE I. Ratio W/V at various radii for the Woods-Saxon potential of Braudau aud Satchler [17],
the potential corresponding to the McIntyre-Wang-Becker parametrization of the S matrix, and the po-
tential derived from the SIM Smatrix.

Radius (fm)

Woods-Saxon
McIntyre-Wang-Becker
SIM

5.5

0.68
0.65
0.57

6.0

0.66
0.86
0.67

6.5

0.58
0.96
0.64

7.0

0.48
1.30
0.66

7.5

0.40
1.52
0.52

8.0

0.31
1.69
0.36

8.5

0.24
1.57
0.22
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we have inverted rather less smooth S(1). We are also
preparing for publication cases for a wide range of targets
and projectiles. Although we have here preferred the
SIM S(1) to that of McIntyre, Wang, and Becker, it is
probable that in many cases, where the far component of
the scattering amplitude is very small, a McIntyre-
Wang-Becker parametrization will adequately fit the
data.

Implications for experiment. There is no reason to sup-
pose that we could not achieve fits of comparable quality
to data of higher precision and wider angular range. The
SIM plus inversion phenomenology provides the motiva-
tion for pushing elastic-scattering measurements to more
backward angles with the assurance that the correspond-
ing information could be extracted. Indeed, even
smoothly falling angular distributions provide useful in-
formation; in an analysis of ' C on ' C scattering to be
published, we find that, particularly where there are sys-
tematic errors in the data, forcing a precise fit to the data
can lead to divergent behavior beyond the last angle with
the data. Further data points to constrain the fit are

therefore highly desirable.
Practicality of two-stage SIM elastic sc-attering phenom

enology. The two-stage method may be the simplest way
of finding perfect fits to elastic-scattering data for heavy
ions at high energies where the number of partial waves,
the number of mesh points, and, the number of potential
parameters (for model-independent fitting) are all very
high. The initial S-matrix fitting is generally straightfor-
ward, characterized by considerable linearity, and takes a
matter of seconds of CPU time on a VAX. Much the
same applies to the S(l) to V-(r-) stage; all our calcula-
tions were carried out on line with fits and S(l) moni-
tored graphically.
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