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New data for elastic and inelastic m+ and m scattering by 'Pb at 180 MeV are presented. The elas-

tic scattering data were analyzed with a standard Kisslinger potential in a coordinate space (r space) cal-
culation using the free m.-N amplitudes to calculate the potential coefficients. Momentum-space

(p-space) calculations were also performed using the free ~-N amplitudes to calculate on-shell matrix

elements and the Landau-Tabakin model for the off-shell. The same ground-state proton and neutron

densities were used in these two spaces and the fits are good. The distorted-wave impulse approximation
calculations in both spaces, with the same collective model transition densities, reproduce the inelastic
differential cross sections quite well. The proton and neutron transition multipole matrix elements and

their ratios were calculated from the deformation parameters extracted from fits to inelastic scattering
data. It is found that the ratios calculated in these two spaces are quite close to each other and close to
those found in a comparison of (e,e') and (p,p') experiments, while the absolute value of matrix ele-

ments found in the p-space calculations are —15-20% smaller than those from the r-space calculations.
The r-space proton matrix elements are generally in good agreement with those obtained from electron
scattering. The effects of the pion-nucleon interactions and form factors used in these calculations were

investigated.

PACS number(s): 25.80.Dj, 25.80.Ek, 23.20.Js, 27.80.+w

I. INTRODUCTION

The determination of neutron and proton multipole
matrix elements M„and M for inelastic transitions has
been the subject of continuing interest in experimental
and theoretical studies over the past several years [1—5].
These matrix elements provide a good test of different nu-
clear models. Their magnitudes and ratios have been
studied extensively by comparing (p,p') with (e,e')
scattering. Because of the isospin properties of the pion
multiplets, the inelastic scattering of m. + and m near the
633 resonance provides an independent method for deter-
mining these quantities [6—8]. In this energy region, the
free m. +-p and ~ -n amplitudes are -3 times larger than
those of m. +-n and ~ -p. Thus m scattering is more sen-
sitive to the constituent neutrons, while ~+ scattering is
more sensitive to the constituent protons. By taking ad-
vantage of this selectivity, one can extract the neutron-
proton transition matrix elements from simultaneous fits
of the m and ~+ scattering data. This provides new re-
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suits for comparison with those extracted from (e,e') and
(p,p') experiments [2].

In this work we present recent data on m and m+

elastic and inelastic scattering for the low-lying states
(J=2—8) in Pb at 180 MeV. All of these data were ob-
tained using the same apparatus and during the same
period of time. Thus the experiment provides a very con-
sistent set of data that can be used to determine the
isoscalar/isovector characteristics of these states.

Our knowledge of the pion-nucleus interactions is
somewhat limited compared to that of electromagnetic
probes. To compare the results of different probes, the
models used in the analysis of the pion data should be
carefully examined. To explore the model dependence of
the results obtained, distorted-wave impulse approxima-
tion (DWIA) calculations in both coordinate (r) [9,10]
and momentum (p) [11—13] space were employed with
the same geometry parameters for the ground-state and
transition neutron and proton densities. Because of their
strong interaction, the pions are sensitive primarily to
densities in the surface region. Thus, in this first analysis,
we have employed the simple vibrating density model
("collective form factors") for the inelastic transition den-
sities. Both calculations can reproduce the experimental
angular distributions well with appropriate deformation
parameters. It is found that the ratios of neutron to pro-
ton multipole matrix elements obtained in the r- and p-
space calculations are close to each other (within 3—5 %),
while the differences of their magnitudes are about
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15—20%. Compared to the p-space calculations, the r-
space absolute values for M are closer to the electromag-
netic values; however, the ratios M„/M agree well in
both r and p space with those obtained earlier from
(p,p')-(e, e') analysis for T ~400 MeV. The effects of
varying the pion-nucleon interaction energy shift, the
off-shell pion-nucleon interaction, and the form factors
for the ground-state and transition densities in these cal-
culations are discussed in Sec. IV.

0.8

0.6

0.4

CO

02

I I I I I I I I I
i

I I I I I I I I I
]

I I I I I I I I I
i

I I I I I I I I I
f

I I I I I I I I I
i

I I I I I I I 1 I

3,

II. EXPERIMENT

The experiment was performed using the Energetic
Pion Channel and EPICS Spectrometer [14,15] at the Los
Alamos Clinton P. Anderson Meson Physics Facility
(LAMPF). The data were obtained using m and m+

beams with an incident kinetic energy of T =180 MeV,
over the laboratory scattering angular range of
81 ——14'—60'. An enriched ( &98% pure) Pb target
with areal density =100 mg/cm was used in the experi-
ment. The overall energy resolution was (150 keV [full
width at half maximum (FWHM)]. Ion chambers placed
in the incident pion beam provided the relative normali-
zation for the cross sections. The absolute normalization
was obtained from comparison of the normalized yield
for m and ~+ scattering from hydrogen measured dur-
ing the experiment with the cross sections calculated us-
ing the program CROSS [16], which utilizes the phase
shifts of Rowe, Salomon, and Landau [17].

