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Can the quadrupole form factors of the N — A transition be determined model independently?
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This work addresses the question of how well, in principle and in practice, the electric and Coulomb
quadrupole amplitudes for the N— A transition can be determined. The analysis is motivated by the
significantly greater number of observables available in polarized electroproduction that will become ac-
cessible at the new generation of electron accelerators. The influence of several common assumptions,
such as restriction to s and p waves only, is investigated. Results are presented for low [0.12 (GeV/c)*]

and high [2.5 (GeV/c)?] four-momentum transfers.

PACS number(s): 13.60.Rj, 14.20.Gk, 13.40.Fn

I. INTRODUCTION

A central issue in baryon physics is the presence, or ab-
sence, of /| =2 (d-state) admixtures in the quark wave
functions of the nucleon and A isobar. More than a de-
cade ago, Glashow [1] and Vento, Baym, and Jackson [2]
showed that the discrepancies encountered when
G 4 /Gy, the SU(3) decay ratio (D +F)/(D —F), and the
mNA coupling constant are calculated using spherically
symmetric quark wave functions can be resolved if a siz-
able d-state admixture were present in the nucleon and
isobar wave functions. An immediate consequence of
these admixtures would be nonzero Coulomb and electric
quadrupole (S, and E, ) multipoles in the electromag-
netic N—A transition. [These multipoles vanish if the
quarks are in the (1s)® configuration as required by the
SU(6) symmetric quark model. Then the transition is a
pure magnetic dipole (M, ) spin-flip of a single quark.]
Physically, d-states (and other mixed-symmetry com-
ponents) can arise from the color hyperfine interaction
[3,4] resulting from QCD-motivated one gluon exchange
(color magnetism) [5]. Relativistic light-cone quark mod-
els can also produce quadrupole components even in the
absence of a tensor force [6]. There is an obvious high in-
trinsic interest in determining the quadrupole com-
ponents (ideally, over a large range in Q?) and thereby
performing tests of microscopic theories of hadron struc-
ture.

However, unambiguous determination of S, (Q“) and
E,, (Q?) is hampered by (1) their small magnitude (a few
percent of M ) and (2) the presence of many other con-
tributions to the experimental observables, such as non-
resonant terms and tails of higher resonances. The prob-
lem is especially difficult for Q22 1 (GeV/c)? since the A
falls off with Q? considerably faster than either the other
resonances or the background, both of which have (ap-
proximately) the Q2 dependence of the nucleon elastic
form factor [7]. Previous attempts [8] to experimentally
determine the quadrupole components from angular dis-
tributions in unpolarized electroproduction have always
assumed a specific form for the electromagnetic observ-
ables, namely, the form that results (1) when only s and p
waves in the mN system are retained and (2) when the
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only influence of multipoles other than M, is via their
interference with the M, multipole.

In this work, I examine the degree to which the quad-
rupole form factors may be determined in a model-
independent manner; i.e., I ask: Is there, in principle,
sufficient information in polarized electroproduction to
allow their determination directly from the experimental
observables? Such an analysis is timely in light of the
preparation for the next generation of electroproduction
experiments at the new high-intensity, high-duty-factor
electron accelerators. In contrast to previous measure-
ments, the new experiments will exploit the polarization
degrees of freedom by combining polarized electron
beams, polarized targets, and/or detection of recoil polar-
ization. This results in a significantly greater number of
experimental observables which, one hopes, will provide
enough redundancy to reduce or eliminate the previous
ambiguities [9] in extracting the quadrupole form factors.

While several authors [10]-[12] have recently shown
the large sensitivity of various electromagnetic response
functions to the presence of small quadrupole com-
ponents, this sensitivity is demonstrated by holding all
other physics ingredients constant and then turning on or
off the quadrupole components. The questions of sensi-
tivity and determination are different. I will examine the
case of “maximal” (in the sense of separating the largest
number of response functions) coplanar electroproduc-
tion, namely, the p (¢,e'p )7° reaction, and investigate the
influence of various physics input on the extracted quad-
rupole form factors. These include the standard assump-
tions of only including s and p waves and the influence of
higher nucleon resonances and the nonresonant nucleon
pole (Born) terms.

