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Recent measurements of parity nonconserving (PNC) effects in U and Th contradict the
results of random matrix theory for nuclear compound states. In this work the value of the PNC
effect is expressed in terms of a wave function at the nuclear surface where the wave function of the
compound state is not "random" due to boundary conditions. A mechanism is suggested which can
explain the permanent sign and large value of these effects. The correlations between compound-
state components are considered. The T- and P-odd effects can be expressed in terms of observed
P-odd effects. The "dynamical enhancement" of small interactions in other reactions and other
systems is also discussed.
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I. INTRODUCTION

I -Gm, =2x10
This magnitude of the PNC effect has been observed, e.g. ,

in p-p or p-n scattering. In Ref. [3] (see also Refs. [4—13])
it was shown that near p-wave compound-resonance PNC
effects are Ave orders of magnitude larger. There are two
reasons for the enhancement: (1) The small distance be-
tween opposite parity levels (s- and p-wave resonances) in

the compound state of the nucleus; and (2) the admixed
s-wave amplitude is 2—3 orders of magnitude larger than
the basic p-wave amplitude.

For example, in the simplest two-resonance approxi-
mation the relative difference in p-wave resonance cross
sections for positive and negative helicity of neutrons is

[3]

cT+ + 0' Fp
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Here in is the coeFicient of mixing by weak interaction

The present paper has been written in connection
with recent measurements of the parity nonconservation
(PNC) effect in neutron capture to p-wave compound
resonances of 2ssU and ~s~Th [1,2]. The values of the
effect (dependence of cross section on neutron helicity)
have the same sign for 90% of p-wave resonances where
the observed effect is larger than two standard deviations
from zero. This result seems to contradict the random
matrix theory which has been applied for a description
of the compound state for many years.

As is known the relative magnitude of parity violation
in nuclear forces is very small:

between compound states of opposite parity (p and s res-

onances); neutron widths I'", and I'& should be evaluated
at p-wave resonance energy. In the general case it is nec-
essary to sum over the nearest s resonances in a PNC
amplitude.

The ratio of s-wave to p-wave capture amplitudes for
neutron energy 1—100 eV is

8 103 102 (4)

is 2—3 orders of magnitude larger than estimate (1). This
enhancement is called a "dynamical enhancement. " Us-
ing this result and estimate (4), we predicted [3]

P ~ 10-2

This effect was first observed in Dubna [23] (see also Refs.
[24—26]). Observations of the "tail" of the p-resonance
effect for thermal neutrons were reported in Refs. [27,'28].

The magnitudes of all observed effects were in agree-
ment with theoretical estimates. However, in the estima-
tions of weak matrix element in Refs. [14,3,4,17,12,29],
the supposition was used that the compound state has a
random structure (the expansion coefficients of the com-
pound state in terms of simple basic states and matrix
elements are random). This supposition contradicts re-
cent experiments [1,2].

Here ~ is the neutron momentum, and R is the radius
of the nucleus. Due to the closeness of opposite parity
levels in the compound nucleus, the mixing coe%cient n
in Eq. (3) is much larger than estimate (1). A first at-
tempt to estimate a was made in Ref. [14] in the spirit of
random matrix theory (see also Refs. [15—20,3,4, 12,29]).
Experiments on neutron radiative capture [21] and fis-
sion [22] confirmed the existence of this enhancement.
The "experimental" value

n - 10-4
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The present work is an attempt to explain this puz-
zle and to attract attention to other interesting related
problems.

the region near the nucleus, rr « 1):
iks

p = & g+ + pscatt

II. TRANSFORMATION OF WEAK
INTERACTION HAMILTONIAN
AND VALENCE MECHANISM

W=W+Wp,
Gg

W = — {p np'o r+ p'(n p)(o r)
4 2m

+(o r)(p n)p'+o. rp'n p),
Wo —— [H, po r] .

Ggi

2

Here p' = dp/dr (it appears from the commutator [H, p]),
n = r/r. For simplicity we consider here a spinless
spherical target nucleus. The interaction Wp does not
contribute to the parity nonconserving effects in neutron
scattering. Actually, the parity nonconserving part of the
scattering amplitude is

2Th
(9)

Here 4y and 4; are wave functions of the system which
at large neutron-nucleus distance are scattering waves.
These wave functions correspond to the same energy.
Therefore, the matrix element of the commutator with
Hamiltonian (Wo [H, prr r)) is equal to zero. [It is

easy to check by substitution into the Schrodinger equa-
tion that Wp gives only the phase for the compound-
nucleus wave function: 4 ~ e

(Gg„/~2)po„r„,the summation carried out over nucle-
ons. ]

The derivative p' = dp/dr is large only on the surface
of the nucleus. In the simplest model of constant nuclear
density at r & R (R is the nuclear radius),

p = pog(r —R), p' = p6(r —R), —

(10)
po = (sero) ', ro ——1.15 fm

is the internucleon distance. Thus, the main contribution
to parity nonconservation effects comes from the surface
of the nucleus. The wave function outside the nucleus
(scattered neutron wave) for the energy close to P~~2
wave compound resonance is of the form (we consider

The Hamiltonian of a weak interaction of nucleon with
nucleus is

GgW= {o pp+po p),
2 2fn

where p is nuclear density, and g is a dimensionless con-
stant. For a neutron g 1; for a proton g 4 (see,
e.g. , Ref. [30]). We can transform this Hamiltonian to a
more convenient form. Replace momentum p = im[H, r],
where H is the Hamiltonian describing a nucleon in the
nucleus. If we neglect spin-dependent terms (e.g. , spin-
orbit interaction) in the Hamiltonian H, the interaction
W can be transformed to the following form:

1 + —+ fr~~(on' )(o n„) g . (11)
P KP

Here y is a spinor corresponding to right or left helicity
of neutron, o n„y= ky, n = v/v. :

1 I'„,
2~ E —E, + iI', /2

'

1 I +p

2~ E —Ep+ iI'„/2 '

(12)

(13)

4+ 4x
Imf(0) = —Im(fi~q + fpNc),

pv ~+
0'+ + 0'

4 Gg„Re(fo)&=.~g" '+
2R

=09 x 10 g„~1+ Re(fo) 1eV
E

Here E is the neutron energy, and 0y is the resonance
neutron capture cross section for neutron helicity + or

Far from s-wave resonances [1+ Re(fo)/2R] 1.
Therefore, for g„1,estimates of the valent mechanism
are 1 to 2 orders of magnitude smaller than observed
effects in Sn, La, Cd, Br, Th, and U isotopes (P 10
10 i for E 1 —100 eV).

