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Multichannel scattering with nonlocal and confining potentials.
II. Application to a nonrelativistic quark model of the NN interaction
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The generalized Levinson theorem for systems involving nonlocal and confining potentials is illustrat-
ed by a nonrelativistic quark model for the N% interaction, formulated within the framework of the
resonating group (RG) method. In order to apply the results of the preceding paper to this problem, we

first show how the system of integro-differential equations of the RG method can be transformed into a
system of coupled Schrodinger equations with nonlocal potentials. The forbidden states arising in the
many-channel wave function from the Pauli principle are then shown to play the same role as normaliz-
able bound states, as far as the generalized Levinson theorem is concerned. Numerical results are
presented for the 1=0partial wave in the (ST)= (01) channel.

PACS number(s): 24.10.Cn, 12.40.Aa

I. INTRODUCTION 6&(0) bt(E)=—rr(n&"+nt" l2 n/')+—6(E ), a) 0,

det [SP(E)]=exp[2i b t (E)], (2)

St'~(E) being the open-channel partial-wave S matrix,
namely, the submatrix corresponding to all the channels
that are open when the relative energy in the entrance
channel is E. If the function b, t(E) is defined to be con-
tinuous, so that it has no discontinuities of n a at isolated
points, the theorem reads
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Levinson's theorem [l] has enjoyed a somewhat special
status in the long history. of the quantum theory of
scattering. As more and more complex situations were
considered, it underwent a sequence of generalizations
that enabled it to express in a very condensed fashion
deep relations between the scattering matrix and the
spectral properties of the corresponding Hamiltonian [2].
In its simplest form, it relates the phase shift 5&(E) for
potential scattering in partial wave l at E =0 and ao with
the numbers nI" and nI" of bound and half-bound states
in that partial wave,

5t(0)—51(ao )=m(ni +n. t" /2) .

In one of its most extended versions, derived some years
ago by Dashen, Healy, and Muzinich [3], it deals with
two-channel scattering by local potentials in the presence
of a permanently confined channel. In the preceding pa-
per [4) (henceforth referred to as I), this analysis was gen-
eralized by following a some~hat difFerent approach to
situations involving nonlocal potentials and an arbitrary
number of channels. For such multichannel problems,
the quantity that is involved in Levinson's theorem is no
longer the phase shift 5&(E), but the real function b &(E),
which is defined as follows:

for E~DO and EI'(E &EI'+'. In this expression, nI is

the total number of negative and positive energy bound
states for the complete set of coupled Schrodinger equa-
tions, whereas nI' is the total number of confined states up
to energy E when confined and scattering channels are
decoupled, the energies of these decoupled confined states
being denoted by Et" (n = I, . . . , i, . . . ). The inequality
accompanying Eq. (3) should be understood as follows:
the equation holds only for energies E, which are not in a
vicinity of order (E& ) of any of the confined system en-

ergies EI', a condition that can be fulfilled only when the
spacing EI'+' —EI' decreases much more slowly than
(Ei)—1/2

The purpose of this paper is to provide a concrete illus-
tration of this generalized Levinson theorem. We will

consider for that purpose a nonrelativistic quark model
for the nucleon-nucleon (XN) interaction formulated
within the framework of the resonating group (RG)
method, a subject on which much work has been done
lately [5]. This model features one of the ingredients
necessary to provide such an illustration: a phenomeno-
logical confining interaction between colored clusters.

The RG method provides a very clean microscopic
description of scattering and reactions between composite
systems [6,7]. It involves no spurious degrees of freedom
and fully implements the Pauli principle. Indeed, many
of the distinctive features of the method, such as the non-
locality of its kernels, are direct consequences of that
principle. Because of their nonlocal overlap kernels, the
RG equations cannot be considered Schrodinger equa-
tions any more than their solutions, the RG amplitudes
can be considered wave functions. The results derived in

I cannot therefore be applied directly to the RG method:
one must first show that the RG equations can be re-
duced to Schrodinger equations with nonlocal potentials.
In showing this, one must deal properly with another
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consequence of the Pauli principle, namely, the existence
of forbidden states for systems formed of two clusters de-
scribed by harmonic oscillators with equal length param-
eters. These states are normalizable relative motion am-
plitudes for which the total wave function vanishes iden-
tically. Although they obviously cannot be realized phys-
ically, they will be seen to play the same part as any nor-
malizable bound state as far as the generalized Levinson
theorem is concerned, a result that is fully consistent with
the observations made by Swan of several special cases
[8]. The problem will be further complicated by the fact
that these forbidden states occur in a many-channel wave
function, a situation that does not appear to have been in-
vestigated in detail so far.

