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We point out that the shell-model calculations of Wolters, van Hees, and Glaudemans for the p-
16shell nuclei in a (0+2)h~ basis have several serious consistency problems, and we use the case of 0

to illustrate these problems. We discuss some limitations of the parametrization used for the effective
interaction, criticize the choice of experimental data used in the least-squares fit, and demonstrate
that the resultant interaction exhibits some peculiar features which make it differ considerably from
realistic interactions.

PACS number(s): 21.60.Cs, 27.20.+n

In two recent publications [1,2] Wolters, van Hees and
Glaudemans (WvHG) have reported on (0+2)hto shell-
model calculations for normal-parity states of nuclei in
the mass range A =4—16. A mass-independent inter-
action, universal for all active orbits, was obtained by
fitting the Talmi integrals of a translationally invariant
interaction to experimental data (the fit actually included
static moment data, with four effective g factors and
two effective charges as additional parameters). A final
parameter was the spacing between the harmonic oscil-
lator major shells which, to compensate for the strong
mutual repulsion between Ohu and certain 2h~ states,
took the small value of h~ = 9.78 MeV compared to
fits = 13.54 MeV (b = 1.75 fm) required to fit rms charge
radii.

A disturbing feature of the calculations of WvHG is
that radial excitations, i.e. , states with large Op ~ 1p
and 08 ~ ls components, occur at low excitation ener-
gies in all nuclei. For the lighter even-even p-shell nu-
clei, the first excited 0+ states are of this type and have
a large overlap with the isoscalar giant monopole reso-
nance (see Table VI of Ref. [1] and Table I of Ref. [2]).
In addition, there tend to be substantial 1plh admixtures
in the ground-state wave functions. Toward the end of
the p-shell, the 02+ states are predicted to result predom-
inantly from p2 ~ (sd)2 excitations but states with large
monopole matrix elements still occur at low excitation
energies.

One purpose of this comment is to point out that the
appearance of radial excitations in the low-lying spec-
trum is unphysical. Another is to examine the consis-
tency of the way in which WvHG have handled the strong
Ah~=2 interaction. When empirical or realistic Hamil-
tonians which give a reasonable description of Oh~ and
Ih~ spectra are used in full (0+2)hto spaces, the Eh~=2
interaction pushes the ground state down by several MeV
producing a spectrum in poor agreement with experi-
ment. This was noticed in the first full (0+2)hto cal-

culation [3] for isO and has been commented on many
times since [4—9]. WvHG have restored the spectrum by
starting with the pure Oh~ state well above the lowest
2h~ state prior to configuration mixing. In this way the
excitation energy of the dominantly Ohu states in the
mixed (0+2)hto calculations are reproduced reasonably
well. However, we are critical of the philosophy behind
these procedures and point out that in consequence the
fitted interaction exhibits a number of unphysical fea-
tures. We discuss below general features of the problems
with radial excitations and then go on to discuss a calcu-
lation for isO which illustrates these and other problems
with (0+2)hto calculations.

The excitation energy of the giant monopole reso-
nance (GMR) is directly related to the compressibility
of the nucleus, and thus can be determined only by self-
consistent calculations using saturating effective interac-
tions. Self-consistent RPA calculations, which generally
use density-dependent interactions, predict [10] the GMR
to lie above 20 MeV of excitation in isO. On the other
hand, as documented by Kirson [11], if harmonic oscil-
lator wave functions are used with standard shell-model
effective interactions the GMR is shifted strongly down-
wards from its unperturbed position. This is the sit-
uation that applies in the calculations of WvHG and
in our example for isO. In self-consistent calculations,
self consistency for the single-particle energies and wave
functions (the 1p0f orbits are unbound), together with
density dependence of the effective interaction, play im-
portant roles in determing the energy of the monopole
state. A further di%culty arises because the matrix ele-
ment between a 2h~ 1pl h state and the Oh~ state gen-
erally contains contributions from both the kinetic and
potential energy operators. The matrix elements of these
two operators are large but of opposite sign, so that the
resulting values of (1plh ~T+ V~ Oh~) cannot be deter-
mined reliably in non-self-consistent calculations [12]. If
no constraints are introduced in full (0+2)h~ calculations
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to avoid these problems, the GMR is invariably predicted
to lie very low in the spectrum and large percentages of
lplh excitations are predicted in the ground-state wave

functions. An analogous situation arises when diagonal-
izing full (0+2)bc' spaces for higher-J states. On the
other hand, if there is no 0h~ state of a given J, there
is no monopole excitation and the low-lying 2h~ states
will have a dominant 2p2h structure. For example, the
class-A intruder states of WvHG are often dominantly

1pl h excitations and the corresponding Oh~ state has
large admixtures of 1plh configurations, while class-B
intruder states are mostly 2p2h states.