The elastic and inelastic transition yields were extract-
ed using the peak fitting code FIT [18],which used experi-
mental line shapes. Typical excitation spectra for ~ and
m+ are shown in Figs. 1 and 2.

The data were corrected for the solid-angle variation
across the spectrometer acceptance ( =+1.5') as well as
for computer dead time, chamber efBciency, the number
of pions decaying in flight, and the spectrometer momen-
tum acceptance. The resulting overall uncertainty in the
absolute cross-section normalization is estimated to be
+8%.
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FIG. 2. Excitation spectrum of Pb(m, m. ') at T =180
MeV, Hi.b
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III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Elastic scattering

The elastic differential cross sections measured during
the experiment are shown in Fig. 3. Included in this
figure are the results of DWEA calculations using the r-
space code DWPI [9] and the p-space code PPT (a modified
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FIG. 1. Excitation spectrum of Pb(m. +,m+') at T =180
MeV, Olab 29 .

FIG. 3. Differential elastic cross sections for ' 'Pb(m, ~ )

and Pb(n. +,m+) at 180 MeV. The solid curves represent
DWIA calculations in r space using 2PF densities (code DwPI)
with energy shifts of 39 MeV (for n.+) and 30 MeV (for ~ ).
The dashed curves represent DWIA calculations in p space with
the same density (code ppT), but with energy shifts of 25 MeV
(for ~+) and 18 MeV (for m. ).
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version of the code PIPIT [11]). A two-parameter Fermi
(2 PF) distribution

where F is the proton charge distribution rms radius in-
side the nucleus. In our calculation, F was chosen to be
(1.0 frn), based on a theoretical explanation of the Euro-
pean Muon Collaboration (EMC) effect [20]. An addi-
tional relation is needed to determine Rz and a uniquely.
For a Sat interior density such as the 2PF has, we can as-
sume

Poq Pop ~ (3)

where po; (i =p, q, and n) are the normalized densities at
the origin. The po; can be calculated with sufBcient accu-
racy from the approximate volume integral of Eq. (1}:

po, =3f;l4rr(R; +rr a; R;), (4)

where f; =Z when i =q or p and f; =N for i =n This.
gives po =pc =0.0630S fm . Using Eqs. (2)-(4), we
then obtain R =6.673 fm, a =0.448 fm, and

(r~ )' =5.431 fm. The R„and a„were then searched
upon to fit the experimental elastic-scattering data. Be-
cause of the limited range of our elastic cross-section
measurements (HL -14'—60'), data from an earlier experi-
ment at 162 MeV [21] which cover angles HL —-10'—110'

10

10 r

p, (r.)=po;[1+exp(r —R;)la;]
was used for the charge (i =q },neutron (i =n ), and pro-
ton (i =p) ground-state densities. Our procedure was to
calculate the values of R~ and a using R =6.624 fm,

a =0.549 fm, and (r )'~ =5.521 fm for the charge den-

sity obtained from a 2PF fit to electron scattering and
mu-mesic atom data [19]. The mean-square charge and
proton radii are related by the unfolding relation

(r2) (r2) F2 (2)
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FIG. 5. Differential elastic cross sections for Pb(m+, ~+) at
162 MeV. The solid curve represents a DWIA calculation in p
space (code PPT) with an energy shift of 19 MeV, and the dashed
curve represents a DWIA calculation in r space with an energy
shift of 32 MeV. The data are from Ref. [21]. The same 2PF
densities were used as in Fig. 3.

were also included in the search. The 2PF neutron pa-
rameters determined were R„=6.380 fm and a„=0.610
fm, giving (r„)' =5.437 fm and po„=0.1062 fm
which results in

po=pon+pop =0.169 fm

a very reasonable value. The experimental data at 162
MeV and the fits with the r- and p-space calculations are
shown in Figs. 4 and 5. The densities used here are com-
pared with those from a Hartree-Fock-Bogoliubov (HFB)
calculation [22] of the Pb ground state and are shown
in Fig. 6. The difference between the rms radii of the
neutron and proton densities, b,r„z ( =—( r„)' —( rz ) ' ),
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FIG. 4. Differential elastic cross sections for Pb(m. , m ) at
162 MeV. The solid curve represents a DWIA calculation in p
space (code PPT) with an energy shift of 12 MeV, and the dashed
curve represents a DWIA calculation in r space with an energy
shift of 23 MeV. The data are from Ref. [21]. The same 2PF
densities were used as in Fig. 3.