Of course, one point should be emphasized: the num-
ber of forbidden states, just like the number of confined
channels, depends on the choice of configurations that
are retained in a given RG calculation. These numbers
characterize a given level of description beyond which
they lose, therefore, all physical meaning. Forbidden
states disappear, for instance, when the clusters have
different harmonic oscillator parameters or when their
internal structure is described by a wave function that
goes beyond the simplest shell-model configuration with
harmonic-oscillator wave functions. Similarly, as em-
phasized by Oka and Yazaki in their review article [5],
confined hidden-colored channels are not necessary to de-
scribe globally colorless multiquark states, as long as one
takes into account a sufficiently large number of
unconfined channels involving only color-singlet clusters.

The plan of the paper is the following. The RG
method is briefly reviewed in Sec. II, mainly for the sake
of establishing the notation. We show in the following
section how the RG equations can be transformed into
Schrodinger equations with nonlocal potentials. The for-
bidden states associated with the six-quark configurations
that are retained in our model are constructed explicitly
in Sec. IV. Finally, in the last section we illustrate by
means of numerical calculations the generalized Levinson
theorem for systems involving forbidden states.

II. THE RG METHOD

A. The RG equation and its kernels

The starting point of the RG method is the following
ansatz for the wave function describing a two-cluster N-
channel scattering process:

The relative motion ainplitude y(r) is determined by
the RG equation,

0 r, r' —N r, r' y r' dr'=0, (5)

which is obtained by projecting the Schrodinger equation

(%—8 }%'=0 (6)

on the subspace of states where the internal wave func-
tion [P,Pb] in each channel is frozen. In Eq. (6), % and
8 are, respectively, the total Hamiltonian and the total
energy in the c.m. frame of reference. In the RG equa-
tion, the energy and overlap kernels, H(r, r') and N(r, r'),
are N XN matrices defined as follows:

Xdg', dg'i, dr" .

They are Hermitian,

N &(r,r')=N(r', r},
H &(r, r')=H~(r', r),

and they split into direct (d) and exchange (e) parts,

N(r, r'}=15(r—r'}+N"(r,r'),
H(r, r') =H'd'(r)5(r r')+H"(—r, r'),

where

H'"'(r) =— I 'X+Z'+H'"'(r) .
f2
2 int

(8a)

(8b)

(9a)

(9b)

(10)

N, and Nb being the number of particles in clusters a and
b of channel y, while m is the mass of each one of these
particles. Similarly, E is the diagonal matrix formed
with the internal energies Ez of the fragments in the vari-
ous channels. Finally, H;'„,'(r) is the local part of the in-
teraction between clusters.

In this expression, M is a diagonal matrix, the elements of
which are the reduced masses

N, Nb
p&= m,

'p(k. 4b r}=X & [[0.(C. )kb(fb)]yXr(r)] (4) B. Forbidden states

where [P,(g, )Pb(g&)]~ is the product of the internal
wave functions for the two clusters in channel y, while
g (r) is the amplitude for their relative motion. The
operator A ensures complete antisymmetrization of +.
In order to avoid constantly writing channel indices, it
wi11 prove useful in the following to consider quantities
like y or [P,Pb] as ¹omponent column vectors, the
corresponding row vectors being denoted by g or [P,Pi, ],
respectively. With this notation, Eq. (4}becomes

Let us introduce the eigenvectors g (r) of the overlap
kernel,

fN(r, r')g (r') dr'=(1 +A, )g (r),
the eigenvalues of which are semipositive definite [7].
Thus, the eigenvalues of N' ' obey the relation

(12)

whereas its eigenvectors form an orthogonal set
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f g {r)g .(r)dr=5 (13) No '~ (r, r')=15(r —r')

When many eigenvectors correspond to a given A, , they
can always be defined in such a way as to be orthogonal
to each other. Even though they do not necessarily form
a complete set, the following expansion can be written:

+ g [s (I+A, )
'~ —1]

A, A —1a

Xg (r)eg (r'), (20)

N(r, r')=15(r —r')++A, g (r)g (r') .
a

(14)

When the internal wave functions of both clusters are
described by harmonic-oscillator wave functions with
equal length parameters, X can take the value —1. The
overlap kernel then has a vanishing eigenvalue

fN(r, r'g, (r')d'r'=0 . (15)