III. THE SOURCE OF ENHANCEMENT

As is known, the wave function of a compound state
is very complicated. It can be represented as a sum of
simple components 4 (4 is a product of particle, hole,
vibration, and rotation states)

4, =) bC

The number of "principal" components in 4, (i.e. , the
components which provide the main contribution to nor-

malization) is equal to (see, e.g. , Ref. [31])

P" O4 6 (17)
D

Here D is the average distance between the compound
levels with the same angular momentum and parity (0
1 —100 eV), and I',&„MeVis the fragmentation width
of the state p~ to the levels of the compound nucleus (in

fo s-wave and f&jz —pi~2 -wave scattering amplitudes, a
is the scattering length (for ~ Th a 10 fm).

Using formulas (8)—(11) it is easy to calculate the "va-
lence" contribution of wave (11) to parity nonconserving

(PNC) effects (the valence mechanism was first discussed
in Refs. [11] and [13]). If we "forget" about other com-

ponents of the compound state and calculate the matrix
element between neutron states (ll), we obtain

4Gg„
fpNc(0) = +fi/~ — -"po ~

1+
2R ~

K
(14)
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other words, it is the scale of residual nucleon-nucleon
interaction that mixes simple states). By virtue of the
normalization condition (P b2 = 1) b I/~N

In a calculation of the "valence" mechanism contribu-
tion we take into account only one single-particle compo-
nent in the compound-state wave function: p@„where
gi is the target nucleus state, p is the neutron wave (11).
The weight of this component is proportional to 1/N, i.e.,

very small. It is useful to explain this point in detail. In
perturbation theory formula (9) we have the total wave

function of the system:

xI'„' 1

mk E —E, +iT, /2

~r~ 1

mk E —Ep+ iT„/2 (18)

We include to the total wave function @; "valence" com-
ponent pili from Eq. (11), s-wave compound-resonance
states 4,', and p-wave compound-resonance states 4&.
The coefBcient before 4', can be found from a compari-
son of formula (9) with the compound-state contribution
to fpNC (see Refs. [3,4, 10,29]):

1 i+r„(4,'(w(@,)gr"
k (E —E, + I,/2)(E'—E„+T

Here I' and I'„are the total and neutron widths of the
resonance.

Using formula (18) we can compare probabilities
of single-neutron (unexcited target) state and many-
particle states. It is enough to calculate normalization
integral J ~g;~ over the nucleus. The weights of single-
particle (valence) states are

W„'-
i

1 ~ —
i

-irR',
t' f )'4

Ry 3
t' fi(g '& 4 ir (ri„'/2)'

W."-
I ~R, I

3«'- „4R(E E ), +rz/4 ( )

(20)

The weights of many-particle (compound-state) compo-
nents are

r r„i
g m~) (E —E,)'+ I",/4

'

), m~ ) (E E„)2+ r2/4—

(22)

(23)

Resonance parameters can be found in Ref. [33]. For
example, at the energy E = 8.3 eV in Th where the
p-wave resonance is located, we obtain

fres
104 N 0 0 1N

w, ~ 10

(24)

Parameter N in this case can be defined as the "exper-
imental" value (inverse spectroscopic factor of the reso-
nance:

In"""'-10', r,",„„,- (KR)"+' (26)

is the width of a "single-particle" resonance, 8 is the or-
bital momentum. In s-wave the ratio W;/W„' is smaller
because the resonance cross section at that point is much
smaller than the potential scattering contribution.

Note that there is no close s-wave resonance in this
region and neutron scattering looks like pure potential
scattering. Nevertheless, inside the nucleus we have a
compound-nucleus state rather than a simple neutron
state. The relative weight of the valence component is

10 4 only.
This picture obviously shows that the compound-

nucleus contribution cannot be neglected. Moreover, this
contribution is the source of the enhancement of PNC ef-

fects.
We need to find matrix elements of the weal& interac-

tion between compound states of opposite parity

(& 1~~16) =(& '~.'Itvl&. ~~~)
= ) b'cp(C+iWi4p) . (27)

What matrix elements are nonzero in this sum? 8' is
the single-particle operator, i.e., it can change the state
of only one particle. This means that multiparticle wave

functions C+ and 4p differ only by the state of one par-

ticle: I)+ = pip„+, C)p
——gimp„. In a spherical nucleus

nucleon bound states of opposite parity and the same
angular momentum belong to different shells, i.e. , the
distance between them is about

AE= E+ —E 5 —10MeV. (28)

But the energy of the principal components of compound

states should satisfy the conditions ~E —E
~

r,z„and
~E —Ep~ r,&„,i.e. , the energies of single-particle states

should satisfy the condition ~E, —E„~ r, i,„1MeV
which contradicts condition (28). (This argument for the
absence of principal component contribution was consid-
ered in Refs. [11,12,29].) Therefore, if we consider only
principal components of compound states, at least one
of the orbitals (p+ or p„)should belong to the continu-
ous spectrum. We have appropriate continuous spectrum
states: s-wave and p-wave parts of the scattered neutron
wave function, and doorway neutron states p, and p„
[see Eq. (11)].We have four possibilities:

(1) Pi = Ps i V'v

(2) V„+=V. , V. =

(3) v,+ =~.„,, ~.
(4) V'v = V'psi2 & V'p

&J 1/~

P1/r

+P s/z

Here 0 is the wave function of the neutron bound state
near the threshold (if it exists), Es —r,z„.Note that
in practice cases (1)—(3) coincide. Actually, the bound
state and the continuous spectrum states with E 0
are proportional to each other inside the nucleus since
[E) (( )U), )U( is a strong potential depth. Therefore,
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there is no need to include in the basis set of the orbitals
both states pr and Hr. In other words, bound state (or
single-particle resonance) near the threshold leads only
to enhancement of the corresponding scattering wave and
gives the maximum of the neutron strength function.