FIG. 6. Two-parameter Fermi distributions of neutron (p„)
and proton (pp) used in the calculations and the corresponding
HFB neutron (p„), and proton (pp) densities of recharge and
Crogny [22]. The solid, dotted, dashed, and dot-dashed curves
represent the p„,pp, p„, and pp, respectively.
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TABLE I. Energy shifts EE„and hE~ of pion-nucleon
center-of-mass energy used to evaluate the free pion-nucleon
phase shifts.

I I I I

pb(vr 7r p'spb

Incident pion Incident energy

162
162
180
180

bE„

23
32
30
39

12
19
18
25

10

0
~&10

can be calculated from the above parameters. It is found
that, for a reasonable fit, Ar„varies from 0 to 0.05 fm.
This is somewhat smaller than the HFB value [22]
(b,r„.=0.13 fm) and results from proton (and electron)
scattering at T =800 MeV [23]. Other similar analyses
[24,5] of pion scattering have found Ar„. =0.02 —0.06 fm,
which are also smaller than the HFB value. Because of
the surface nature of pion-nucleus interaction, the fit is
not very sensitive to the interior part of the densities used
in the calculations. We will come back to this point
again in Sec. IVC. Our smaller value of Ar„may also
indicate the need for medium modification of the pion-
nuclear interaction.

Energy shifts for the pion-nucleon center-of-mass ener-

gy used in evaluating the free pion-nucleon phase shifts
[21,25] were employed in both r and p-sp-ace calcula-
tions. The values of the energy shifts for m and sr+

scattering at 162 and 180 MeV are listed in Table I. The
difference between the energy shift in r and p space will
be discussed in Sec. IV. The number of partial waves
chosen in both r- and p-space calculations was taken to be
20 for good convergence of the nuclear scattering ampli-
tude over the partial-wave sum. The matching radius
R,„, in the PPT code was carefully searched for the best
convergence of the calculated result with respect to its
position and grid points [11].

B. Inelastic scattering

Collective-model [vibrating density model (VDM)]
transition densities were used to analyze the inelastic-
scattering data. The neutron and proton transition densi-
ties were assumed to have the form
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FIG. 7. Differential inelastic cross sections for Pb(m. , m. ')

at 180 MeV for the 3 (2.61 MeV), 5& (3.20 MeV) 52 (3.71
MeV), and 53 (3.96 MeV) states. The solid curves represent
DWIA calculations in r space (code DwPI) at an energy shift of
30 MeV, and the dashed curves represent DWIA calculations in

p space (code HL) at an energy shift of 18 MeV.

dp
p,', = —P;R; (5)

10
where i =p or n and the P s are the deformation parame-
ters. In most of our calculations, the p"s were chosen to
be ground-state densities. The effects of the variation of
p' and p,', wi11 be discussed in Sec. IV.

The computer code DwpI [10] for the r-space calcula-
tions was modified to include higher angular momentum
transfers, up to J=8. The code HL [12,13] for the p-
space calculation was modified to have more Gaussian in-
tegration points, to allow higher angular momentum
transfer, and to allow various options for using different
neutron and proton densities. The normalization pro-
cedure in the collective macroscopic calculation of code
HL was carefully checked and modified to get the correct

20.0 30.0 40.0 50.0

FIG. 8. Differential inelastic cross sections for Pb(m+, m. +')

at 180 MeV for the 3 (2.61 MeV), 5& (3.20 MeV), 52 (3.71
MeV), and 53 (3.96 MeV) states. The solid curves represent
DWIA calculations in r space (code DwPI) at an energy shift of
39 MeV, and the dashed curves represent DWIA calculations in

p space (code HL) at an energy shift of 25 MeV.
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FIG. 9. Differential inelastic cross sections for Pb (~,
~ '

) at 180 MeV for the 2+ (4.09 MeV), 4+ (4.32 MeV), 6+
(4.42 MeV), and 8+ (4.61 MeV) states. The solid curves
represent DWIA calculations in r space (code DwPI) at an ener-

gy shift of 30 MeV, and the dashed curves represent DWIA cal-
culations in p space (code HI.) at an energy shift of 18 MeV.

FIG. 10. Differential inelastic cross sections for
Pb(~+, m+') at 180 MeV for the 2+ (4.09 MeV), 4+ (4.32

MeV), 6+ (4.42 MeV), and 8+ (4.61 MeV) states. The solid
curves represent DWIA calculations in r space (code DwPI)at an
energy shift of 39 MeV, and the dashed curves represent DWIA
calculations in p space (code HL) at an energy shift of 25 MeV.

P~ and P„as defined in Eq. (5).
The experimental data for the inelastic angular distri-

butions, the fits using the modified r-space code DwpI,
and the fits using the p-space code HL are presented in
Figs. 7-10. The neutron and proton deformation param-
eters p„and pz, respectively, were adjusted in both calcu-
lations to produce the best fits for the m and ~+ cross
sections simultaneously. In order to compare the results
obtained from these two calculations, the theoretical
curves were fitted to the same pair of experimental points

for each excited state in m and ~+ scattering, thus yield-
ing a unique pair (P„,P~) in each space. In most cases
the points were chosen around the first maximum for the

and m. + cross sections. We estimate that the uncer-
tainties of the p, 's determined by this method are
3.5 —6%%uo as a result of the errors in the measured
differential cross sections and the choices of the experi-
mental data points. The errors are somewhat larger for
the weakly excited 53 state.