II. POLARIZED ELECTROPRODUCTION

The cross section for the p (e,e’p)n° reaction, allowing
for a polarized electron beam and either a polarized nu-
cleon target or detection of the recoil proton polarization,
contains 18 electromagnetic response functions [13]. (In
what follows, I only consider recoil polarization; the re-
sults for polarized targets are essentially the same.) In
the recoil polarization case, the following response func-
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tions may be separated in coplanar experiments: R, R,
Rim Ripn Rit Rit, R%, R, RY: and the combination
2eR{ —eR g, where ¢ is the virtual photon polarization
parameter, the subscripts L, T, LT, and TT denote longi-
tudinal, transverse, longitudinal-transverse interference,
and transverse-transverse interference terms, respective-
ly, and the prime denotes the electron-helicity-dependent
response functions. The superscripts /, n, and ¢ denote
the components of the proton polarization vector in a
coordinate system with [ along the proton momentum,

normal to the reaction plane, and t= =fiXT. To see how
the quadrupole terms of interest enter, one performs a
multipole decomposition of the response functions [13]:

R, =4|S,, X1+ P,)+4Re(ST_S,,),
R1=2|M, |*+2Re(E} M, )P,
—[IM *+2Re(M}_M,, —3E{ M ,)]P, ,
Rib=3IM |*—2Re(EIM  +2iM} M ,)
+2Re(Eg§ M, )P,
_[%IMH |>—Re(8E} M, +iMi M, )P, ,
R =sinB{Re(E§ M, )

+[IM; 4 *+Re(6M{, E  +M}_M,, )P},

_ (1)
R{t=—V2sin0Re[2S3 . M,

+(ST_-M,, +10ST . M, )P,],
RY —\/ZRe[ 3ST-M,,
—HST_-M,

—$STM,, +S5 M, P

—8ST+ M )P,],

Ryr=—V2sinfRe(S§, M, +65ST, M, P,),
pr=—V2Im(S{_M,, +S§ .M, P, +45} M, P,),

where 6 is the proton angle with respect to q in the N7
center-of-mass system and P; (P,) is the first (second)
Legendre polynomial of argument cos6. Each response
function depends on Qz, 0, and the invariant mass of the
hadronic system W. Solely for compactness, I have writ-
ten the multipole expansion assuming that (1) only s and
p waves contribute and (2) terms that do not contain the
(large) M|, amplitude are negligible (except in R; where
M, does not occur). When higher partial waves, Born
terms, etc., are to be included, it is more convenient to
use a helicity basis for the response functions. Their rep-
resentation in this basis is given in a recent paper [14].

III. RESULTS AND DISCUSSION

Clearly, the LT-type responses offer the best opportun-
ity to learn about the S, amplitude since it enters
linearly and with a large coefficient. The E,, term
occurs both linearly and quadratically in the T- and TT-
type response functions. [The quadratic terms do not ap-
pear explicitly in Eq. (1) because of assumption (2) above.
They are, however, retained in the full calculation of the
response functions.] To isolate the E;, terms requires
removing the dominant |M,, |? terms. Now consider the

following differences of longitudinal-transverse response
functions:

A = RlI.IT—ZRLT
LT 2v2sinfcosh ’

<) 2Risind+R 1P, "
I 2v/2(cosh)(3 cos26—4) ’

s Riysin6+R 1P,
LT

2V/2 5inf(cos?0—2)
and of transverse-transverse ones:

_ 3Riysin6P, —(5—2P;)R Y1

A
Arr 36 ’
<) _ 3R{r(2—P;)—(5—2P,)R
T s (3)
12
~3)_ Rt (2—P,)—RysinéP,
ATT_ 12 .

If the above multipole decomposition -were truly valid,
these differences would allow one to isolate Re(ST, M, )
and Re(E M, ) in several independent ways:

AL

Art
Re(SHMH)—P—l—A‘” ARy,

A(l) (4)
* =—
Re(ETM1+)= 5 p. — 1)sin0
A(Z)
(2P,—P2—1)
A%

~(1—P,)P,sin6

(The various angular functions are removed to avoid
trivial singularities at 6=0°,90°, and 180°). Of course,
the simple assumptions used above describe only part of
each response function. However, the important point is
that any additional physics input enters differently in
each of the A} ;’s and this might allow the “beyond quad-
rupole” contribution to each to be characterized model
independently. What the above procedure isolates is the
entire quadrupole amplitude; it does not a priori indicate
how much is resonant, i.e., there may be contributions
from the T=1 channel and other nonresonant physics
that also have S, and £, multipoles. If, as predicted
[15], there is a significant T=1 contribution to S, it
will have a dramatic influence on R since the
Im(S},M,, ) interference would vanish if the two mul-
tipoles both come from the A, i.e., have the same phase.
Indeed, Ref. [10] showed that this response function is
much more sensitive to the interference with the (real)
Born terms than to the A quadrupole amplitudes.