Since the neutron state has an energy near the thresh-

old (I',z„-E„„-—I',z„),the target nucleus state yi
can have only a small excitation energy E& r,&„to sat-

isfy the principal component condition ~E„„+Ei —E~
r,&„.These lowest target nucleus states are relatively
simple: ground state (valence mechanism), one excited
nucleon state, vibrational or rotational excitation (in de-
formed nucleus). Note that these states belong to "door-
way" states which determine the spread width of the neu-
tron state in the nucleus (the processes are 1 particle
2 particle + 1 hole, 1 particle + phonon, 1 particle + ro-
tation). After averaging over the compound resonances
there is structure corresponding to the position of these
states. Therefore, the "doorway" part of the compound-
state wave function is, roughly speaking, similar in every
compound resonance (expansion coefficients are propor-
tional to neutron capture amplitude T = QI'" and can
be described approximately by perturbation theory in a
residual nucleon-nucleon interaction). Consequently, this
part of the compound-state wave function gives a regular
contribution to the PNC effect. Moreover, there is a co-
herent definite sign contribution (see Sec. IV "quasielas-
tic" contribution).

Thus, we have shown that in a spherical nucleus the
principal components of a compound-state wave funct, ion
give regular contribution to the PNC eA'ect.

In a deformed nucleus there can be low-lying opposite

parity levels with small energy intervals (~E+ —E
F,z„). However, there can be only a few such levels
with the same angular momentum. Matrix elements of
the weak interaction between these states are not large
because bound-state wave functions are smaller at the
surface due to the boundary condition [remember that
W b(t' —R)]. They also have different angular parts of
wave functions (see Nilsson coefficients, e.g. , in Ref. [31])
which suppress weak mixing. In other words, the states
in the deformed nucleus "remember" their spherical ori-
gin and the distance between "well-mixed" states is still
large. In this case, the above discussion is applicable to
deformed nuclei also. However, I should also present an
argument in favor of the possible importance of low-lying
opposite parity states.

Due to the small energy of the excitation, the rest
of the neutron capture energy can be used for excita-
tion of several more particles. The number of possible
states increases exponentially with the number of ex-
cited particles. In other words, there are many princi-
pal components in the compound-state wave functions g,
and gz which have the structure like gi ~+) and gi~ —),
where ~+) and

~

—) are low-lying simple opposite parity
states with the same angular momentum. All of them
contribute to the PNC effect which is proportional to
(+~W~ —). However, there are no reliable arguments that
this contribution has the same sign for diferent com-
pound resonances since many-particle components of the

wave function have very complicated structure and eo-

ef5cients b't"p for these components are probably ran-
dom (one could try to consider correlations between these
components —see next, section).

One can also consider the contribution of "small" com-
ponents of the compound-state wave function which do
not satisfy the "principal component condition": ~E

E~ I',z„.In the simple model of constant level den-

sity the coef5cients before small components decrease like

(see, e.g. , Ref. [31])

11 2 rspr

V N (E E)2+ ill
1 I',p„/2

(30)V N 9N/50 for N 10 —10
Sr,

„„

Therefore, we need N, & 10. This value of the enhance-

i.e. , we have a suppression factor for the small compo-
nent contribution I',z„/2(E—E ) Op.posite parity
single-particle levels in a spherical nucleus are separated
by the interval AF 8 MeV. If one component, say,

)gi) (p~+), is principal, another component ~gi) (&p„) is

suppressed by the factor I',~„/26E 1/10 (see Refs.
[11,12,29]). States p+ and p„arebound states, so they
are not large at the nuclear surface and hence the matrix
element (+~6~—) is not large. The contribution of small
components to weak matrix elements between compound
states is probably random since gi is, generally speaking,
a excited many-particle wave function.

The conclusion from this section is the following. The
"quasielastic" components of a compound-state wave
function (states of the type pgi where p is a doorway
neutron state, and gi is low-lying excited target nu-

cleus state) are the most probable candidates for the
regular contribution to PNC effect. They are principal
components of the compound-state wave function; door-
way neutron wave functions p, and pz are large at the
nuclear surface and have maximal weak matrix element

(p, ~w~y&); there is coherent definite sign contribution of
such components (see next section).

The coherent contribution to the weak matrix element
(27) is proportional to the number of coherent compo-
nents N, . It is necessary to compare this number with a
random contribution. Similar to the well-known random-
walk problem, the incoherent contribution is proportional

to i/¹ The incoherent contribution is given mostly by
a small component of the compound-state wave function;
i.e. , it contains the suppression factor I',&„/EE 1/10.
Correspondingly, bound nucleon orbitals are not large at
the nuclear surface and have a 3—10 times smaller matrix
element of weak interaction than (p, ~w~yz). In other
words, due to boundary conditions the compound-state
wave function at the nuclear surface is more "regular"
than inside the nucleus.

To explain the results of experiments regular enhance-
ment N, should not be smaller than "random" enhance-
ment
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ment factor is also necessary to explain the magnitude
of the observed effect. The estimate of a "quasielastic"
components number probably satisfies this condition.

q's q'p w q's q'p s Vp +s Vp

IV. QUASIELASTIC MECHANISM,
DOORWAY STATES,

AND GIANT RESONANCES

We can write expansion (16) in another form:

'0', = y, Qt + pzg2 + other components, (31)
@",= ppg~& + &pzg~& + other components . (32)

Here we separate the "quasielastic scattering" contribu-
tion: y, and y& are 8-wave and p-wave parts of the scat-
tering neutron wave function [see Eq. (11)], and gq and

gq are the sum of target nucleus states, Qq containing
the states of the same parity as the ground state:

gl = gt + ) citkit

g;t are the states with one, two, etc. excited nucleons,
phonons, rotations. gq contain opposite parity states.
(We use here a more extended definition of quasielastic
states than in the preceding section. ) "Other compo-
nents" include the states of the compound nucleus with
the initial neutron "fallen down" to a deeper bound state.