Coulomb excitation effects at 180 MeV have been

TABLE II. Neutron and proton deformation parameters, transition matrix elements, and 1&„/Q~
ratios calculated in r space for low-lying states in 'Pb.

E,„(MeV)

2.63
3.20
3.71
3.96
4.09
4.32
4.42
4.61

3
5)
52

53
2+
4+
6+
8+

p b

0.149
0.081
0.049
0.037
0.069
0.087
0.075
0.064

0.122
0.062
0.042
0.022
0.052
0.078
0.072
0.049

1.40x 10'
4. 13X10
2.47x10'
1.88x10'
9.13x10'
5.91 X 10
2.93 X 10
1.58 X 10

This experiment

p b M„' Mp'

7.78 x 10
2.04X 10
1 ~ 41x10'
7.35 X 10
4.75 x 10'
3.56X 10
1.77x 10'
6.80X 10

1.17
1.31
1.14
1.66
1.25
1.08
1.08
1.52

EM'
Mp

7.88(10)X 10
2.11(7)x10'
1.55(6)x 10'
2.83 X 10
5.64( 14)x 10'
3.94(13)X 10
2.58(13)x 10'
7.35(61)x10'

'Electromagnetic value from Ref. [1]where the experimental references are given. Errors in the last di-
gits are given in parentheses.
R„=6.380 fm, R =6.673 fm.

'Units for M„are fm, and for M~, e fm .
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TABLE III. Neutron and proton deformation parameters, transition matrix elements, and 1&„/Q~
ratios calculated in p space for low-lying states in Pb.

E,„(MeV)

2.63
3.20
3.71
3.96
4.09
4.32
4.42
4.61

3

5)
52

53
2+
4+
6+
8+

p b

0.127
0.067
0.040
0.031
0.056
0.071
0.066
0.058

0.106
0.051
0.037
0.021
0.043
0.061
0.063
0.044

1.19X 10'
3.41X 10'
2.05 X 10
1.55 X 10'
7.45 X10'
4.80X 10'
2.57X 10'
1.45 X 10'

This experiment

p b M„' Mp'

6.80X 10
1.68X 10
1.23 X10'
6.83X10
3.89X10'
2.81 X 10'
1.54X 10'
6.01X 10'

1.14
1.32
1.15
1.48
1.25
1.11
1.08
1.56

EM'
Mp

7.88(10)X 10'
2.11(7)X 10'
1.55(6) X 10"
2.83 X 10
5.64(14)X 10'
3.94(13)X 10'
2.58(13)X 10'
7.35(61)X 10'

'Electromagnetic value from Ref. [1]where the experimental references are given. Errors in the last di-

gits are given in parentheses.
Rft 6e 380 fm Rp 6o 673 fIDe

'Units for M„are fm, and for M~, efm".

shown to be small [26] and hence were not included in
our analysis.

The agreement between the calculated cross sections
and data is quite good for all the states analyzed except
the weak 53 state. From electron scattering [27] and a
theoretical Hartree-Fock random-phase-approximation
(HF-RPA) calculation [28], it has been shown that the 5&

state has a quite different transition density from the sim-
ple collective-model macroscopic form. We will come
back to this problem again in Sec. IV.

The sensitivity of the deformation parameters to the

absolute cross-section normalization was investigated by
varying the experimental cross sections by +8%. The re-
sulting deformation parameters were found to vary by-2—4%.

The neutron and proton multipole matrix elements
[M;(A, ), i =n or p] are related to the transition densities
by

M;(A, )—= J pt, (r)r"+ dr . (6)

For the two-parameter Fermi distribution, many authors
use the approximate relation

TABLE IV. Reduced neutron-proton transition matrix element ratios 4„/4„ for 'O'Pb obtained from this and other analyses.

Probe

/m+
/m+

m /m+
/m'+

/~+
/m+
/m'+

p/e

p/e

a/e
Theory

Theory

T,„, (MeV)

180
180
116
120
180
250
291

h

104

3

1.17
1.14
1.03
1.20
1.19
1.09
1.03
1.13

(5)
0.97

(11)
1.19
1.06

1.00

1.31
1.32

1.23
(7)
0.97

(13)

1.23

52

1.14
1.15

1.11
(3)
0.82

(8)

0.69

53

1.66
1.48

2+

1.25
1.25

1.07
1.05
1.04

1.30
(4)
0.95
(9)

0.93

1.08
1.11

0.94

0.87

1.13
(4)
0.92

(9)

0.91

1.08
1.08

0.93
(14)

0.70
(is)

0.85

1.52
1.56

1.60
(20)

1.12
(i5)

Analysis
method'

VDM
VDM
VDM
VDM
VDM
VDM
VDM

various

various

MI
P. —Vib.

coupling
RPA

References

this work
this work'

26
26d, e

26 '

26
26 '~

2h

21

32
33

28

'VDM, vibrating density model, p„=—PRBpo/Br; VPM, vibrating potential model, V,„=—PRBU, , /Br; MI, model-independent
analysis.
Results obtained in r-space calculation. Coulomb excitation was not included.