We illustrate some of the problems with monopole
states, and isolate the source of the strong Ah~=2
mixing, by reference to a (0+2)h~ calculation for isO.
The configurations which are essential to describe the
monopole state and to understand the Ah~=2 mixing
are listed in Table I. Results from full (0+2)h~ diago-
nalizations are given in Table II. From Table I, we note
the low energy of the monopole state (as expected from

the discussion above) and that the large off-diagonal ma-
trix element with the closed shell is concentrated in the
2p2h (2 0) configuration i2). The small values of the off-
diagonal matrix elements for the L=S=O Iplh states are
deceptive since (+5/6(0p lp) + gl/6(0s ls)iTi0) =
3h~ and the cancellation for the Millener-Kurath interac-
tion [13] is fortuitous (for 5~=14 MeV). The qualitative
similarity between our (0+2)hu diagonalization and that
of WvHG is evident from Table II. However, if matrix el-
ements of the saturating SGII interaction[14] evaluated
with Hartree-Fock wave functions are used in our cal-
culation, the monopole state is centered around 24 MeV
relative to the closed shell and plays little role in the low-

lying states. This does not mean that the monopole ma-
trix elements for low-lying states should be very small.
The monopole state as we, and WvHG, have used the
term is the state created by operating on the closed shell
with P,.(i, —R, )z when using harmonic-oscillator wave

functions, and monopole matrix elements are attributed
entirely to these Ah~=2 excitations. When more realis-

tic radial wave functions are used, Ah~=0 contributions
to monopole matrix elements no longer vanish since the
orbits of a major shell no longer have identical rms radii.
However, delicate cancellations are inevitable and it is

not clear that reliable estimates of monopole matrix ele-

ments can be made from conventional shell-model calcu-
lations.

WvHG have put considerable emphasis on the ap-
pearance of radial excitations at low-excitation energies
and on the agreement between measured and calculated
monopole matrix elements (Table VII of Ref. [1]). On the
basis of the preceding discussion, this emphasis is unfor-
tunate and the problem is exacerbated by the misidenti-
fication of model states with experimental counterparts.
In the spirit of the venerable Brown and Green model

[15], we would identify the lowest dominantly 2h~ 0+

state with the 12.05 MeV level of isO and take the
6.05 MeV level to be the bandhead of a mostly 4p4h
band. If the giant monopole state is centered where self-
consistent calculations put it, little monopole strength
remains at low excitation energy and we are left with
another 2p2h state of mainly (04) symmetry, which is

mixed with the monopole state to form the 03+ and 0&+

states of Table II, and another 4p4h state, crudely speak-

ing ' C(gs)zoNe(0z+), as candidates for the known 0+

states at 14.03 and 15.10 MeV in isO. These conclusions
regarding the structure of 0 are consistent with the re-

sults of a calculation by Haxton and Johnson [9] who use
the complete (0+2+4)h~ shell-model space and address
a number of the points referred to in this Comment. In
the case of izC, the famous 7.65 MeV 0+ state is usually
described as a loose agglomeration of e particles and the
entire monopole form factor can be beautifully described
in calculations which treat it as such [16]. In this calcula-
tion, and in the izC plus n calculation [17] referred to be-

low, configurations up to 20h~ and beyond are required
to describe the radial structure of the excited states. It
is inappropriate to attempt such a description in conven-

tional shell-model calculations.
The question of the proper identification of 2h~ in-

TABLE I. Model (0+2)hu problem for J = 0, T = 0 states of ' O. The basis consists of the closed shell and the [f]=[4444]
25~ configurations with (4 2) and (2 0) SU(3) symmetry which, for a translationally invariant central interaction and harmonic-
oscillator wave functions, are the only 2hu configurations which have nonzero matrix elements with the closed shell. The
expansions, in terms of shell-model basis states (columns 2 through 6), of 5 states which span the (20) space are given in
the first five rows. The doubly and singly spurious states are denoted by iD) and iS). The important nonspurious states,
for our purposes, are the monopole state iM) and the purely 2p2Ia state i2). The remaining nonspurious state i1) is given for
completeness. The off-diagonal matrix elements (in MeV) of the basis states with the closed shell are given in the final row.
Those of the nonspurious (20) states, with (lplhiT+ Vi0) set to zero, and of the (42) symmetry state are given in column 7.
The corresponding diagonal matrix elements relative to the energy of the closed shell are given in column 8.

