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In this paper various realistic shell model effective interactions are analyzed in terms of their
central, vector, and tensor components. The effective forces were obtained from phenomenologi-
cal (Hamada-Johnston) as well as from modern meson-exchange (Bonn-Jiilich and Paris) nucleon-
nucleon potentials and were calculated to various approximations within the framework of pertur-
bation theory. For all forces examined, the dominant contribution comes from the central part.
The vector component is small for the bare G-matrix interaction, especially for T = 0, but is con-
siderably modified by renormalization. The tensor component is somewhat larger than the vector
component and is relatively larger for the Hamada-Johnston potential than for the Bonn-Julich and
Paris potentials. Centroids in j-j and SU(3) coupling were obtained with and without noncentral
contributions; considerable sensitivity was observed in the SU(3) basis.

PACS number(s): 21.60.Fw, 21.60.Cs, 21.30.+y

I. INTRODUCTION

In this paper we examine various realistic shell model
effective interactions in terms of their central, vector, and
tensor components and their transformation properties
under SU(3) and SU(4). These components can be sep-
arated out by performing a spin-tensor decomposition of
the interaction. Such a decomposition may be helpful in

revealing the physical properties of the effective interac-
tion, which is a complex entity. In fact, the evaluation of
the shell model effective interaction from the underlying
free nucleon-nucleon (NN) interaction is one of the out-
standing problems of nuclear many-body theory. This is

an exceedingly complicated problem which, despite much

progress made over the last 25 years, cannot be consid-

ered settled. Thus, efforts are continuously being made

to solve this problem as well as to determine the essential
details of the interaction that determine the structure of
systems of several nucleons.

There are several obstacles to the accomplishment of
this program. The first problem is associated with the
choice of the NN interaction. This can be either of
phenomenological nature [1,2], obtained by fitting phase
shifts of NN scattering and the deuteron properties, or of
more fundamental nature, calculated by meson-exchange
theory [3, 4]. In principle, the NN interaction should be
calculable from the underlying quark-gluon interaction,
but such calculations have not been able to reproduce re-

alistic NN interactions. Roughly speaking, typical phe-
nomenological NN interactions, such as the Hamada-

Johnston [1] and Reid potentials [2], differ from the more
modern Paris [3] and Bonn-Jiilich [4] meson-exchange po-
tentials in the strength of the much debated tensor-force
component. The former have rather strong tensor com-

ponents whereas the latter have somewhat weaker tensor
components. In meson-exchange models the tensor com-

ponent results from a partial cancellation of the tensor
components from vr- and p-meson exchanges. The larger
the pN coupling constant, the better the cancellatio'n.
Although the phenomenological potentials are not explic-
itly constructed in terms of meson exchanges, the effec-
tive pN coupling is much weaker in these, corresponding
to a stronger tensor component [5]. Although a finite
tensor component is needed in the effective interaction
to reproduce observed nuclear properties (e.g. , the P de-

cay in the mass 14 system), it seems desirable for the
convergence properties of the effective interaction evalu-
ated by many-body perturbation theory that the tensor
component be fairly weak. However, more work is needed
before this question can be definitely answered.

The second problem in obtaining the effective inter-
action is associated with its evaluation by many-body
perturbation methods, once the initial NN interaction
has been chosen. This procedure generally includes two
steps. First, since the NN interaction is strongly singu-
lar at short internucleon distances, it has to be regular-
ized in some way before it can be used in a perturbative
treatment. This is generally achieved by evaluating the
Bethe-Brueckner-Goldstone reaction matrix G which in-

corporates the two-nucleon short-range correlations by
allowing the two nucleons to interact virtually any num-
ber of times as shown in Fig. 1(a). Then, in the second
step one uses the reaction matrix G as a starting point for
a perturbation expansion of the effective interaction. The
philosophy regarding which diagrams to include differs
widely. For example, one could either sum the diagrams
order by order in G or carry out infinite summations of
subsets of diagrams. In both cases, of course, one has
to be rather selective in choosing the diagrams to be in-
cluded. Thus, in practice there is no definite procedure
for obtaining the effective interaction once the NN in-