"Doorway" neutron states y, and p& can be considered
simply as basis orbitals with F 0 (part of complete ba-
sis set of orbitals). Actually, the asymptotic behavior
of E = 0 orbitals outside the nucleus is r ~, where 8 is
orbital angular momentum. We see that near the reso-
nance p, and y& have such behavior [Eqs. (11), (12), and
(13)]. Now consider the PNC amplitude (9), (19). It is
proportional to matrix element of the PNC interaction

(~ l~l~&) = (v. 1~iv»)(&fili) + (v~l~lv. )(@2I~2)
+other component contribution. (34)

If one considers only the ground state of the target
nucleus Qt in gf and g", [see Eq. (33)], the overlapping
(gf g&) is proportional to the weight of this component
I/N (valence contribution). However, the overlapping
(g2 lg&) is really much larger. The point is that the states
g2 and Q& are excited from the target nucleus by the
same strong field (y, lV, t, „sip&)of the scattered neutron
(see diagrams in Fig. 1). In other words, corresponding
diagrams for the parity nonconserving amplitude (Fig.
2) contain a vertex of strong interaction (p, lV««„zip~)
squared and have definite sign (strictly speaking, states
g2 and gz do not coincide exactly due to interaction with
other parts of compound-state wave functions which are

FIG. 2. Diagrams describing contribu tion of dipole
"quasielastic" excitations to the parity nonconserving ampli-
tude. Here in the intermediate state (cut of the loops) we have
component of states @2 and @2. Cross is the weak interaction.

P P"Q. (35)

The enhancement factor Q is of the order of the number
of "quasielastic" components N& in the full compound-
state wave function (16).

We can give a rough upper estimate of this number.
One can write down the compound state g, in the fol-
lowing form: g, = P„p„g„.Here p„is a captured
neutron state, and Q„is a sum over the possible tar-
get nucleus states. The total number of single-particle
empty discrete states of the neutron is 10 . But the
"quasielastic" contribution corresponds to the y, and p„
states only. If all excited neutron states have equal prob-
ability, N&/N 10 ~ or N& 10s —104.

It is easy to argue that in this estimate the value of
N& is overestimated. First, the residual nucleon-nucleon
interaction most effectively admixes states y~ in Eq. (16)
within the simple state spread width (principal compo-

nents, lF —El I',~„1Mev). The neutron compo-
nents p, and pz in the "quasielastic" state have energy E.
Therefore, target nucleus wave functions g~'" and gz'" in-
clude eRectively only the lowest states with excitation en-

ergy E~ I',&„1MeV. The density of states in this re-
gion is small, i.e., the number of "principal" components
in the wave function 4„which contain y, and p&, is not
large ( 10). The residual nucleon-nucleon interaction
also can admix higher states with energy Eq & I',z„.The
density of these states is much higher but their "weight"

different for s and p compound states). The states gf
and Q~& in Eqs. (31) and (32) are excited by different fields

(pt lVstronslpt) and (+pl Vszronglp&) (see Fig. 3). However,
both of these neutron states give a monopole field (
or p&), and probably there is some coherent contribution
too.

The contribution of the "quasielastic" part of the com-
pound state (Figs. 1, 2, and 3) contains practically the
same matrix element of weak interaction (p, ltalpz) as the
"elastic" valence contribution (14) and (15). Therefore,
we can write

Vp Vp

s
t. V2 , V2P

+s Vp Vp

FIG. 1. Diagrams describing dipole "quasielastic" excita-
tion of target nucleus by scattered neutron. The wavy line is
the strong nucleon-nucleon interaction.

FIG. 3. Monopole "quasielastic" excitation of target nu-
cleus.
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q's (33)]. Let us introduce classification of the target nu-

cleus excited states. Let mn be the effective number of
states which appear at the nth step of single-captured-
neutron state decay (nth order of perturbation theory in

the residual nucleon-nucleon interaction). Then

FIG. 4. Indirect excitation of the state pr @z.
Nq

——) (c„'c"„)W„. (38)

is suppressed by the factor (I'»„/Ei)~ ("small" compo-
nent weight).

The second argument is that there are other diagrams
(see, e.g. , Fig. 4) which show a similar contribution to
the compound-state wave function (y, gi + p&g& + .)
or the PNC amplitude. These diagrams correspond to
interaction with "other components" in the wave func-
tions (31) and (32), which are different for diff'erent com-
pound resonances. Therefore, the "quasielastic" parts
of the compound-state wave function (31) and (32) also
provide some incoherent contribution.

We can look at this question in a more detailed way.
After decay of a single-neutron state at the first step we
have simple "doorway" states (2 particle + 1 hole, 1 par-
ticle + phonon, 1 particle + rotation). It is reasonable to
suppose that the contribution of these states to the PNC
eff'ect is regular since they are similar in every compound
resonance. (Remember that only some "doorway" states
are "quasielastic" states which give a coherent contri-
bution rather than simply a regular contribution. ) One
could suppose that after decay of these simple states to
more complicated states (3 particle + 2 hole, etc.) there
also could be a regular part of the compound-state wave
function. During this decay process the number of possi-
ble states increases exponentially; i.e., one could obtain
large regular enhancement. A natural question arises: At
what step does the regular wave function transform into
a "random" wave function of the compound state? The
possible answer is: It depends on how many ways this
component of the wave function can be created. The
regular way corresponds to the creation of a, state from
the shortest chain of decays of the initial neutron state.
However, there are also possibilities of this state creation
after many steps, from more complicated states.

Let us try to develop a formalism to describe this pro-
cess. Quasielastic contribution to the weak matrix ele-
ment is equal to [see formulas (33), (34)]

Here we introduce correlator (average value at fixed n) of
the coefficients before similar target nucleus states in s-

wave and p-wave compound states: (c„'c&).Summation
is carried out over decay steps n. The number of possible
states increases with n exponentially.

Therefore, we can write down

W =g .-l~-l~'
g ="" (39)

is the "statistical weight" of the states which can appear
at the nth step, T is the temperature of the target nu-

cleus "heated" by captured neutron. Energy E„canbe
estimated roughly as E„=nEo, Eo is the average en-

ergy of excitation of one nucleon from the open shell or
phonon, Eo 1 MeV. We assume that at every step one

extra quasiparticle is excited. Thus, we have a simple ex-

ponential estimate for the effective number of quasielastic
components at the nth step:

&-Eon/T (Of-Eo/T)n (4o)

Exponential ansatz also looks reasonable for the correla-
tor of the coefficients:

(c„'c"„)= e ~" . (41)

Really, correlations between component coefficients
should rapidly decrease when the number of possible
states increases. The hint for the law of this decrease can
be obtained by means of perturbation theory considera-
tion. We can suppose that in zero approximation there
is no correlation between the coefficients of two states
in compound-state wave function, say, co and cp, which

are not connected by the matrix element of the interac-
tion H, r„,i.e. , (c~cp) = 0 (average at fixed n, n') lf we.
introduce the matrix element of the interaction between
these states, the coefFicients have to change according to
perturbation theory:

(AIH r Ic @ ) (&l&r l~)
E —Ep E —Ep

(@,Iral@„)= (y, lwlpp) ) c"c'" —c"c'"
[ , (~IH.r. l&) (42)

= (v. I~le»)(&,' —&,'); (36)
((c-+ &c-)(co+ &c~))

N~ = ) c'c" (37) , (Pl& i.(~),(~l&. .IP))
is the effective number of coherent components, and c'
and cJ' are the coefBcients before the same states of target
nucleus excited by the s-wave or p-wave neutron capture.
Note that here we use normalization c() ——co ——1, cp is

the coefficient before unexcited target state [see formula

We see that mixing matrix elements provides nonzero
correlator between coefficients. If there is no direct ma-

trix element, correlator can appear in second, third, etc.
order. Approximately, one can write
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(c c-+i)(c-+ic +2)
perl era+ 2/ (43)

s Vp

In this situation exponential ansatz for correlator looks
natural:

(c„'C)= e P" . (44)

Remember that c~o ——co —1 and we consider here corre-
lator between the same states @;i in s and p compound
resonances. Thus, we have

m m+1 1
Nq

——) q" =
a=0

—1

(45)

q = (c' d')m„= e&
-~ ~T-P& .

Here q is the effective parameter describing an increase
of effective number of quasielastic states at every step
of decay, rn total number of steps. It is reasonable to
suppose that at every step one extra nucleon or phonon
is excited. The number of these excitations is limited by
the maximal energy transfer to target nucleus and by the
number of the nucleons in the unclosed shell. It is rea-
sonable to suppose that rn 5. We used here normal-
ization on valence component of compound resonances
(co ——1). Therefore, the value of PNC effect is equal
to the resonance part of valence mechanism contribution
times N& ——N' —N:

2 Gq„Re(fs")P — ~ps Nq

1 eV Re(fc")= 0.5 x 10 g„Nq. (46)

If we compare this value, e.g. , with experimental value of
P for 8.3 eV 2s~Th p-wave resonance we obtain ~g„N&~

850 or q 3.8 for rn = 5 (main s-wave resonance with
E = —9.38 eV gives f&e'/R = —1/9). It means that at
the first step about four quasielastic doorway states ef-
fectively "work. " This number looks compatible with the
number of low-lying target nucleus states with appropri-
ate spin.

What could one conclude from this picture? Correla-
tion between the coefficients of different compound states
is really very small [ exp( —Pn) «& 1]; i.e. , the states
look like "random" states. However, it does not mean
that matrix element is random. Even very weak correla-
tions (average degree of coherency N&/N 10 s) due to
very large number of correlating components give large
definite sign contribution.

It is possible to estimate parameters a [number of
states exp(an)], Eo (minimal excitation energy), and
temperature of target nucleus T for different nuclei. Then

FIG. 6. Contribution of giant resonance excitation to
PNC amplitude.

one could extract correlator parameter P (roughly speak-
ing, it is "correlation time" in units of nucleon free path
time in compound nucleus). It is also interesting to carry
out model numerical calculations for a few-nucleon sys-
tem in the nucleus efFective potential to determine P.

One can try to separate the coherent contribution
among other "doorway" states (nonquasielastic) by sep-
aration of definite sign diagrams. However, in this case
this separation is not as in the "quasielastic" mechanism
where it was enough to separate syrnrnetric diagrams
for the PNC amplitude. Here the result depends on
a strong interaction dynamic. For example, the strong
fields (s)Vst, »s~a) and (b(Vst, »s(p) can have the same
multipolarity (see diagram in Fig. 5), i.e. , they excite
the same states. Thus, one can suppose that decay of
these states also could be similar, i.e., higher-order dia-
grams could have the same sign. However, as was shown
in Sec. III this contribution is suppressed by the factor
I',z„/6E 1/10, at least for a spherical nucleus.

Neutron strong (Fig. 6) or weak (Fig. 7) field can ex-
cite a giant resonance. In the first; case we once more
have a "quasielastic" or "doorway" contribution (cf. Fig.
2 or Fig. 5). The excitation by the weak field in Fig. 7
looks more attractive since the absorbed energy of neu-
tron capture is enough to be close to the maximum of
some resonances (e.g. , 0 ). We should note, however,
that this process changes the states of both the neutron
and target nucleus, i.e., it is not described by a weak nu-
clear potential (7) and (8). These nondiagonal over tar-
get nucleus weak matrix elements are smaller than the
matrix elements of the weak nuclear potential since in a
potential target nucleons "work" coherently. Therefore,
giant resonances probably do not explain enhancement
of the regular effect.

Note that the contribution of weak 0 giant resonance
to PNC effects was first discussed in Ref. [12]. However,
the mechanism considered in Ref. [12] gives a random
sign for PNC effects.

There is one more possibility. One can consider a set of
0 states (or 0 giant resonance) admixed to the ground
st;ate of the nucleus by weak potential m and scattering
of neutrons on a mixed state ~0+) + n(0 ). However,
in this case we have a large energy denominator between
states ~0+) and ~0 ) and a small mixing coefficient n
10 —10 . This smallness compensates for the possible

s & b +p

FIG. 5. Doorway state contribution to PNC amplitude.
FIG. 7. Excitation of giant resonance by weak field of neu-

tron.
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factor of coherence typical for giant resonances. There
could be several times the enhancement in a deformed
nucleus where the distance between opposite parity state
and ground state is smaller. However, it is probably not
enough to explain the effect.

The conclusion of this section is the following:
"Quasielastic" components of a compound state (ex-
citations of target nucleus open shells, phonons, and

rotation) give a coherent contribution to PNC effects.
There is also coherent contribution from simple "small"

quasielastic components with excitation energy AE 5

MeV (closed-shell excitations or giant resonances) and

other doorway components. The number of these com-

ponents is about A ~ or even more, but corresponding
states are high states and their contribution is suppressed
by the factor F,p„/b,E 1/10.