'Results obtianed in p-space calculation. Coulomb excitation was not included.
Coulomb excitation was included.

'Reanalysis of Ref. [30] data by Ref. [26].
'Reanalysis of this data by Ref. [26].
sReanalysis of Ref. [31]data by Ref. [26].
"Average of values from T =500 and 800 MeV by various methods. See Ref. [2]. Errors in last digits are given in parentheses.
'Average of values from T =35 —400 MeV by various methods. See Ref. [2]. Errors in last digits are given in parentheses.
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M,.(A, ) =3P,.P,.R; I 1+[(1,+4)(A, —1)/6]na.; /R; ] /4m,

(7)

where P; =Z when i =p and P; =N when i =n. When
(a /R )-0.1, the error due to this approximation is less
than 2% for k~4, but becomes larger when A, &4. All
values of M,- listed in our tables were calculated from Eq.
(6) rather than Eq. (7). The reduced multipole matrix ele-
ments are given by Q, (A, ) =M, (A, )/P;. Therefore, the re-
duced multipole-matrix-element ratios were calculated
from

4„/4 =(Z/N)M„/M~ .

The neutron and proton deformation parameters for the
excited states, their corresponding multipole matrix ele-
ments, and the ratios of the reduced matrix elements
from the r- and p-space calculations are listed in Tables II
and III, respectively. The reduced transition probabili-
ties are given by

(9)

Our values of M can be compared with M~ obtained by
electromagnetic methods [see Eq. (6)], since, by Satchler's
theorem [29], the charge and proton moments should be
equal (ignoring the neutron charge form factor). The best
available (or weighted average) of the electromagnetic
amplitudes Mq (=M&) are given in Tables II and III.
Table IV lists the ratios 4„/1k& obtained in this work
along with previous results from different probes at
different energies [26,30—32] employing various analysis
methods. For comparison, theoretical predictions [28,33]
are also included in Table IV.

It can be seen that the reduced multipole-matrix-
elements ratios of the r-space calculations are very close
to those of the p-space calculations, as well as to those
from other probes, except for the J=6 and 8 states. This
indicates that the ratios are less model dependent than
the matrix elements themselves. On the average, the ma-
trix elements obtained from p-space calculations are
smaller than those in r space by 15—20%%uo. Because of the
difference in equations of motion, pion-nucleon interac-
tions, and methods of dealing with the Coulomb interac-
tion and other approximations that are used in these two
calculations, it is not clear to us which factor is more im-
portant. Some possibilities are discussed in Sec. IV.
With such a simple collective macroscopic model, it is re-
markable that the multipole matrix elements and corre-
sponding transition probabilities obtained from the
analysis of pion-scattering data are close to those derived
from the electromagnetic measurements, as reported pre-
viously [8]. It is well known that some important factors
such as the b, dynamics [34—38] and higher-order effects
in Kerman-McManus-Thaler theory [39] are missing in
these codes. More work to study these effects is very
desirable.

IV. DISCUSSION

To explore the model dependence of the results ob-
tained, the effects of changing some dynamical and
geometric parameters were investigated. We will concen-
trate our attention on the well-established states such as
the 2&+ and 3& and perform the test calculations in p
space. The 2& state is only moderately collective
[B(E2)=10 Weisskopf units], but all of the low-lying
states analyzed here (except for the 53 ) have surface-
peaked charge transition densities [27] which are quite
close in shape to the VDM densities we have used.
Therefore, similar results are expected for the other states
as well as for the r-space calculations.

A. Energy shifts in the pion-nucleon interaction

10 I '
I

10

10

180 MeV, P

10 I i I s I

15 30 45

FICx. 11. Di6'erentia1 inelastic cross sections for
Pb(m. , m.+') at 180 MeV for 2+ (4.09 MeV) state. The solid

curve represents a DWIA calculation in r space (code DwpI) at
an energy shift of 39 MeV. The dashed curve represents a
DWIA calculation in p space (code HL) at an energy shift of 25
MeV. The dot-dashed curve represents a DWIA calculation in

p space (code HL) at an energy shift of 39 MeV. In the last two
calculations, the P s are the same.