teraction has been chosen and the G matrix evaluated.
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Furthermore, any procedure for obtaining the effective
interaction from a given N N interaction is rather intri-
cate. Thus, in the end it may be difficult to tell precisely
which features of the original NN interaction are impor-
tant for the resulting effective interaction, and all the
more so as the effective interaction is not obtained in
analytic form but in terms of its matrix elements. The
effective interactions obtained by the various approxima-
tions will therefore have to be assessed from their merits,
i.e., from their ability to describe nuclear properties, such
as spectra, decay rates, and reaction cross sections.

To date, several reasonable effective interactions have
been obtained. In order to understand their differences
on a more fundamental level than just comparing energy
spectra and related properties, it may be instructive to
analyze the various interactions in terms of their spin-
tensor components. In particular, it is of interest to see
to what extent the presumed different tensor strengths in
the original NN interactions show up in the correspond-
ing G matrices and renormalized effective interactions.
Another reason for carrying out a spin-tensor decompo-
sition of the effective interaction is to get an assessment of
the salient features which have to be incorporated into ef-

fective interactions for heavier nuclei which are not easily
calculable from many-body theory because of the many
single-particle degrees of freedom involved.

A few spin-tensor analyses have actually been carried
out for (1s0d) shell effective interactions [6—10], for both
calculated and empirical ones. For the present work we

wish to compare several calculated effective interactions
which have all proven rather successful in reproducing
nuclear properties. These interactions will be discussed

in Sec. II. In Sec. III we recall briefly the basic steps in-
volved in carrying out a spin-tensor decomposition. The
results are presented and discussed in Sec. IV, and we
summarize our findings in Sec. V.

II. EFFECTIVE INTERACTIONS

In this section we shall briefly discuss the effective in-
teractions which are to be analyzed in terms of their spin-
tensor components. We consider two classes of interac-
tions. One class [11,12] is derived from the phenomeno-
logical Hamada-Johnston potential which has a rather
strong tensor component, while the other class [13—15] is
derived from meson-exchange potentials such as the Paris
or Bonn-Julich potentials which have somewhat weaker
tensor components. Within each class of interaction we
consider the effect of various renormalizations. We also
examine the effect of expressing the effective interaction
in a Hartree-Fock (HF) single-particle basis rather than
in the conventional harmonic-oscillator basis. The vari-
ous approximations are listed in Table I.

As an example of an effective interaction derived from
the phenomenological Hamada-Johnston NN potential,
as well as a standard of reference, we consider the in-
teraction derived in the pioneering works of Kuo and
Brown [11]. As is well known and shown in Fig. 2, the
bare G matrix [Fig. 1(a)] evaluated by I&uo and Brown
is not sufBcient to describe the energy spectrum of two
nucleons outside a closed shell. In fact, an insufficient
ground-state binding energy is obtained and the spec-
trum is too compressed. In order to increase the bind-
ing energy and expand the spectrum, it is necessary to
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FIG. 1. Approximations considered for the effective interaction. Sho~vn are the diagrams contributing to the approximations
G, PT, STOA, and SCCE listed in Table I.
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TABLE I. Effective interactions analyzed by spin-tensor
decomposition. The various approximations considered are
defined in terms of their diagrammatic expansions in Fig. 1.
Note that respectively approximations PT and STDA for the
Hamada- Johnston, and approximations SCCE and (SCCE)HF
for the Bonn- Julich and Paris potentials, are not directly com-
parable since they include different approximations to the in-
teraction.
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include second-order corrections in G through pertur-
bation theory. These corrections are the three-particle,
one-hole or core-polarization contribution, Fig. 1(b), the
four-particle, two-hole contribution, Fig. 1(c), and the
two-particle contribution, Fig. 1(d). The resulting inter-
action is denoted by PT. In particular, the second-order
core-polarization term shown in Fig. 1(b) produces the
desired effect. As an extension we consider the inter-
action derived by Kuo and Osnes [12] by summing the
infinite set of core-polarization diagrams [Figs. 1(b), 1(e),
...], using particle-hole vertices screened to second order
as shown in Fig. 1(f). This approximation may be called
the screened Tamm-Dancoff approximation (STDA) and
is shown in Fig. 2 to produce results similar to second-
order perturbation theory (PT).