This entails

In the following, we shall label such eigenvalues with la-
tin indices, as well as the corresponding eigenvectors,
which are called forbidden states, since they yield total
wave functions that vanish identically as a consequence
of the Pauli principle,

fNo(r, r")A(r",r')dr" =N(r, r') (21)

fH(r, r")A(r",r')dr"=H(r, r') (22)

as a consequence of Eq. (17). It is therefore possible to
rewrite Eq. (5) as follows:

f [H(r, r') @NO(—r, r')]A(r', r")y(r")dr'dr"=0, (23)

or defining

H(r, r')= fNo
' (r, r")H(r", r"')

up to the sign indeterminancy, which is characteristic of
the extraction of square roots, and which manifests itself
here in the fact that s~ can take the values +1.

Quite obviously, one has

fH(r, r')g, (r')dr'=0 . (17) XNo ' (r'",r')dr"dr"' (24)

As a consequence, the forbidden states g; are trivial solu-
tions of Eq. (5) for all values of 8.

and

g(r)= fN'~ (r, r')y(r')dr' (25)

III. TRANSFORMATION OF THE RG EQUATION
INTO A SCHRODINGER EQUATION

The total wave function 4 and the relative motion am-
plitude y do not have the same norm, since

&qlq &=&XINIX&

in the form

fH(r, r')j(r')dr'=8 f(r),
where use has been made of the identity

No r r" A r",r' = A r r" No~ r",r'

(26)

A(r, r') = 15(r r') g—g;(—r) g;(r'), (18)

which projects outside the subspace of the n& forbidden
states g, , and the modified overlap kernel

ND(r, r') = 15(r—r')

For this reason, one cannot consider y as a wave function
or the RG equation it obeys as a Schrodinger equation.
It is thus necessary to show that Eq. (5) can be
transformed into a Schrodinger equation before begin-
ning to extract illustrations of the generalized Levinson
theorem from RG calculations. This can be done in the
following manner.

Let us first define the operator

(27}

The renormalized relative motion amplitude f(r) now
has the same norm as the total wave function 4, obeys a
Schrodinger-like equation [9], and can consequently be
regarded as a wave function. It differs from y(r), at short
distance only, for values of r of the same order as the
range of N, namely, as the diameter of the clusters. Since
the asymptotic behavior of both functions is the same,
they define the same S matrix and all the information
relevant to the scattering processes can be extracted
directly from the RG amplitude y(r).

One often finds in the literature an equation analogous
to Eq. (26), with H replaced by

H(r, r')= fN ' {r,r")H(r", r"')

(19) X N
—1/2{riii rr )dr (28)

which difFers from N(r, r'} by the fact that forbidden
states are excluded from the summation on the right-
hand side. While N cannot be inverted in the presence of
forbidden states, because of its vanishing eigenvalues, No
is not plagued with this problem, and its inverse square
root is readily expressed as

It should be pointed out that even when N ' does not

exist, the quantity H can still be defined [10] if one first
coinputes the right-hand side of (27) for clusters having
unequal parameters and then carefully takes the limit
where both parameters become equal. When this is actu-
ally done, the resulting equations give a more complete
description of multichannel scattering than Eq. (26), since
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the limiting process introduces a coupling to some new
configurations describing excited internal states that are
not included in the initial wave function (4).

The amplitudes y(r) obtained by solving the RG equa-
tion (5) contain the same physical information as the
wave functions g(r), which are solutions of the
Schrodinger equation (26}. They differ in the following
respect, however. It was mentioned previously that the
forbidden states are trivial solutions of the RG equation
at all energies. Moreover, they can be admixed to an ar-
bitrary extent into the amplitudes y(r), this extent being
determined by the details of the numerical procedure
used to solve the RG equation (5) and having absolutely
no physical consequence whatsoever, since it leaves the
total wave function (4) unmodified. A different situation
holds for solutions of the Schrodinger equation (26). It
follows immediately from Eqs. (17), (20), and (24) that the
forbidden states g;(r) are solutions at 8=0 only,

+8(E ), a&0, (31)

for E ~ and E,'&E&E,'+'. The E&'s form the spec-
trum of the equation

f H„&(r, r')pt, ;(r')dr'= C(E/ )yt; (r), (32)

where H„ is the submatrix of H corresponding to the
confined channels only.