It has been customary to take the energy shifts used in
evaluating the pion-nucleon interaction as empirical pa-
rameters in fitting the pion-nucleus scattering data
[21,25]. It has been argued that this shift is mainly due to
the Coulomb repulsion (or attraction, depending on the
charge of the incident pion) and nuclear binding effects
[21,40,41]. The effect of including an energy shift is
mainly to alter the depths of the minima rather than to
shift their angular positions. In the modified r-space
DwpI code, the coefficients of the standard Kisslinger po-
tential are determined by ~N phase shifts at a shifted
center-of-mass pion-nucleon energy E„=E, —EE„and
in the p-space ppT code, the on-shell m.N t-matrix ele-
ments are obtained from the ~N phase shifts at an energy
Ez=E, —hE . The use of different energy shifts in r
and p space means that the free pion-nucleon interactions
chosen in these two spaces are at slightly different ener-
gies. It is well known that the free pion-nucleon interac-
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tion shows a strong energy dependence. So it is expected
that the difference between AE„and hE would have an
important effect on the results obtained. To check this a
p-space calculation for the 2+ state was performed using
b,E„ instead of hE . The result is shown in Fig. 11. It
can be seen that the result is close to that from the r-
space calculation. The differences between the phenome-
nological hE; for m. and m.+ may be due to the different
sign of the pion-nucleus Coulomb interaction, but the
magnitudes of the differences found are smaller than that
estimated [21,40]. It seems to us that a more clear physi-
cal understanding of these energy shifts in the two spaces
is needed.

10

10

+R 10

IP~ Pb(m', vr") b:50 MeV, 2

B. Off-shell models in the pion-nucleon interaction

The Landau-Tabakin (LT) off-shell model [42] of the
pion-nucleon t matrix is used in the p-space code ppT. At
high-momentum transfer (q), the Kisslinger potential
which is used in the r-space calculation is divergent,
while in the LT model of the off-shell matrix elements are
designed to converge to zero at high q. For scattering at
large angles, it seems that the LT model is physically
more reasonable.

The fall off or damping factors aI's in the LT model
are chosen to be close to those obtained from Regge-pole
theory [42]. In order to compare with the results from
the r-space calculation, a calculation in p space was per-
formed using values of the ai's reduced by a factor of 10.
A reduction of aI will decrease the rate of fallofF as q in-
creases. With this modification of aI, it is found that the
matrix element M of the 2+ state increases by -5%%uo rel-
ative to its original value in the p-space calculation, while
it increases -3% for the 3 state.

At low pion incident energy, below the 6-resonance re-
gion, the nucleus is more transparent to pions and there
the difference between the off-shell models is expected to
have a more important effect. The elastic and inelastic

I I I I I
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FIG. 13. Differential inelastic cross sections for
'Pb(m+, m. +') at 50 MeV for the 2+ (4.09 MeV) state. The

dashed curve represents a DWIA calculation in r-space (code
DwPI). The solid curve represents a DWIA calculation in p
space (code HI.).

scatterings to the 2+ state were calculated at 50 MeV
with the same P,.'s and hE's (set to zero) in both r and p
space. The comparisons are shown in Figs. 12 and 13. It
can be seen that the differences between the results from
these two calculations are bigger than at 180 MeV. At
high pion incident energy, above the 5-resonance region,
the nucleus is also more transparent, and more pion-
nucleus and pion-nucleon partial waves are involved.
Thus a more realistic off-shell model is also important at
higher energies. A more careful study of ofF-shell effects
and a search for better representations of the interaction
are desirable.

C. Changes in the ground-state density
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FIG. 12. Differential elastic cross sections for Pb(m. , m )

at 50 MeV. The solid curve represents a DWIA calculation in p
space (code PPT), and the dashed curve represents a DWIA cal-
culation in r space (code DwPI) both without energy shifts.

The effect of varying the 2PF geometry parameters of
the ground-state density and the use of microscopic point
densities were also investigated. In agreement with the
theoretical HFB calculation [22], the central proton den-
sity po is slightly larger than po . Choosing

poz =1.045poq, we get R =6.538 fm and a& =0.531 fm
from Eqs. (2)—(4). With these parameters and keeping
R„and a„ fixed, the p-space calculation can reproduce
the elastic data well with an energy shift of 24.0 MeV for
n.+. Using the resulting optical potential as new input for
the HL code, it was found that the M of the 2+ state is
increased by -3%. A less model-dependent method is to
calculate the proton density p (r) by unfolding the pro-
ton charge form factor from the charge density obtained
from electron scattering. The neutron density is then
computed from the equation

p„=(N /Z) p~+s(p„(&Iz)p~ ), — (10)

where p„~ ~
denotes the HFB neutron (proton) density of

Decharge and Gogny [22] and s is the sign of (p~p~) at
~ p~ ~,„. If the charge distribution inside the proton has
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FIG. 14. Unfolded proton and neutron densities and the
two-parameter Fermi proton and neutron densities. The dot-
dashed curve represents the unfolded proton density calculated
from the (e,e') charge density, and the solid curve represents
the neutron density from Eq. (10). The dashed and dotted
curves represent the 2PF proton and neutron densities, respec-
tively.