In the class of meson-exchange potentials we consider
the Paris and Bonn-julich potentials. For these poten-
tials we compare the bare G-matrix interaction [13, 14]
with a renormalized interaction [16] containing essen-
tially all important long-range correlations to arbitrary
order as shown in Fig. 1(g). As the evaluation of t,his in-
teraction involves solving a self-consistent set of coupled
equations, it is denoted by SCCE. In fact, it was found
that this interaction was too strongly attractive for the
low-spin states, as shown in Fig. 2. A more reasonable in-
teraction could be obtained, however, by employing a HF
basis for the single-particle states, provided that the col-
lective four-particle, two-hole (4p-2h) correlations, which
cannot easily be incorporated by perturbation theory, be
explicitly included.

In Fig. 2 we have only shown the T=l spectra for two
nucleons outside an 0 closed core. However, qualita-
tively similar results are obtained for the T=O spectra.
The Paris potential gives results similar to the Bonn-
Jiilich potential for the bare T=l G-matrix interaction.
The T=O Paris bare Q matrix is, however, considerably
less attractive than the Bonn-Jiilich 0 matrix. Clearly,
this results in less bound states for both T=O and T=1
in all the higher-order approximations for the Paris po-
tential, as shown in detail in Ref. [15]. Also shown in

FIG. 2. Low-energy spectrum of 0 calculated for the
various approximations of the effective interaction defined in

Fig. 1 and Table I. In the figure caption SCCE is abbreviated
as SC and 4p-2h refers to results including intruder states,
Ref. [18].

the far right column are results obtained by explicitly in-

cluding low-lying, deformed four-particle, two-hole states
[16]. The required additional matrix elements were taken
from the phenomenological weak-coupling calculations of
Ellis and Engeland [16]. The inclusion of these so-called
intruder states are seen to restore the spectrum in near
agreement with experiment.

III. SPIN- TENSOR DECOMPOSITION

The calculational procedure for a spin-tensor analy-
sis is well known. It rests on the fact that any scalar
two-particle interaction V can be expanded in terms of
spherical tensors as

y ) q(k) S(k) ) ( )Kq(k)S(k) )

where Q( ) and S( ) are spherical tensors of rank k(a) (a)

and component a in configuration and spin spaces, re-

spectively. The summation runs over k = 0, 1, and 2.
The corresponding components Vy of the interaction are
called the central, vector, and tensor components. The
vector component is also called the two-body spin-orbit
term. (In addition to the ordinary two-body spin-orbit
term, the vector term also contains the so-called anti-
syiiunetric spin-orbit term [17];we will, however, not be
concerned with this distinction here. ) By standard angu-
lar momentum algebra it is straightforward to evaluate
the matrix elements of Vp from the matrix elements of
V.

The first step in the decomposition is to transform the
jj-coupled matrix element of Vk to LS coupling
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where n—:(n, E,j ) and a = (n, , E ), etc. Note that in our notation the coeflicient U(. . ) is a unitary 9-j symbol,
related to the usual 9-j symbol by
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Thus, the LS-coupled matrix element of Vt on the right-hand side of Eq. (2) can be expressed in terms of matrix
elements of the total V by replacing Vt. = Ql"l Sl"l from Eq. (1), using the Wigner-Eckart theorem and inverting
the relation using the orthogonalit;y properties of the 6j symbols:

J'
& abISJ(Vc(cdl'S d&= (2'1+ 1) (S&, b ) (—) (2J'+1) (S b, b

& abLSJ'(V(cdb'S'd' & .

JI
(3)

The two-particle matrix elements are normalized and
antisymmetrized.