V. EFFECTS OF TIME INVARIANCE
VIOLATION

the components of compound state [except for "elastic"
component (11)]have no exit to the continuous spectrum.
Therefore, it is more correct to consider basis states p,
and p& as bound neutron states with E = 0. In this
case outside the nucleus yz —I/r2, y, —I/r; i.e. , there
is no constant term (unity) in the s-wave. In this case
the ratio of "quasielastic" amplitudes and the ratio of
T, P-odd and P-odd effects is

= —IC(J, I) .
PPNc fpNc g

Actually, the difference between Eqs. (49) and (50) is

within the accuracy of calculations which is not high due
to "random" contributions of other compound-state com-
ponents. However, we should note that this accuracy is

good enough to extract the value of T, P-odd constant

g from corresponding experiments since the accuracy of
calculation of the constant g in the framework of different
CP-violation models is even lower.

A T- and P-parity nonconserving nuclear potential has
the following form:

w» — ~~. vp',
2 2m

(47)

where g is a dimensionless constant characterizing the
strength of T and P-od-d interactions. Similar to 6 the
operator m» is proportinal to p', i.e. , the main con-
tribution to the matrix element comes from the nuclear
surface. In this situation we can hope that P- and T-odd
effects will be approximately proportional to the observed
P-odd effects in p-wave compound resonances.

A thorough discussion of T, P odd-effects can be found
in Ref. [32]. The effect in neutron propagation is de-
scribed by the amplitude

~ t's I
fTp ——fop ~

—x—~(s I (48)

where k. , s are neutron momentum and spin, I is target
nucleus spin. This amplitude describes rotation of the
neutron spin s around the direction k x I.

It is easy to calculate the ratio of T, P-violating ampli-

tude fr p to the parity nonconserving amplitude fpNC =
fpNcs K/sz using wave function (11) and the expression
for the amplitude (9) (valence mechanism):

fz p g (1+ fo/R)
fpNc, 2g (1 + 2fp/R)

(49)

where C(J, I) is a coeKcient depending on spins of target
nucleus (I) and compound resonance (J). For example,
C(J = 0, I = 2) = 1, C(1, &) = —&. The reader should
note that the angle of neutron spin rotation is propor-
tional to Re(f), difference of cross sections to Imf. For

fpNg the result is averaged over the target spin orienta-
tion.

When we consider the "quasielastic" mechanism, the
ratio of the amplitudes will be close to estimate (49) since
the factor of enhancement Q is the same. However, there
is a reason to improve this estimate. The point is that all

VI. DYNAMICAL ENHANCEMENT OF SMALL
INTERACTIONS:

BEHAVIOR UNDER AVERAGING,
OTHER REACTIONS, AND OTHER SYSTEMS;

INTERESTING EXPERIMENTS

From the point of view of perturbation theory, en-

hancement of a small perturbation in the quantum sys-
tem with a dense spectrum looks natural. However, reg-
ular enhancement observed in neutron experiments [1,2]
can essentially influence the conclusion. First, the fac-
tor of enhancement is probably better estimated as N&

(Nr is the number of coherently "working" components

in compound-state wave function) rather than y N (N
is the total number of components). Second, the behav-
ior under averaging over a large energy interval is com-
pletely different for regular enhancement and "random"
enhancement. For "random" enhancement the effect dis-

appears after averaging over the neutron energy; the fac-
tor of suppression is I/gN„, N„is a number of involved

resonances. For regular enhancement we have no such
suppression (there can be suppression due to the small-
ness of t,he p-wave resonance contribution to the average
cross section; it disappears for high neutron energy).

What experiments can clear up the nature of enhance-
ment? First, it is interesting to measure the value of
effects for many p-wave resonances in spherical nuclei
where there are no low-lying opposite parity levels. (It
can exclude some possibilities connected with such lev-

els. ) It would be interesting also to measure the non-

resonance contribution to PNC effects (e.g. , in thermal

point). The valence model, for example, gives a more
or less definite prediction for the ratio of resonance and
nonresonance contributions. It is also natural to sup-
pose that in any model predicting the permanent sign
of the effects there could be a sizable contribution from
distant resonances (which is in fact a nonresonance con-
tribution).

An average over resonances effect could be observed
in absorption of more energetic neutrons with an energy
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q'p r

FIG. 8. "Quasielastic" mechanism for (n, 7) reaction.

1 —1000 keV. In this case one will see only a regu-
lar contribution. It could be compared with the regular
part of the effect which was observed in low-lying p-wave
resonances. It is also interesting to estimate "energy cor-
relation interval" by varying energy resolution.

It is even more interesting to measure PNC effects in
many resonances for other reactions: neutron or proton
radiative capture, fission, etc. Quasielastic mechanism of
enhancement can work in the (n, y) reaction if an electro-
magnetic transition goes to the ground or low state. In
this case a single-particle component of the compound-
state wave function (y, or yz) gives considerable contri-
bution to the electromagnetic amplitude and the situa-
tion is similar to neutron scattering (see Fig. 8).

The case of 7 transition to a high compound state or
neutron fission is more complicated. There is an ad-
ditional question: Is there a correlation between neu-
tron capture amplitude and y emission or fission ampli-
tude? To obtain the answer experimentally one does not
need to measure PNC effects. It is enough to measure
the usual P-odd harmonics in an angular distribution
(tc„z~,o„(a„xit~); a„,a„areneutron spin and momen-
tum, z& is y or light fragment momentum; see, e.g. , Refs.
[4,34,35,36]). In the (n, y) reaction they are caused by
interference of different parity capture and emission am-
plitudes: T,M1 and T&E1, etc. ; in fission they are due
to interference of opposite parity fission channels. Such
measurements for many resonances or with low-energy
resolution (AE » D) could be very interesting tests of
statistical theory of the compound state since they are
sensitive to the relative signs of the amplitudes.

There is another way to pose the question: What is the
dependence of the interference effects on the final state?
In the case of fission the answer is known: The effect
survives after averaging over final states (see experiment
[22] and theory [4,17]). There have been experimental
measurements of PNC effects in an integral y-quantum
spectrum. Probably the results do not contradict the
random signs of radiation amplitudes [35,37]. However,
it is now reasonable to carry out a more detailed investi-
gation: to do measurements for different energy intervals
of y quanta, to measure parity conserving interference
effects k,„pzand k„(o„xp&).