the form fz(r) =N exp( —ar), where N is the normaliza-
tion constant and a is determined from the proton rms
radius (1.0 fm), then the unfolded proton density p~(r)
and the neutron density p„(r ) obtained from Eq. (10) are
as shown in Fig. 14. With these densities the DWIA cal-

Cl

i)

2M ~+~+
I I

30.0 40.020.0 50.0

FIG. 15. Differential elastic cross sections for Pb(m, m )
and Pb(m. +,m. +) at 180 MeV. The solid curves represent the
DWIA calculations in p space (code PPT) at energy shifts of 25
MeV (for m+) and 18 MeV (for ~ ) and using the unfolded pro-
ton and neutron densities. The dashed curves represent the
DWIA calculations in p space (code PPT) with 2PF proton and
neutron densities at the same energy shifts as above.

15 30 45
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FIG. 16. Differential inelastic cross sections for
'Pb(m. ,~ ') at 180 MeV for the 3 (2.61 MeV) state. The

dashed curve represents a DWIA calculation in p space (code
HL) at an energy shift of 25 MeV and using the unfolded proton
and neutron ground-state densities and VDM transition densi-
ties from the 2PF distributions. The solid curve represents a
DWIA calculation in p space (code HL) with 2PF proton and
neutron ground-state densities at the same energy shift as above
and VDM transition densities from the 2 PF distributions.

culations of the elastic scattering in p space using code
PPT were performed. The results along with those ob-
tained using the two-parameter Fermi distribution are
compared with experimental data in Fig. 15. It can be
seen that, although the interior parts of the unfolded pro-
ton and neutron densities obtained from Eq. (10) are quite
different from that of the two-parameter Fermi distribu-
tion, the two fits of the elastic scattering are very similar.
This is again due to the surface nature of the interaction
near the resonance region. Of course, the difference in
the interior parts of the proton and neutron densities has
an effect on some physical quantities. For example, the
difference between the rms radii, hr„, of the unfolded
proton and neutron densities obtained from Eq. (10) is
0.13 fm, which is larger than our previous result (see Sec.
III A), but close to that obtained from other experiments
and the HFB value [22]. The DWIA calculation of the
elastic scattering generates distorted waves that are some-
what different from the two-parameter Fermi distribu-
tion. With these new distorted waves and the collective
2PF transition densities, the DWIA calculations of the
inelastic scattering in p space were performed using code
HL. The results and a comparison with experimental data
and previous results (see Sec. III B) for the 3 state are
shown in Fig. 16. It can be seen that the two results are
quite close with only a slight difference in the P s

( -3—6%%uo).

D. Effect of the transition form factor

The transition form factor p,',= P, R;dp'(—r ) I.dr is
characterized by the width and location of its peak.
These quantities are directly connected to the diffuseness
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a and the half-value radius R in the two-parameter Fermi
distribution. In the simple VDM, the p'(r)'s are usually
taken to be the ground-state densities. We explored the
effect of changing the transition form factor by varying a,-

and R,- in p'. We chose a =—', a, and R =R;+0.5 fm, and
repeated the calculations for the 2+ states, keeping the
ground-state densities unchanged. The results are shown
in Figs. 17 and 18. In the region of the data
(8L =14'—60'), the effects of variations in R and a are
small when the P's are rematched, but at larger angles the
effects are more noticeable. As expected, for the smaller
half-value radius, the first diffractive minimum is shifted
to a larger angle. The calculations follow the same trend
for the smaller diffuseness.

If the ground-state and transition densities are changed
simultaneously, the resulting shift of the first diffraction
minimum is larger. This result for a =—', a; is also shown
in Fig. 17. Similar shifts of the diffractive minima in the
elastic-scattering cross section are also observed. This in-
dicates the close relation between the elastic scattering
and inelastic reaction, especially near the resonance ener-

gy (strong absorption region) [43].
As indicated by the (e, e') scattering [27] and the HF-

RPA calculation [28], the transition density for certain
states is quite different from that given by the simple
macroscopic collective model. A typical example is the
third 5 state in Pb. The first peak of the charge tran-
sition density is near 4.0 fm and is stronger than the
second peak (near 7.0 fm). Some calculations [27] also
suggest that the second maximum might in fact be a
minimum. Some trial proton and neutron transition den-
sities p" and p'„' designed to simulate the forms suggested
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are shown in Fig. 19. Three combinations of these densi-
ties were employed in our calculation for the 5i state: (a)
the second maximum in both p" and p'„' was kept fixed,
(b) the second maximum in p'„' was changed to a
minimum, while that in pz' was kept fixed, and (c) the
second maximum in both p" and p'„' was changed to a
minimum. The results are shown in Fig. 20. Comparing
these results with those from the simple collective model,
it is clear that because of the strong absorption, m-nucleus
scattering near the 6 resonance is not very sensitive to
the interior region of the transition density.