The LS-coupling matrix elements in Eq. (3) are ob-
tained from the jj-coupling matrix elements by the usual
expression which is the inverse of Eq. (2). In the begin-
ning of the (1s0d) shell the SU(3)( SU(6) scheme pro-
vides a much more viable coupling scheme than does jj
coupling as well as providing for physical insight into the
structure calculations. For the two-particle system, the
allowed SU(6) representations are the spatially symmet-
ric [2] and the antisymmetric [11] states. The corre-
sponding SU(3) representations are (4 0) and (0 2) for
the symmetric states and (2 1) for the antisymmetric
state. In this scheme the centroids have a particularly
appealing property: only the central (k=0) components
contribute; the contributions from the &=1 and k=2 com-
ponents sum to zero. In addition, previous work [8] has
shown that even in cases where there are no discernable
differences in centroids calculated in jj coupling, large
differences may appear in SU(3) coupling. The transfor-
mation from LS coupling to SU(3) is implemented by the
use of the appropriate SU(3) vector coupling coefBcients
which we take from Draayer and Akiyama [18].

Finally, in analogy with Eq. (3) above, the two-
body interaction V may be expressed [20] in terms of
SU(3) tensors (At)ut) by multiplying the SU(3) cou-
pled two-body matrix elements by the signer coefBcient
(—)"+" & (Ap)KL (IdIA')I&'L'I(A), ld), )ld. qL), & and sum-
ming over the relevant quantum numbers. The relevant
SU(3) operators (Aqpq) for our discussbon are those con-
tained in (40) x (04) or (04) x (20) and which admit
rank-zero interactions, namely, (0 0), (2 2), (2 4) + (4
2), and (4 4). In a similar fashion the tensor operators
may be coupled to specific SU(4) representations.

IV. DISCUSSION OF RESULTS

A. Hamada- Johnston potential

In Fig. 3 we show the contributions from the various
spin-tensor components of the diagonal T = 1 and T = 0

1
T=O, k=O j(
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I
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FIG. 3. Spin-tensor decomposition of Hamada-3ohnston
effective interactions. Shown are the diagonal T = 0 (on the
left) and T = 1 (1s01) matrix elements in jj coupling of the
various k components of the interactions defined in Fig. 1.
The enumeration of the matrix elements is defined in Table
II.
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matrix elements (cf. Table II) in the (1s0d) shell for the
three interactions obtained from the Hamada-Johnston
potential. In all cases, the dominant contribution comes
from the central term, and thus, the k = 0 compo-
nents roughly reflect the behavior of the spectra in the
various approximations. For T = l the interaction is
clearly modified when higher-order terms are added to
the bare G interaction. As shown in Fig. 2, the interac-
tion evaluated to second order (PT) is very similar to the
interaction evaluated by summing the core-polarization
diagrams in the screened Tamm-Dancoff approximation
(STDA). The situation is somewhat different for T = 0,
where the bare G is very similar to STDA but different
from PT.

This difference between T = 1 and T = 0 may be
understood in the following way. The STDA is really
very similar to the second-order core-polarization dia-
gram [Fig. 1(b)j for both T = 1 and T = 0. For T = 1
this diagram dominates the second-order contributions.
Thus, PT and STDA are rather similar for T = 1. For
T = 0 the dominant second-order diagram is the one
shown in Fig. 1(c) with four-particle, two-hole intermedi-
ate states, whereas the core-polarization diagram of Fig.
1(b) is rather small. Thus G and STDA (which is similar
to G plus the second-order core-polarization diagram) are
roughly equal, while PT gets the additional contribution
from Fig. 1(c).

The vector (k = 1) components are seen to be small
for both T = 1 and T = 0. In particular, the k = 1
contribution to the bare G matrix is virtually zero for
T=O. The only nonzero contribution to the T = 0 G
matrix elements comes from the interaction in spatially
antisymmetric states which is small. On the other hand,
the T = 1 G matrix is due to the interaction in spatially
symmetric states and is much larger. Now, when the in-
teraction is renormalized, both spatially symmetric and
antisymmetric components of the bare G interaction will
contribute and serve to modify the bare interaction. Al-
though the modifications are small in magnitude, they
are certainly large on a relative scale for T = 0.