To explore the sensitivity of the Aj 1’s to the physics in-
put, I calculated the response functions for several cases.
The base-line case is that of an isolated A resonance, i.e.,
only the S,,, E;;, and M, resonant amplitudes were
present. Then the nucleon pole terms were (coherently)
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added, then all / =1 nucleon resonances, and, finally, all
of the major resonances up to /=4: D;(1520),
D 5(1675), F,5(1688), S,,(1620), S,,(1700), F5,(1950),
and G,,(2190). The resonant amplitudes were taken
from the dispersion-relation-based parametrization of
Devenish and Lyth [16] for the A and higher nucleon res-
onances. They tabulate only the resonance contributions
to the dispersion integral; to this must be added the (real)
background terms. For this purpose, I utilize the results
of von Gehlen [17]. Although the primary goal of the
present work is to investigate the stability of the Aj’s as
one varies the model input rather than to provide de-
tailed predictions, I note that the numerical results for
the response functions agree at the 20% level with the
more sophisticated microscopic model of Nozawa et al.
[12] and that this model provides a reasonable descrip-
tion of the existing data.

Instead of the Ajq’s (the experimentally accessible
quantities), I present the results as

_ ~l]_;l-~_zll_"1'(())
Re(St,M,,) "’

, Al —AL(0)
T L Ar )
Re(E}, M, )

LT

)

o} (%)

D@ (%)

¥ (%)

0 50 100 150
0 (deg)

where A};(0) refers to the base-line case of an isolated A
resonance and the E,, and M, multipoles are from the
Devenish-Lyth [16] parametrization. The D},’s are, then,
either the fractional deviation from the base-line case or
that deviation times a known function of 6.

The results are shown in Fig. 1 for Q?=—0.12
(GeV/c)? and an invariant mass W=1.232 GeV (where
the A amplitudes are purely imaginary). The solid curve
is the result for an isolated A resonance and no Born
terms. The S,, and E,;, amplitudes are —5% and
—2% of the M, amplitude. (In the parametrization of
Ref. [16], E,, has the same Q2 dependence as M, while
S+ contains an additional kinematic factor to ensure
proper threshold behavior.) The long-dashed curve
shows the A-plus-Born-terms result while the further in-
clusion of the /<1 (/ <4) resonances is shown by the
short-dashed (dot-dashed) curve. As one might expect, at
low Q? there are large regions of 8 where most of the
D/,’s exhibit rather little model dependence. In particu-
lar, not only does the A resonance dominate the elec-
troexcitation spectrum compared to other resonances (at
this Q?), but also any interference between the Born
terms and the A amplitudes is, on resonance, purely
imaginary and hence cannot contribute to the response
functions (there are, however, both LT- and TT-type in-
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FIG. 1. The longitudinal-transverse (left) and transverse-transverse (right) difference functions at Q>=0.12 (GeV/c)?* and
W=1.232 GeV. The solid curve is the result for an isolated A resonance, the long-dashed curve includes Born terms, and the short-
dashed curve includes Born terms and ! <1 resonances while the dot-dashed curve includes Born terms and the dominant / <4 reso-

nances.
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terferences from the Born terms alone). Thus, the D ’s
should allow Re(ST,M,,) to be determined model in-
dependently at the 10—-15% level. (They are nonzero
even for the base-line case due to a Re(ST,E ) term in
the response functions.) The electric quadrupole term
would be best obtained at forward angles from either D'}
or D3} where the model uncertainties are less than 10%
(these functions are not really mirror images as will be
apparent at higher Q?). The strong influence of the Born
terms on DY) renders it unsuitable for extracting
Re(ET.M,.). On the other hand, this same sensitivity
makes it a potent constraint on other ingredients to mod-
el calculations. At this small Q2 all of the D},’s are in-
sensitive to the presence of the higher spin (/> 1) reso-
nances (although the presence of the other low-lying / <1
resonances, in particular the S|;, has a discernible effect
at backward angles).