FIG. 18. Differential inelastic cross sections for
Pb(m. +,m.+') at 180 MeV for 2+ (4.09 MeV) state. The solid

curve represents a DWIA calculation in p space with half-value
radii of R~=6.673 fm and R„=6.380 fm. The dashed curve
represents a DWIA calculation in p space with half-value radii
of R =R;+0.5 fm in code HL (inelastic). The dot-dashed curve
represents a DWIA calculation in p space with half-value radii
of R =R;—0.5 in code HL (inelastic). All calculations were
performed with fixed a s and P s.
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FIG. 17. Differential inelastic cross sections for
Pb(m. +,m.+') at 180 MeV for the 2+ (4.09 MeV) state. The

solid curve represents a DWIA calculation in p space with
diffuseness a~ =0.448 fm and a„=0.610 fm. The dashed curve
represents a DWIA calculation in p space with diffuseness
a =

3 a; in code HL (inelastic). The dot-dashed curve represents
a DWIA calculation in p space with diffuseness a =

3 a; in both
the codes PPT (elastic) and HL (inelastic). All calculations were
performed with fixed R s and P s.
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FIG. 19. Trial neutron and proton transition densities for the
53 state in Pb used in the calculations shown in Fig. 20. The
solid and dashed curves represent the neutron and proton densi-
ties, respectively.
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FIG. 20. Differential inelastic cross sections for
Pb(m+, ~+') at 180 MeV for the 53 (3.96 MeV) state calculat-

ed in p space with various combinations of trial transition densi-
ties shown in Fig. 19. The solid curve represents a DWIA cal-
culation for which the second maximum in both p~ and p'„' is
kept fixed. The dashed curve represents the case when the
second maximum in only p~t is changed to a minimum, whereas
the dot-dashed curve shows the effect of changing the second
maximum in both p~ and p'„' to a minimum.

V. SUMMARY AND CONCLUSIONS

DWIA calculations were performed in both coordinate
(r ) and momentum (p) space for new data on tr+ and n

scattering from Pb at T =180 MeV. For elastic
scattering the 2PF proton density was derived from
charge densities obtained from electron scattering. The
neutron density and pion energy shifts were adjusted to
get the best overall fits to the elastic ~+ and m data
from this experiment and an earlier experiment [21] at
162 MeV. The fits are comparable in the r- and p-space
calculations, but the neutron density used gives a value of
hr„z —-0 (neutron-proton rms radii difference) in disagree-
ment with theory and proton-scattering results
( hr„=0. 1 —0.2).

For inelastic scattering the distorted waves used were
those generated in the elastic-scattering calculation. The
inelastic transition densities were taken as proportional
to the derivative of the ground-state densities used for
elastic scattering ("collective form factors" or vibrating
density model). This simple model represents the data
quite well in both r- and p-space calculations. The ratios

of the transition matrix elements, M„/M~, calculated
from the deformation parameters, are in good agreement
with each other (r and p space) and with those obtained
independently by a comparison of proton (or alpha) and
electron scattering. In addition, the absolute values of
the M from the r-space calculation are fairly close to
those from electromagnetic methods, except for the non-
collective 53 state, and the two high-spin states for which
the collective form factors are expected to be inadequate.
However, the M 's from the p-space calculations are
= 15—20% lower than the electromagnetic values.

The inelastic angular distributions show only slight
sensitivity to variations in the width and centroid of the
transition density, indicating that pion scattering near the
6 resonance is mainly sensitive to an integral property of
the density, such as the transition matrix elements. Cal-
culations comparing different transition densities such as
a VDM from the 2PF distributions, an unfolded distribu-
tion [Eq. (10)], and the densities of Decharge and Gogny
show that the differences between transition matrix ele-
ments obtained are —15—20%.

Elastic-scattering calculations using a proton density
from electron scattering and a neutron density from Eq.
(10) give results quite close to those obtained using the
2PF densities. Both show a small shift in phase (to small-
er 8 for m. and larger 8 for m+) relative to the data at
180 MeV. It is not clear whether this effect can be ex-
plained by medium modifications of the pion-nucleon in-
teraction as is the case for proton- and kaon-nucleus
scattering [44,45] or by 6-dynamics effects.

In conclusion, it appears that pion scattering near the
33 resonance can give reliable neutron and proton transi-
tion matrix elements for transitions with surface peaked
densities, but is not sensitive to the detailed shape of the
transition density, especially in the interior region
(r ~R&&2). Further, presently available reaction models
are not good enough to give accurate determinations of
ground-state neutron and proton densities, even in the
surface region.
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