suits derived in I can therefore be applied to calculations
performed within the framework of the RG method. As
far as the generalized Levinson theorem is concerned, the
forbidden states g,.(r) play the same part as any other
bound state as a consequence of the orthogonality rela-
tions (30), in spite of the fact that no physical states of the
system correspond to them. Eq. (3) then reads

b&(0) h&(—E)=m(nf +. n& +n&" /2 n&')—

H r,r', . r' r'=0, (29) IV. EXAMPLE: THE QUARK MODEL
FOR THE N-N INTERACTION

and from Eqs. (24), (25},and (27) that they are orthogonal
to the physical wave function at an arbitrary energy,

f g, (r)g(r)dr=0 . (30)

It may be worth pointing out that although the energy
8=0 at which the forbidden states are solutions of Eq.
(26) is perfectly well defined within the generalized for-
mulation of the RG method leading to Eq. (26), this ener-

gy nevertheless is completely devoid of any physical
meaning: one could shift it arbitrarily to @=a; by mak-

ing the transformation

H(r, r') ~H(r, r') ga;g;(r}—g, (r'),

which would affect neither the physical spectrum of H
nor its physical wave functions. Let us point out finally
that (30) can easily be shown to express the orthogonality
of solutions of the Schrodinger equation belonging to
different energies.

Performing a partial-wave expansion for the wave
function f(r), or the amplitude g(r), one can solve Eq.
(26) or (5) separately for each value of the orbital quan-
tum number 1 when all interactions are central. The ma-
trix equation (25) then reduces a set of coupled nonlocal
Schrodinger equations for various partial waves,

f H&(r, r'f)&(r')dr'= 8(E)g&(r) .
0

They have precisely the same form as those that were
used at the starting point of I. As in the Introduction, E
is the relative energy in the entrance channel. All the re-

A. Construction of the forbidden states

In nonrelativistic quark models of hadrons, the orbital
and spin-isospin parts of the wave function of the nucleon
N have symmetries [3] and {3],respectively, while the
color part is completely antisymmetric, [111]. When
studying NN scattering, one may retain the set of six-
quark configurations with orbital [f] and spin-isospin

{f '
j symmetries resulting from the outer product of the

corresponding symmetries for the nucleon, namely,

[3]X [3]= [6]+[42]+[33]+[51],
while the color part is in the singulet [222]. This yields
the configurations listed in Table I for the even partial
waves, having (ST)=(01) or (10), and the odd ones, hav-
ing (ST)=(00) or (11). These states will be referred to as
the symmetry basis. They are related by a unitary trans-
formation to the physical basis, which displays at large
cluster separations the configurations NN, hh, and CC
("hidden color" channel) for (ST)=(01), (10), and (00),
and NN, Nh (antisymmetric), b, b„CCt, and CCz for
(ST)=(11). The states listed in Table I constitute the
minimal basis necessary to construct asymptotically the
NN configuration [11].

The RG overlap kernels N(r, r') for these
configurations can be extracted from those computed by
Harvey [11]in the generator coordinate formalism, by us-
ing one or another of various prescriptions [12]. They
are particularly simple in the symmetry basis, where they
form diagonal matrices as a consequence of the ortho-

TABLE I. Orbital [f]and spin-isospin [f ] symmetries in various (ST) channels.

Configurations

[6][33], [42][33], [42][51]
[51][42], [33][42], [33][6]
[51][42]„ [51][42]2, [33][42]„ [33][42]2, [33][6]
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gonality of states endowed with different symmetries. La-
beling states of the symmetry basis with latin indices
a, b, . . . , one has

(s m)N,'P '(r, r')=5, l, [6(p—p') —( —1) + 5(p+p')
A =" Aa (39)

are given in Harvey's paper [11].
The task of 6nding the eigenvectors of N' ""'is greatly

facilitated by the fact that At diag onalizes
Indeed, defining

where

+C(f ]n(p p )] (33) one has, in matrix notation,

N~i'""'](r r')v]']=N~'" ](r r')U"
aa 7 (40)

' 1/2

(34}
with no summation over a on the right-hand side. The
eigenvectors can therefore be written in the form

and

n(p, p') =
' 3/2

e"p[ ', (p —+p-}]
X [exp( —,'p p') —( —1) + exp( —

—,'p p')] . (36)

The numbers C~f j
take values that depend only on the

a

orbital symmetry [f]. They are equal to 9, —1, —3, and
3 for [f]=[6],[42], [33], and [51], respectively. In the
physical basis, the states of which will be labeled by in-
dices A, B, . . . , the overlap kernels are given by

b being the length parameter of the harmonic-oscillator
wave functions,

(35}

g (r)=U"F (p),
with a =(a, v), F„(p) being such that

J n(p, p')F, (p')dp'=2x„F„(p) .