The tensor (k = 2) components are small compared
to the central components but much larger than the vec-
tor components. Some of the k = 2 matrix elements are

in fact as large as 0.5—1.0 MeV. For T = 1 there is little
difference in the k = 2 components of the bare and renor-
malized interactions. Some of the T = 0 matrix elements
are, however, strongly modified in PT. This is due to the
diagram of Fig. 1(c), as discussed for k = 0 above. It is
worth noticing that the k = 0 and k = 2 contributions
from Fig. 1(c) cancel each other for some T = 0 ma-
trix elements (e.g. , dsz/z, J = 1 and dsz/z, J = 1) and add
for others (e.g. , ds/zds/Q J = 1 and 2). Comparing the
k = 2 components for T = 1 and T = 0, we find that the
T = 0 matrix elements are only marginally larger in size
than the T = 1 matrix elements. The tensor force derived
from a one-pion-exchange potential would give matrix el-
ements three times as large in the T = 0 channel as in
the T = 1. Thus, not surprisingly, the renormalization
procedures involved in calculating the reaction matrix G
and the higher-order corrections to G seem to alter the
spin-tensor components of the original NN interaction.

B. Meson-exchange potentials

Now we turn to the spin-tensor decomposition of the
interactions derived from modern meson-exchange poten-
tials. Figure 4 is analogous to Fig. 3 and shows the cor-
responding quantities for the three interactions derived
from the Bonn-Jiilich potential listed in Table I. The re-
sults for the corresponding Paris interactions are rather
similar, except for the differences associated with the ex-
tra repulsion in the T = 0 G-matrix elements discussed
in Sec. II, and will not be displayed here. It follows from
Fig. 4 that the relative strengths of the three k compo-
nents are rather similar to those shown in Fig. 3. The cen-
tral component is the dominant one, while the k = 1 and
k = 2 components are fairly small. As for the Hamada-
Johnston-based interactions the k = 1 component is the
smaller one, but it has increased its size relative to k = 2
as compared to Hamada-Johnston. Still, the T = 0 G-
matrix elements have very small k = 1 components; tliese
are, however, considerably increased by adding higher-
order corrections. The k = 2 component is smaller than
for the Hamada-Johnston-based interactions, on an ab-
solute scale and particularly on a relative scale, as the

TABLE II. Enumeration of the matrix elements ( j& j2 JT~ul, (j &j2 JT ) shown in Figs. 3 and 4.

No.
1
2
3
4
5
6
7
8
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10
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3/2

S1/2

S1/2

No.
16
17
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20
21
22
23
24
25
26
27
28
29

$1

5/2

ds/2

ds/2

3/2

3/2

S 1 /2

22

5/2

3/2

Sl /2

3/2

SX/2
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FIG. 4. Spin-tensor decomposition of Bonn-Julich eR'ec-

tive interactions. Shown are the T = 0 (on the left) and
T = 1 diagonal (1s0d) matrix elements of the various k com-
ponents of the interactions defined in Fig. 1. The enumeration
of the matrix elements is defined in Table II.

total matrix elements are larger in size. This is presum-
ably due to the strong pN coupling constant employed
in constructing the Bonn-Julich NN potential and the
resulting weaker tensor force, as discussed in Sec. I.

Let us compare the effect of the different renormal-
izations of the Bonn-Jiilich potential on the spin-tensor
decomposition. For T = 1, the addition of higher-order
core-polarization diagrams in the SCCE approximation
considerably increases the magnitude of the k = 0 ma-
trix elements. The renormalization effect on the k = 1

and k = 2 matrix elements is rather small. This is in-
deed very similar to the effect of core-polarization (PT
and STDA) on the Hamada-Johnston interaction. For
T = 0, SCCE is rather similar to G for k = 0, but
rather different for k = 1. This is again similar to what
was found for the Hamada-Johnston potential. There is,
however, some difference for k = 2, as the renormaliza-
tion seems to have less effect on the Bonn-Jiilich k = 2
matrix elements than on the Hamada-Johnston ones. To
understand this, recall that the renormalization effect on
k = 2 in the Hamada-Johnston case (Fig. 4) was due to
the second-order corrections (PT) and reflected the im-
portance of the diagram of Fig. 1(c). The second-order
core-polarization diagram of Fig. 1(b) is similar to STDA
and SCCE and has little effect on the T = 0, k = 2 ma-
trix elements.