The effects of dynamical enhancement of a small per-
turbation can also appear in other systems with dense
spectra. The possibility of enhancement is especially im-
portant if the effect survives for poor energy resolution
(averaging over some energy interval). I will simply list
selected systems and possible interesting effects.

(1) Rare-earth and actinide atoms: search for T and-
P-violating effects [38].

(2) Complex molecules: appearance of right-left asym-
metry of biological molecules due to weak interaction in-

fluence on chemical reactions.
(3) Spin system (spin liquid and spin glass): Spin liq-

uid state is probably realized in high-temperature super-
conductors. Possible effects: enhancement of interaction
with admixture, interaction of localized spins with mo-
bile hole or even enhancement of electron-electron inter-
action which leads to superconductivity. This question is
the result of discussions with O. P. Sushkov.

(4) Atomic clusters and mesoscopic systems (quantum
dots and rings in solids): transition from microscopic
quantum system to macroscopic classical system, "viola-
tion" of quantum mechanics (e.g. , disappearance of inter-
ference, superposition principle) due to enhancement of
external noise or extra nonlinear term in the Schrodinger
equation. This last question is also the result of discus-
sion with O. P. Sushkov.

The experiment with rare-earth atoms is now in prepa-
ration [39]. As for questions (2)—(4) the existence of the
effects here is at least not obvious. From one side, the
distance between the energy levels 'V decreases exponen-
tially with the number of particles. According to pertur-
bation theory this could lead to very large enhancement
of a small perturbation. From the other side, nobody
has seen enhancement in macroscopic systems with in-
finitely dense spectra. There are several explanations for
the "killing" of enhancement.

(1) Width of the states; effect is proportional to (17 +
iT)

(2) Finite energy resolution AE; in the case of the ran-
dom signs of the amplitudes the suppression of the effect

1/gN„g'D/AE, 1V„is the number of levels within

EE. Maximal enhancement in this case /I', p„/b,E
instead of QI', z„/'D Howeve. r, in the case of the perma-
nent sign amplitudes (as was observed in neutron cap-
ture) there is no such suppression.

(3) Conservation laws (momentum, angular momen-
tum, etc.) which forbid greater part of matrix elements.
However, they do not work well in the system with a
"random" surface or "random" amixtures (remember the
well-known example of a classical chaotic system: sta-
dium with the balls). A realistic example of such a sys-
tem is the "quantum dot" in a solid.

(4) And, of course, there is a trivial reason: Simple
perturbation theory is not applicable if perturbation is
larger than the distance between the levels.

Computer modeling of excited state systems of rare-
earth atoms, molecules, clusters, and quantum dots prob-
ably could clear up these questions. And, of course,
experimental investigation looks very interesting. For
example, measurements of matrix elements between ex-
cited states of rare-earth atoms [39] (Stark shifts in ex-
cited states, electromagnetic amplitudes, PNC effects),
angular and spin correlations which are due to interfer-
ence of different electromagnetic amplitudes (e.g. , Ml,
E2, and Stark amplitudes) or electron scattering ampli-
tudes, spectra in more complicated systems (e.g. , quan-
tum dots), could be very useful.

VII. CONCLUSION
Transformation of a weak Hamiltonian expresses the

value parity nonconserving effects in terms of a wave
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function at the nuclear surface. Due to boundary con-
ditions, a wave function at the surface is not random
even for very complicated compound nuclear states. This
gives a possible qualitative explanation of "nonrandom"
distribution of the values of measured PNC effects.

A mechanism that can explain both the permanent
signs and large values of observed PNC effects is sug-
gested. It is the contribution of the "quasielastic" part
of the compound-state wave function (virtual excitation
of target nucleus with no essential changes in the wave
function of captured neutron). There are correlations
among the coefficients before these "quasielastic" com-
ponents in compound-state wave function. These cor-
relations rapidly decrease during the "decay" process of
doorway state. However, the coherent contribution due
to these correlations is not small because of the very large
number of components. Other doorway states and giant
resonance contributions to PNC effects also can have per-
manent signs and are worth special consideration. How-
ever, these contributions are probably smaller than the
"quasielastic" one.

The value of the T- and P-odd effects can be expressed
in ternts of measured PNC effects.

To clear up the nature of regular enhancement it is

interesting to measure nonresonance background for the
PNC effect, effects for many p-wave resonances in spher-
ical nuclei, effects averaged over some energy interval for
1 —1000 keV neutrons, effects in other reactions: (n, 7),
(p, 7), (n, fission).

The phenomenon of enhancement of small perturba-
tions could exist in other systems: rare-earth and actinide
atoms, complex molecules, atomic clusters, mesoscopic
systems, spin liquid and spin glass.

And, finally, I would like to stress that the main pur-
pose of this paper is to pose the questions and to attract
attention to some ideas rather than to answer all the
questions,

ACKNOWLEDGMENTS

The author is grateful to O. P. Sushkov and J. Price for
useful discussions, and to D. Bowman, C. R. Gould, G.
E. Mitchell, and N. R. Roberson for sharing their results
(Ref. [2]) prior to publication. He thanks the staff of
JILA Scientific Reports Once for their assistance in the
preparation of this paper. This paper was supported in
part by NSF Grant No. PHY89-04035.

[1] J. D. Bowman et al. , Phys. Rev. Lett. 65, 1192 (1990).
[2] C. M. Frankle et al. , Phys. Rev. Lett. 67, 564 (1991).
[3] O. P. Sushkov and V. V. Flambaum, Pis'ma Zh. Eksp.

Teor. Fiz. 32, 377 (1980) [JETP Lett. 32, 353 (1980)];
INP Reports Nos. 80-148, 1980 and 81-37, 1981.

[4] O. P. Sushkov and V. V. Flambaum, Usp. Fiz. Nauk
136, 3 (1982) [Sov. Phys. Usp. 25, 1 (1982)]; 16th LINP
Winter School Proceedings, p. 200 (Leningrad, 1981).

[5] V. A. Karmanov and G. A. Lobov, Pis'ma Zh. Eksp.
Teor. Fiz. 10, 332 (1969) [JETP Lett. 10, 212 (1969)];
G. A. Lobov, Izv. Acad. Nauk SSSR (Ser. Phys. ) 34,
1141 (1970).

[6] M. Forte, in Higher Energy Polarized Beams (Ann Arbor,
1977), Proceedings of the Workshop on Higher Energy
Polarized Proton Beams, edited by A. D. Kirsch and A.
J. Salthouse, AIP Conf. Proc. No. 42 (AIP, New York,
1978), Chap. 2, p. 86.