State

iD)
iS)
iM)

l(4 2))
Off—diag

p z(sd)z
(02)x (40)

+30/64
+6/32

—~30/8~23
+10/62

86/8/23. 31
1

12.85

p z(sd)z
(02)x(02)
—g3/64

15/32
3/8~23

—+25/62
19~10/8/23. 31

-10.14

p (sd)
(10)x (21)

+25/64
—+5/32
—5/8~23
—+27/62

—~30/8+23. 31

1.78

p 'Jf
(01)x (30)

+5/64
+1/32

15~5/8 ~23

S S6f

(00)x (20)
—Ql/64
—+5/32
17/8~23

-2.19 -1.31

—31~6/8+23.31 31~30/8+23.31

Off—diag. Diag.

-2.53 13.29

10.42 22.36
2.28 31.52

-4.34 13.97
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TABLE II. Full (0+2)hu basis results for J =0, T = 0 states of O. Case 1: No b,her=2 mixing.
Case 2: b,her=2 mixing allowed (energies are given relative to the closed shell of case 1). Case 3:
Wolters et al. (energies read from Fig. 25 of Ref. [2], lplh, intensities from Table I of Ref. [2] and
Table VI of Ref. [1]).The intensity of the closed shell in the case-2 ground state would decrease to
a value closer to that of case 3 if an energy shift were applied to compensate for the Aha=2 mixing.
The 02+ state in cases 1 and 2 has a dominant (42) component () 60%%uo); in contrast, Wolters et al
obtain a dominant (20) component (Ref. [2]).

Case Quantity

E (MeV)
% 1plh

0+
1

0.0
0.0

0+
2

9.5
1.6

0+
3

12.4
55.5

0+

13.7
43.5

E (MeV)
%%uo lplh
%%uo OpOh

—9.9
3.1

72.5

10.8
18.7
1.7

13.7
48.5

0.0

14.7
29.0
7.2

E (MeV)
% 1plh
% Op0h

0.0
6.7

55.7

7.8
19.4
0.1

11.1
20.6

13.5
30.4

'Not given by Wolters et al. (Refs. [1] and [2]).

truder states is clearly crucial when an interaction is to be
obtained empirically by fitting energy-level data. How-
ever, WvHG include the 0+, 2+, and 4+ of the 4p4h
band in 0 and the excited 0+ level of izC in their fit.
Other questions that one might raise about their fitting
procedure are

(i) Is it wise to use a mass independent interaction to fit
levels from A = 4 to A = 16 and is it wise to include very
light nuclei, many of which exhibit pronounced cluster
structures, in such a fit?

(ii) Is the use of a translationally invariant interac-
tion too restrictive? In a fit in which the independent
two-body matrix elements and the single-particle ener-
gies are varied, certain linear combinations of the pa-
rameters are well determined by the data. There is no
guarantee, however, that these combinations can be re-
produced within the restrictions imposed by a potential.
In any case, medium and model-space renormalization
effects, and the need to absorb the effects of real or ef-
fective 3-body forces, spoil the translational invariance
of the G-matrix in the passage to an effective two-body
interaction.

(iii) Should one allow the two-body interaction to de-
termine the single-particle energies? Within the frame-
work of the WvHG model at the Oh~ level, the spin-
orbit splittings for the Op hole states and the Od parti-
cle states are given by —(54I; + 30I2)/8, and (75Ii ——
30I& + 105Is + 30I2)/8, respectively, where the super-
scripts e and o refer to even- and odd-state spin-orbit
forces. Thus, for short-range spin-orbit forces, there is
a serious difficulty in reconciling the observed splittings
at A =15 and A =17. Indeed, the interaction of WvHG
gives 11.9 MeV for the splitting of the Od orbits, to be
compared with 5.08 MeV under the assumption of pure
single-particle states in O.

Our answers to the above questions are no, yes, and
no, respectively. One might also ask what one gains by
including the high-lying 2hur states (after diagonalization

of the 2hu space) with the concomitant need to adjust
so drastically the relative separation of the Ohu and 2hu
configurations. This adjustment is necssary because 4h~,
6h~, ... configurations are not present to push on the
2hu, 4hu, ... configurations. This is a slowly convergent
process as is well illustrated by i2C plus n cluster calcu-
lations [17], which use a subset of the [4444] symmetry
shell-model configurations for isO. Here, one is basically
improving the. isC-n relative wave function, and, as we
observed in connection with monopole excitations, this is
not something that can be handled well in limited-space
shell-model calculations.