Figure 4 also shows the effect of using a Hartree-Fock
rather than a harmonic-oscillator single-particle basis for
the effective interaction. In the approximation denoted
by (SCCE)HF the input G-matrix elements were evalu-
ated partly with single-particle wave functions resulting
from a HF calculation and partly with oscillator single-
particle wave functions scaled to imitate the HF effect,
as described in Ref. [15]. It is seen that using a HF basis
serves to reduce the magnitude of the matrix elements

—-2
0—

=--2

--2

—1,2—

—0 —0

1 0 0

-2—

-3—
0

55 53 51 33 31 1 1
22 22 22 22 22 22

FIG. 5. Isospin averaged energy centroids in jj coupling
for the three values of the rank k. The Bonn-Julich inter-
action in a harmonic-oscillator (solid lines) aud Hartree-Fock
(dashed lines) basis was used.

of the SCCE effective interaction, both for T = 1 and
T = 0. For T = 1, the (SCCE)HF is intermediate be-
tween G and SCCE, whereas for T = 0 it is reduced in

magnitude with respect to both G and SCCE, which are
similar in magnitude, as pointed out above. This situa-
tion is reflected by the A=18 spectra (Fig. 2 for T = 1

and the corresponding T = 0 spectrum from Ref. [15])
and also shows up in the k = 0 components of the inter-
actions. For k = 1 and k = 2 there is less effect of using a
HF basis, except for T = 0, k = 1 where renormalization
is essential and thus (SCCE)HF is intermediate between
G and SCCE.

We can get a picture of the average difference between
SCCE and (SCCE)HF by considering the energy centroids
of the two-particle configurations. In Fig. 5 we show the
centroids of the various (j~jz) configurations for the three
different values of k. The largest difference among the
interactions is found for k = 0 and amounts to 150—200
keV for d&&&, d5~2d3~~, and d3&& and as much as 550 keV

for s»z. The latter difference is not surprising in view

of the fact that this configuration involves single-particle
wave functions with a node.

Thus far we have only shown the spin-tensor decom-
position of the matrix elements diagonal in jj coupling.
To avoid too many details, we have not shown the off-

diagonal matrix elements. The role of the latter can be
included, however, by evaluating the spectra for k = 0,
for k = 0 plus k = 1, and for all k values included (or by
examining the centroids in I.S coupling, as we do below).
The resulting spectra obtained for G and STDA in the
case of the Hamada-Johnston potential are shown in Fig.
6 for T = 1 and T = 0. For the Bonn-Jiilich potential
we evaluate the corresponding spectra for G and SCCE;
these are shown in Fig. 7 for T = 1 and T = 0. We see
that, for given T, the effect of the various k components
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FIG. 6. A = 18 spectra obtained with contributions from
the various spin-tensor components using the G and STDA
(Hamada- Johnston) interactions.

is qualitatively similar for all effective interactions (and
NN potentials) considered. The basic structure of the
spectrum is given by k = 0. The addition of k = 1 has,
as expected, little effect on the spectrum. The effect of
k = 2 is small for T = 1, but it does serve to compress
the spectrum slightly. For T = 0, the k = 2 component
is more important, serving to lower the 2+ states some-
what. The difference between the various approximations
for the effective interactions has been briefly discussed in

Sec. II and will not be further discussed here.
In Fig. 8 are shown the T = 0 and T = 1 energy cen-

troids for the three SU(3) representations that occur for
the two-particle system. As previously demonstrated [8]