[7] L. StodolskyPhy, s. Lett. 50B, 352 (1974); 96B, 127
(1980).

[8] F. C. Michel, Phys. Rev. 329, B133 (1964).
[9] G. Karl and D. Tadic, Phys. Rev. C 16, 1726 (1977).

[10] V. E. Bunakov and V. P. Gudkov, Z. Phys. A 303, 285
(1981); Nucl. Phys. A401, 93 (1983).

[11] D. F. Zaretsky and V. I. Sirotkin, Yad. Fiz. 37, 607
(1983) [Sov. J. Nucl. Phys. 37, 361 (1983)]; 45, 1302
(1987) [45, 808 (1987)].

[12] S. G. Kadmensky, V. P. Markushev, and V. I. Furman,
Yad. Fiz. 37, 581 (1983) [Sov. J. Nucl. Phys. 37, 345
(1983)].

[13] S. Noguera and B. Desplanques, Nucl. Phys. A457, 189
(1986).

[14] R. Haas, L. B. Leipuner, and R. K. Adair, Phys. Rev.
116, 1221 (1959).

[15] R. J. Blin-Stoyle, Phys. Rev. 120, 181 (1960).
[16] I. S. Shapiro, Usp. Fiz. Nauk 95, 647 (1968) [Sov. Phys.

Usp. 11, 582 (1969)].
[17] O. P. Sushkov and V. V. Flambaum, Yad. Fiz. 33, 59

(1981) [Sov. J. Nucl. Phys. 33, 31 (1981)].
[18] J. B. French et al. , Ann. Phys. (N.Y.) 181, 235 (1988);

181, 198 (1988).
[19) O. Bohigas and H. A. Weidenmuller, Annu. Rev. Nucl.

Part. Sci. 38, 421 (1988).
[20] G. E. Mitchell et al. , Phys. Rev. Lett. 61, 1473 (1988).
[21] Yu. G. Abov and P. R. I&rupchitskii, Usp. Fiz. Nauk 118,

141 (1976) [Sov. Phys. Usp. 19, 75 (1976)],and references
therein; G. V. Danilyan et al. , Pis'ma Zh. Eksp. Teor. Fiz.
24, 380 (1976) [JETP Lett. 24, 344 (1976)]; Benkoula et
al. , Phys. Lett. 71B, 287 (1977).

[22] G. V. Danilyan et al. , Pis'ma Zh. Eksp. Teor. Fiz. 26, 197
(1977) [JETP Lett. 26, 186 (1977)]; B. D. Vodennikov et
al. , ibid. 27, 68 (1978) [27, 62 (1978)];V. N. Andreev et
al. , ibid. 28, 53 (1978) [28, 50 (1978)]; Petukhov et al. ,

ibid 30, 470 (19.79) [30, 439 (1979)); V. A. Vesna et al. ,

ibid 31, 704 (1980) [.31, 663 (1980)], and references in
Ref. [4].

[23] V. P. Alfimenkov et al. , Pis'ma Zh. Eksp. Teor. Fiz. 34,
308 (1981) [JETP Lett. 34, 295 (1981)]; Nucl. Phys.
A398, 93 (1983); Usp. Fiz. Nauk 144, 361 (1984) [Sov.
Phys. Usp. 27, 797 (1984)].

[24] A. Biryukov et al. , Yad. Fiz. 45, 1511 (1987) [Sov. J.
Nucl. Phys. 45, 937 (1987)].

[25] Y. Masuda et al. , Nucl. Phys. A504, 269 (1989).
[26] G. D. Bowman, J. D. Bowman, and V. W. Yand, Phys.

Rev. C 39, 1721 (1989).
[27] M. Forte et al. , Phys. Rev. Lett. 45, 2088 (1980).
[28] E. A. Kolomensky et al. , Phys. Lett. 107B, 272 (1981);



45 REGULAR MECHANISM OF PARITY AND TIME INVARIANCE. . .

V. A. Vesna et al. , Pis'ma Zh. Eksp. Teor. Fiz. 35, 351
(1982) [JETP Lett. 35, 433 (1982)]; Yu. G. Abov et al. ,

Yad. Fiz. 40, 1585 (1984) [Sov. J. Nucl. Phys. 40, 1006
(1984)].

[29] V. V. Flambaum and O. P. Sushkov, Nucl. Phys. A412,
13 (1984).

[30] V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov,
Phys. Lett. 146B, 367 (1984).

[31] A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), Vols. 1 and 2.

[32] Tests of Time Reversal Invariance in Neutron Physics,
edited by N. R. Roberson, C. R. Gould, and 3. D. Boa&-

man (World Scientific, Singapore, 1987); P. K. Kabir,
Phys. Rev. D 25, 2013 (1982); L. Stodolsky, Nucl. Phys.
B197, 213 (1982); V. E. Bunakov and V. P. Gudkov, Z.
Phys. A 308, 363 (1982).

[33] S. F. Mughabghab, M. Divadeenam, and N. E. Holden,

Neutron Cross Sections (Academic, New York, 1981).
[34] O. P. Sushkov and V. V. Flambaum, Yad. Fiz. 33, 629

(1981) [Sov. J. Nucl. Phys. 33, 329 (1981)].
[35] V. V. Flambaum and O. P. Sushkov, Nucl. Phys. A435,

352 (1985).
[36] V. A. Vesna et al. , Pis'ma Zh. Eksp. Teor. Fiz. 36, 169

(1982) [JETP Lett. 36, 209 (1982)].
[37] V. E. Bunakov et al , Ya. d. Fiz. 40, 188 (1984) [Sov. J.

Nucl. Phys. 40, 119 (1984)].
[38] V. A. Dzuba, V. V. Flambaum, and I. B. Khriplovich, Z.

Phys. D 1, 243 (1986).
[39] L. M. Barkov, M. S. Zolotorev, and D. A. Melik-Pashaev,

Pis'ma Zh. Eksp. Teor. Fiz. 48, 134 (1988) [JETP Lett.
48, 145 (1988)];D. Budker, E. D. Commins, D. DeMille,
and M. Zolotorev, Talk at ICAP-1990, Ann Arbor (un-
published).