To understand better the nature of the 2p2h correla-
tions in the isO ground state, we note that the strongly
admixed ~2) configuration of Table I has a large overlap
with the 2h~ state which is formed by operating on the
closed shell with two successive F3 operators, the domi-
nance of such correlations having been demonstrated in
early RPA calculations [18]. As indicated above, it would
be very difficult to include such correlations consistently
in all low-lying excited states. However, the concept of
an effective charge for E3 transitions, to take into ac-
count these correlations and 1pl h excitations through
3hu, works well throughout the mass region of interest.
The same is true for E2 transitions, where t;he effective
charge takes into account lplh excitations through 2hu.
We would argue that it is best to subsume the influence
of high-lying configurations into effective one-body oper-
ators and to concentrate on getting a good description of
the mutual mixing of low-lying configurations (of what-
ever nominal h~ excitation energy). In this regard, we
observe that the wave functions of the low-lying intruder
states can generally be expressed in terms of relatively
few weak-coupling configurations [19], so that it would
make sense to start with such a basis (large shell-model
codes can be used to generate all the matrix elements
needed for such a calculation), giving up only the ability
to eliminate spurious states exactly (in the usual har-
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monic oscillator sense).
We turn now to the interaction obtained by WvHG

(Table III of Ref. [1]) and compare it with other A-

independent interactions. The p-shell two-body matrix
elements, which depend only on the low-order Talmi in-

tegrals, are qualitatively similar to those from previous
fits [20]. One would hope that this would be the case,
albeit with some refinements due to the explicit inclu-
sion of 2h~ intruder states, since many Ohu states are
included in the data set fitted. The other important sets
of matrix elements for p2 ~ (sd)2 excitations relate to
the sd-shell interaction and the cross-shell p(sd) interac-
tion. We would argue that the sd-shell interaction should
differ little from Wildenthal's universal sd-shell interac-
tion [21] at A = 18 and that the cross-shell interaction
would be a refinement of the Millener-Kurath interaction
[13]. To see that this is far from the case, we observe
that some of the higher order Talmi integrals are large
and, in some cases, alternate in sign within a particu-
lar channel. This happens for the odd-state tensor force
and to see the consequences we look at the tensor force
contribution to the diagonal Op&/~18&/2 matrix element

for J =0 and T = 1, given by —&I~ + 3 I2 6 I3,
and find a contribution of 12.35 MeV. Taking now the
full interaction, we find that the diagonal Opp/21sp/Q ma-

trix element for J =0 and T = 0 has the value +18.5
MeV, compared with the small and attractive matrix el-
ernent that, in a simple model, is necessary to shift the
state from its unperturbed position of 12.4 MeV to
10.95 MeV excitation energy in ~sO. In fact, the entire
tensor force obtained by WvHG is basically of the op-
posite sign to, and very much stronger than, that found
in G matrices based on realistic NN interactions. To

take an example for the sd-shell interaction, the diago-
nal d5/2 matrix element for J = 1, T = 0 has the value
—7.12 MeV compared with —1.63 MeV for Wildenthal's
interaction. The difference comes almost entirely from
the singlet-odd channel, another channel for which the
Talmi integrals alternate in sign (these Talmi integrals
are poorly determined in the fit but have large effects
on important matrix elements). On the other hand, the
J = 5, T = 0 matrix element, which is determined largely
by the triplet-even central force differs from Wildenthal's
value of —4.23 MeV by only 0.3 MeV. Clearly, the basic
(sd)s spectrum obtained from the interaction of WvHG
differs greatly from what one would expect on physical
grounds, the more so because of the very large differ-
ence in their d5/2 and d3/2 single-particle energies. The
same can be said of the simple 1h~ particle-hole spec-
trum which forms a basic building block in describing
excitations across the major shell gap.

The pathological behavior of the effective interaction
of WvHG arises in part because of the constraint that
all matrix elements be derived from the same underlying
potential, in part because the data set for cross-shell ex-
citations is far too limited (basically to the excitation of
a few pairs of particles) and in part to poor choices for
the correspondence between experimental and theoreti-
cal states (this includes the problems with radial excita-
tions).
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