B-J
2—

Bare
SCCE
HF

there can be large differences in the SU(3) centroids even
if the differences among the jj centroids are small. The
dominant contribution to the energies of low-lying levels
arises from the contributions from the (4 0) representa-
tion. As seen in Fig. 8, in going from an oscillator basis
to a Hartree-Fock basis results in approximately 1 MeV
less binding for the A = 18 system; this implies there
would be a 4 to 6 MeV difference in Ne. Similarly, the
Bonn-Julich interaction provides approximately 1 MeV
more binding than does the Paris interaction. The old
I&no-Brown interaction [11] does a reasonable job in de-

scribing both spectra and binding [19]. The indication
from Fig. 8 is that the Bonn-Julich in an oscillator basis
will overbind (lsOd) nuclei while the Bonn-Jiilich and the
Paris interaction in a Hartree-Fock basis will underbind.
The latter was already known from the work of Shurpin

[8] (by about 4 MeV in the A=22 system) and in which
it was also shown that folded diagrams exacerbate the
problem.

The T=1 interaction is less sensitive to a change in the
single-particle wave function: moving from an oscillator
basis to a Hartree-Fock basis results in a change in the
centroid of [2] of 0.4 MeV for the T=l and 1 MeV for
the T=O Bonn-Julich interaction. The results are smaller
for the Paris interaction. Most of this change occurs for
the (4 0) representation. The (0 2) centroids are less af-

fected. This presumably is a result of such effects being
maximized for relative Os states; only the (4 0) represen-
tation contains relative Os states. Similarly, moving from
the oscillator basis to a Hartree-Fock basis moves the
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FIG. 7. A = 18 spectra obtained with contributions from

the various spin-tensor components using the G and SCCE
(Bonn- Julich) interactions

FIG. g. Two-particle SU(3) and SU(4) energy centroids
for the interactions discussed in this paper. For each inter-

action, the left curve is for T=O, the right for T=l. In each
curve the four points are, from left to right, (4 0), (0 2),
[2], and (2 1). The centroid for [ll] coincides with that for

the SU(3) representation (2 1). The top two subplots illus-

trate the effects of including core renormalization corrections;
the lowest subplot shows centroids for the bare interaction of
three potentials. For each interaction and isospin the (4 0)
lies lowest and the (2 1) highest with the (0 2) in the middle.
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FIG. 9. The values of two-body matrix elements of se-
lected SU(3) tensors for each of the several interactions dis-
cussed in this paper. The SU(4) representation for each ten-
sor is [2222] or an SU(4) scalar. The matrix elements for the
teusors having rank [422] are factors of five to ten smaller
aud are not shown. Results for the Chuug-Wildeuthal [22]
interaction are denoted by CW.

[ll] centroid down in energy by approximately 1 MeV.
Thus, SU(4) may be expected to be less valid in the self-
consistent basis.

Other than the pioneering work of Pluhar [20], no
SU(3) tensor decomposition of (1sOd) shell interactions
has been reported although such a decomposition is in
regular use in the SU(3) shell model code of Millener [21].
Pluhar only decomposed the Kuo interaction, but did not
make any comparison among different interactions. In
Fig. 9 are shown values of the dominant SU(3) tensors
having rank zero for six interactions discussed in this pa-
per. Also shown are the results for the Chung-Wildenthal
interaction [22] obtained by fitting 63 two-body matrix
elements to spectra of 1s-od nuclei. The largest tensor

by far is the one with quantum numbers [(40) x (04)]~

The next largest is [(02) x (20)]~ ) while operators with
the same two-body (Ap), but coupled to (2 2), are some-
what smaller. Matrix elements of other SU(3) tensors
tend to be even smaller. The above matrix elements are
of tensors that are SU(4) scalars and thus conserve SU(4)
synunetry. Other tensors can violate SU(4) but their ma-
trix elements are a factor five to ten smaller than those
that conserve SU(4). Of course the importance of each
of the terms depends not only on the magnitude of the
tensor, but also on the magnitude of the recoupling coef-
ficient that multiplies the tensor. These factors will vary
with particle number and SU(3) and SU(4) representa-
tion of the A-particle basis state.