Then, Eq. (11) is verified, with

C[f jXV ~

It is easy to show that

F (p)=c„„„H„(p„)

XH„(p~)H„(p, )exp( —p l2),

and that

(41)

(42)

(43)

(44)

N J'~"'(r, r') =pig*„,JR~„N,'~" '(r, r') .
a, b

(37)
—

(
I

)
x y z

V (45)

The unitary matrices Af, relating the two bases,

@(phys) ~ ~ @(sym)
A ~ Aa a (38)

The index v stands for the three integers n„n, and n„
the sum of which must have the same parity as S + T + 1,
and c„„„is a normalization constant. These results fol-

x y z

low immediately from the relation

1/2 Pl

exp ——u exp ——u' +—uu' H (u')du'= +— H (u)exp( —u l2),5 2 9,2 3. . . 1 2

8 —~ 8 4 3

F„(p)= R„I(r)YP (0,—$),1
(46)

R„I(r) being a radial harmonic-oscillator wave function,

which can be established by recursion. The functions
F„(p) are nothing but harmonic-oscillator wave func-
tions. Working with spherical rather than Cartesian
coordinates, one may write

N(r, r') =g 2l+1 1
, N, (r, r')P&(c s(or r') },

4m rr'

Eq. (10) is replaced by the radial eigenvalue problem,

J N&(r, r')g „i(r')dr'= [1+C(f ](-,' )'"+' ']g „I(r),

(49)

where

(47) „&(r)=U"R„l(r}. (50)

where C„I is a normalization constant and the Laguerre
polynomials are defined as in Ref. [13]. The indices n„,
n, and n, have been replaced by n, l, and I, to which
they are related as follows:

We can now find the forbidden states g „I(r) for which

the eigenvalue vanishes. They can occur in two different

situations only, namely, when

n +n +n, =2n +I —2 . (48)
or

[f]=[42], n =1, 1=0

When a partial wave expansion is performed for the
overlap kernel [f]=[33], n =1, I =1 .
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There are thus two of them for (ST)=(01), (10), or
(00}, and three for (ST}=(11).The forbidden states can
readily be written down by using Eqs. (50), (39), and the
unitary transformation matrices given in Ref. [11]. For
instance, for the channels (ST)=(01}or (10) they are

—2
1

g, „(r)=—Y5 R „(r),
0

(51}

4 R is(r),
—3

the physical states in these column vectors being in the
order NN, hh, and CC.

0
0 IOOO 2000

E{MeV)

B. Numerical results

b,(0)—6(3585)= —
m .

Consequently, according to Eq. (31), one has

no —(no+no /2)=3

(52)

(53)

for E=3585 MeV, since nf =2 in the present case. The
number no of confined bound states having an energy
lower than this value of E can be determined by solving

NN scattering was studied in the (ST)=(01) and (10)
channels by solving numerically the RG Eq. (5) for two
clusters of three quarks coupled to these quantum num-
bers. Such states involve only the NN, hh, and CC
configurations. The interaction between the quarks was
described by potential Id of Ref. [14],which confines the
C clusters at large distances through a local quadratic po-
tential. The system of coupled equations was solved in
the 1 =0 partial wave by the same method as in Ref. [15],
namely, by a generalization of the Robertson-Friedrich
[16]method to coupled channels, although solutions were
obtained for a much larger range of energies. This yield-
ed the open-channel S matrix, from which the function
ht(E) for l =0 was extracted through Eq. (2). This quan-
tity is shown in Fig. 1, for the (01) channel in the energy
range 0&E &3585 MeV. The cusp just below 600 MeV
occurs at the threshold energy for the Ah channel. Since
the results for the (10) channel and their analysis are
quite similar to those of the (Ol) channel, only the latter
will be represented.

One sees on Fig. 1 that

FIG. 1. Plot of the phase 6 as a function of the relative ener-

gy E for the (01) state.

Eq. (32) for the partial wave l =O. It turns out that

not =3 because the energies E$ of the first four decoupled
confined states are located at 618, 1830, 2815, and 3845
MeV, approximately, and these states are not degenerate.