The situation is dramatically different at the higher Q2
of 2.5 (GeV/c)®. The A amplitudes are much reduced
compared to both the other resonances and background
and, indeed, the background at W = 1.232 GeV is nearly
as large as the total A response [7]. This implies that the
response functions now result from a combination of
many relatively small amplitudes, none of which is truly
dominant. Consequently, the interference structures
should be both more pronounced and more sensitive to
the particular combination of amplitudes considered.
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This is borne out by the results displayed in Fig. 2. Large
deviations from the base-line case are observed in all the
D};’s. Furthermore, they exhibit less stability than at
Q%?=0.12 (GeV/c)? in that they change significantly as
each new ingredient is added. In particular, the inclusion
of the higher partial waves now has a large influence. In
general, the D};’s no longer provide as good a model-
independent characterization of the quadrupole com-
ponents as they did at lower Q2. However, it is en-
couraging that there are regions of 6 where at least some
of them are stable at the 20% level, i.e., D{} and D for
60°<6<100° and D!} and D{3) for 120°<6<140°. I em-
phasize that these results represent somewhat of a worst-
case scenario for determinating E, since, if E,, /M,
were to increase as a function of QZ, its extraction would
be correspondingly less uncertain. Just such as increase
is predicted in both the relativistic constituent quark
model of Weber [18] where E,, /M, goes from 2% at
0?=0 to —10% at Q?=2.5 (GeV/c)? and also by the
perturbative QCD calculations of Carlson [19]. (Al-
though dominance of the M, amplitude is consistent
with the highest Q2 existing data, these data are also con-
sistent with the perturbative QCD prediction of equality
between E,, and M, [9].) Of course, if any given mod-
el were able to accurately reproduce all the D},’s (or the
response functions themselves), confidence in such a mod-
el would then be justified. This is, however, a different
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FIG. 2. The same as Fig. 1 except at 02=2.5 (GeV/c).
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state of affairs than truly model-independent knowledge.

An important practical consideration is that the finite
acceptances of any real apparatus result in averaging over
a range in all the kinematic quantities. In particular, ex-
periments cannot be performed at a single value of W,
e.g., at W = 1.232 GeV where the resonant amplitudes
are purely imaginary. Therefore, it is also necessary to
know the variation in the measured quantities due to the
averaging procedure. To this end, Figs. 3 and 4 show the
Diys at Q?=2.5 (GeV/c)? for W=1.214 and 1.250 GeV
(£18 MeV off resonance). The difference functions are
highly sensitive to this variable. Although D!} and D3}
still exhibit a relatively broad region of insensitivity at
W=1.214 GeV, they vary dramatically with input at
W=1.250 GeV. The ability of D{}} and D} to charac-
terize E | is no better than 30% at W=1.214 GeV and
considerably worse at the higher invariant mass. These
results argue for (1) measurements whose W acceptance is
asymmetric around the A peak to deemphasize the high
W side and (2) measurements with good resolution in W
so that the averaging effects can be accurately character-
ized.

All of the results presented above assumed that the in-
dividual response functions were known with infinite pre-
cision and so comprised an “in principle” investigation.
Are the Aj’s useful in practice? This is especially
relevant for the A%Lp’s since they involve the difference of
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two relatively large quantities as one is trying to remove
the |[M,, |? contribution. I recalculated all of the D},’s
assuming that the uncertainty on each response function
was £5% (which is somewhat conservative for the next
generation of experiments). This produces error bands
on the Dy;’s of 10 ~25 % with the LT ones exhibiting the
smaller “error magnification.” Thus, this method of ex-
tracting information on the quadrupole components can
be fruitfully employed in practice.

IV. CONCLUSIONS

This work has shown that the functions 35 7> construct-
ed from differences of the electromagnetic response func-
tions, can provide, particularly at low Q2, an accurate,
model-independent determination of the (total) quadru-
pole amplitudes. These may, however, include contribu-
tions from processes other than A production. Within
the context of the (realistic) models employed in this
work, the A amplitudes are indeed the dominant contri-
butions to the total quadrupole amplitudes (the influence
of the quadrupole components in the Born terms and oth-
er resonances are much less than the resonant ones, espe-
cially on the LT-type response functions). However, to
resolve this in a truly model-independent manner would
require (1) an isospin decomposition, i.e., additional mea-
surements with neutron targets, (2) measurement of
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FIG. 3. The same as Fig. 2 except at W=1.214 GeV.
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FIG. 4. The same as Fig. 2 except at W=1.250 GeV.

charged pion production and subsequent detection of the
recoil neutron polarization, and (3) a verification that the
extracted T=3/2 amplitudes are resonant, i.e., that they
are purely imaginary at the A pole. These technically
more challenging measurements were not addressed in
this work.

Although there is greater difficulty extracting the
quadrupole amplitudes at higher Q?, the difference func-
tions introduced here retain much of their utility, espe-
cially if the kinematics are selected carefully with respect
to the invariant mass. This conclusion for the E,, mul-
tipole is further strengthened if, as predicted [19,18], it
increases with Q2 so that it becomes significantly greater

than 2% of M, as was assumed in this work. When
precise response function data become available, it should
be possible to determine the Coulomb and electric quad-
rupole components to better than 20% without recourse
to models or simplifying assumptions in the data analysis.
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