Extremely large differences among the interactions
show up in the matrix elements of [(40) x (04)]; these
differences may be as large as 5 MeV when changing from
an oscillator basis to a Hartree-Fock basis. Interestingly,

the matrix elements of other operators do not show large
variations; the largest are for the tensors [(02) x (20)]l
and [(40) x (04)]I ). The variation in the matrix ele-
ments for other zero rank tensors is on order of tens of
keV or less. This suggests that when fits of two-body in-
teractions to experiment are performed, it might be most
efBcient to fix most of the two-body matrix elements and
only vary these few linear combinations of matrix ele-
ments, particularly as contributions from [(40)] dominate
the wave functions of low-lying states in the 1s-Od shell.

V. SUMMARY AND CONCLUSIONS

We have analyzed several realistic shell model effective
interactions, which have proven successful in reproduc-
ing nuclear properties, for their spin-tensor components.
The effective forces examined were obtained from the
phenomenological Hamada-Johnston potential as well as
the meson-exchange Bonn-Jiilich and Paris potentials
and were calculated to various approximations. For the
Hamada-Johnston potential the effective interaction was
calculated to first- (G) and second-order (PT) in the reac-
tion matrix G. In addition we considered an interaction
obtained by summing the core-polarization diagrams to
all orders using particle-wave vertices screened to second
order (STDA). For the Bonn-Julich and Paris potentials
we considered the bare G and a renormalized interac-
tion including essentially all long-range correlations self-
consistently to arbitrary order (SCCE). The latter in-
teraction was also evaluated using a Hartree-Fock rather
than a harmonic-oscillator single-particle basis, the re-
sulting interaction being denoted by (SCCE)HF.

For all forces examined, the dominant contribution
comes from the central part. Thus, the central part
seems to be suKcient to produce the basic structure of
the spectra for two nucleons outside closed shells. The
effect of renormalization of the bare G matrix may be
substantial. For T = 1, the core polarization, whether to
second or higher order, may produce significant effects.
For T = 0, the diagram of Fig. 1(c) with four-particle,
two-hole intermediate states seems to be more important
than the core-polarization diagram of Fig. 1(b). When
HF single-particle wave functions are used instead of the
usual harmonic-oscillator ones, the k=0 components are
considerably reduced in size. For T=l they are interme-
diate between G and SCCE whereas for T=O they are
considerably smaller in size than G (which is similar to
SCCE). Centroids in j jand SU(3-) coupling were ob-
tained with and without noncentral contributions; con-
siderable sensitivity was observed in the SU(3) basis.

The vector component is small for the bare G-matrix
interaction, especially for T = Q, but is considerably
modified by renormalization. Anyway, it has only lit-
tle effect on the energy spectra for two valence nucleons.
The tensor component is somewhat larger than the vec-
tor component and is relatively larger for the Hamada-
Johnston potential than for the Bonn-Jiilich and Paris
potentials. This is not surprising in view of the stronger
tensor-force component in the original Hamada-Johnston
NN potential. The effect of the tensor component on
the two-valence-nucleon spectra is fairly small, particu-
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larly for T = 1. It does, however, serve to compress the
spectrum slightly. The effect on the T = 0 spectrum
is somewhat larger, the main effect being to lower the
2+ levels, especially the second one. Although the ef-
fect of the vector and tensor components on the spectra
of two valence nucleons is small, it is likely to increase
with the number of valence nucleons. Thus, it would be
of considerable interest to study their effect on many-
valence-nucleon spectra, and such calculations are under
way.

As pointed out above, it is not straightforward to es-
tablish the correspondence between the different I" com-
ponents in the original NN interactions and the renor-

malized effective interaction. In fact, a strong tensor
force in the NN interactions will produce a strong cen-
tral contribution to second order in the G matrix [23].
Still, it seems that the strength of the tensor component
in the NN interaction is reflected in the renormalized
interactions. Thus, for the convergence of the effective
interaction it seems desirable to start from an NN in-
teraction with a weak tensor force, which favors a strong
pN coupling constant.

We wish to thank Anna Hayes for numerous discus-
sions and comments.
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