Since n o
=3 for E=3585 MeV, one can conclude from

Eq. (53) that no=nt)"=0: there is no bound or half-
bound state. This result was to be expected, since the
model considered here is known to yield essentially a
repulsive short-range interaction.

As discussed in Ref. [3] and in I, the function h(E) ex-
hibits a sharp increase of m, approximately, in the vicinity
of the energies E$ at which confined bound states are lo-
cated, as long as these energies are sufBciently large. Just
as for ordinary resonances, this sharp increase is due to a
pole of S(E) at a complex energy E~ close to a point
E=EJo~ ec, with ImE. (0 [16]. Whereas the quantity
D+(E) is difficult to compute numerically, the function
S(E) can easily be obtained, and we studied it numerical-
ly in the complex plane. It turns out to have poles at
E =E2 = 1853—i51 MeV and E3 = i31 MeV.

The reason the phase b,(E) does not undergo a rapid
increase of approximately m in the vicinity of E =E& is
that the S matrix has no pole close to E& ~ This is not in-
compatible with the discussion of I, since the condition
E& ~~ is obviously not satisfied at E, =618 MeV.

This work was partially supported by the Natural Sci-
ences and Engineering Research Council of Canada.

[1]N. Levinson, K. Dan. Vidensk. Selsk. Mat. -Fys. Medd. , 25
(9) (1949).

[2] For a review up to 1973, see P. Beregi, B. N. Zakhar'ev,
and S. A. Niyazgulov, Fiz. Elem. Chastits At Yadra [Sov..
J. Part. Nucl. 4, 217 (1973)].

[3] R. F. Dashen, J. B. Healy, and I. J. Muzinich, Phys. Rev.
D 14, 2773 (1976).

[4] F. Vidal and J. LeTourneux, Phys. Rev. C 45, 418 (1992),
preceding paper.

[5] M. Oka and K. Yazaki, Prog. Theor. Phys. 66, 556 (1981);
66, 572 (1981);A. Faessler, F. Fernandez, G. Liibeck, and

K. Shimizu, Nucl. Phys. A402, 555 (1983); M. Harvey, J.
LeTourneux, and B. Lorazo, ibid. A424, 428 (1984); Y.
Suzuki and K. T. Hecht, Phys. Rev. C 28, 1458 (1983);Y.
Fujiwara and K. T. Hecht, Nucl. Phys. A"."."., 541 (1985);
M. Oka and K. Yazaki, in Quarks and Nuclei, Interna-
tional Review of Nuclear Physics, Vol. 1, edited by W.
Weise (World Scientific, Singapore, 1984), p. 489.

[6] K. Wildermuth and Y. C. Tang, A Unified Theory of the
Nucleus (Vieweg, Braunschweig, 1977).

[7] S. Saito, Prog. Theor. Phys. Suppl. 62, 11 (1977).
[8] P. Swan, Proc. R. Soc. London, Ser. A 228, 770 (1955).



436 F. VIDAL AND J. LETOURNEUX 45

[9] It may be worth pointing out that the potential of this
Schrodinger-like equation inherits a momentum-
dependent part as a consequence of the folding of the ki-
netic part of H' ' with Xo '

[10]T. Fliessbach and H. Walliser, Nucl. Phys. A377, 84
(1982).

[11]M. Harvey, Nucl. Phys. A352, 301 (1981).
[12]H. Horiuchi, Prog. Theor. Phys. 47, 1058 (1972); 50, 529

(1973);S. Ohkubo, Progr. Theor. Phys. 52, 1702 (1974); B.
Giraud and J. LeTourneux, Nucl. Phys. A240, 36S {1975).

[13]P. M. Morse and H. Feshback, Methods of Theoretical

Physics (McGraw-Hill, New York, 1953).
[14]M. Harvey and J. LeTourneux, Nucl. Phys. A424, 419

(1984)~

[15]M. Harvey, J. LeTourneux, and B. Lorazo, Nucl. Phys.
A424, 428 (1984).

[16]H. H. Robertson, Proc. Cambridge Philos. Soc. 52, 538
(1956);H. Friedrich, Nucl. Phys. A224, 537 {1974).

[17]More precisely, it is shown in I that the Fredholm deter-
minant DI+(E) corresponding to the physical solution has
a zero at E =EJ(1). It is easily seen from Eqs. (26) and {27)
of I that SI(E) has a pole at the same point.


