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Multichannel scattering with nonlocal and confining potentials. I. General theory
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A general discussion of nonrelativistic multichannel scattering for nonlocal potentials is presented.
The approach is based on the extensive use of the Fredholm determinants that are associated with the in-

tegral equations occurring at various points of the theory. Special attention is paid to situations where

confining potentials are present, as in nonrelativistic quark models of hadron-hadron interactions. Some
standard results of multichannel scattering theory for local potentials and one-channel theory for nonlo-

cal ones are generalized in this context, including Levinson s theorem.

PACS number(s): 24.10.Cn, 12.40.Aa

I. INTRODUCTION

The purpose of this paper is to present a general dis-
cussion of multichannel scattering by nonlocal potentials
in situations where certain channels are permanently
confined. Our interest in this problem arose as a conse-
quence of the recent development of nonrelativistic
quark-cluster models for the baryon-baryon interaction
[1]. When formulated within the framework of the
resonating group method, these models provide instruc-
tive examples of such a situation. The nonlocality of the
potential, then, appears as a consequence of the Pauli
principle, and the confining potentials are explicitly intro-
duced in the model so as to prevent the existence of
scattering states in which colored fragments would Ay

apart. From the point of view of scattering theory, many
interesting questions are raised by these models. What is
the role of the states that are forbidden by the Pauli prin-
ciple'? Do these models exhibit continuum bound states'
What becomes of Levinson's theorem?

While investigating these matters, we constantly need-
ed general results from the theory of multichannel
scattering by nonlocal potentials. There is a vast litera-
ture on single-channel scattering by such potentials, but,
to the best of our knowledge, the many-channel situation
has been studied for local potentials only [2—4]. A sys-
tematic discussion of these problems thus seemed to be in
order, and in view of its general nature we thought it
should be published as a separate paper. The analysis of
quark-cluster models for the baryon-baryon interaction,
which provides a concrete illustration of results derived
here, is to be found in a second paper [5], the scope of
which is much narrower, since it deals to a large extent
with problems that are very specific to the resonating
group method.

In Sec. II we establish a certain number of general re-
sults for the situation where there are no permanently
confined channels. As a first step, we derive a relation be-
tween the Jost matrices and the Fredholm determinants
for physical and regular solutions. Although this result is
a generalization of the one that holds for many-channel
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problems with local interactions, it is shown to imply
identical relations between the open-channel part of the S
matrix and the Fredholm determinants for physical solu-
tions. After establishing the analyticity properties of the
latter for a certain class of nonlocal potentials, we study
bound states embedded in the continuum, show that, con-
trary to what happens with local potentials, their oc-
currence is not limited to energies lower than the one at
which all channels become open, and, finally, derive the
corresponding generalized Levinson theorem. Amongst
earlier works on nonlocal potentials, those that are most
closely related with our own deal with this generalized
theorem [6,7] and with the connection between Jost func-
tions and Fredholm determinants [8—10].

Section III deals with systems having permanently
confined channels. This problem has already been stud-
ied for the case of local interactions by Dashen, Healy,
and Muzinich [11,12], who considered a two-channel
model ~here one of the channels is confined. Surprising-
ly enough, their work does not seem to have attracted the
attention it deserved from the various groups that have
developed nonrelativistic quarks models for the nucleon-
nucleon interaction. This may be due to the excessive
simplicity of the model they have considered. We gen-
eralize their analysis to situations involving an arbitrary
number of channels and nonlocal potentials. In order to
use results derived in Sec. II, where the approach is based
on the Jost matrices, we do not tackle the problem in the
same fashion as they did: We define an effective potential
acting in the scattering channels only, by projecting out
the confined channels. Although our treatment is not
mathematically as rigorous as theirs, it presents at least
the advantage of using a procedure that is familiar in the
contexts of the optical model [13] and the many-body
problem [14].

II. MULTICHANNEL SCATTERING WITH NONLOCAL
POTENTIALS IN THE ABSENCE

OF CONFINED CHANNELS

A. Definitions

Let us consider a nonrelativistic multichannel scatter-
ing problem where the channel components P (E,r),
cx = 1, . . . , N, are determined by a set of coupled
Schrodinger equations,
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d l(l+1)
z
+

2 P (E,r)+ g f V &(r, r')$&(E, r')dr'=(E —E )P (E,r),
dr r p —)

with nonlocal kernels V &(r, r'). In these equations E is the total energy of the system, while p and E are the reduced
mass and the internal energy, respectively, of the fragments in channel a. This system of equations may be rewritten
more compactly in a matrix notation,

d
M ' —,+ P(E, r)+ f V(r, r')P(E, r')dr'=(El E—)$(E,r),

1 being the NXN unit matrix. The elements of the
column vector $(E, r) are the N amplitudes P (E,r), and
M and E are diagonal matrices with elements p and

E, respectively. We have assumed, for the sake of sim-

plicity, that all interactions are central, so that the orbital
quantum number l is the same for all components. When
this condition is not fulfilled, it is a simple matter to in-
troduce the diagonal matrix L of channel angular mo-
menta. Defining the quantities

v(K r) being a Riccati-Neumann function. As every-
where else, the angular momentum label l has been sys-
tematically dropped.

The S matrix is defined by the asymptotic behavior of
the physical solution,

4+(K, r) ~ —[w (Kr) w+—(Kr)K ' S(K)K' ] .
p —+ oo

and

K = M(E1 E), —
g2

4(K r)=M ' $(E,r),

U(r, r') = M' V(r, r')M'2

fi

(2) The regular solution 4(K, r) obeys the integral equa-
tion

4(K, r)=K 'u (Kr)+ f f Go(K;r, r')U(r', r")
0 0

X4(K, r")dr' dr",
with the free Green's kernel

one can write Eq. (1) in the form

Xo(K, r)g(K, r)+ f U(r, r')Q(K, r')dr'=0,
0

where

(3)

Go(K;r, r') = — K'[w —(Kr)w+(Kr')
2l

—w+(Kr}w (Kr')]8(r r') . —

X(K )= — + 1 K—
2 r 2

In the following, the potential U(r, r') will be assumed
to be real and symmetric, that is,

It is defined by the boundary condition

4(K, r) ~ E 'u (Kr) .

The Jost matrices V+(K) are defined by the asymptotic
behavior of the regular solution

U p(r, r') = U& (r', r ) . (4)

When the problem is formulated in terms of integral
equations, it proves useful to define a matrix %' of solu-
tions, which has in column P the vector solution g'P' cor-
responding to the entrance channel P. The physical solu
tion ql+(K, r) and its conjugate 4 (K, r) obey the integral
equation

0—(K, r)=u(Kr)+ f f Go (K;r, r')U(r', r")
0 0

X4+(K,r" )dr' d—r",

4(K, r) ~ ——w (Kr)K 4+(K)1

r~ oo 2l

—w+(Kr)K '8 (K)

namely,

8+(K}=1+f f w (Kr')U(r', r")—
0 0

X@(K,r")dr'dr" .

(10)

where the free Green's kernel

Go (K;r, r')= —K 'u(Kr )w (Kr ), —

is a diagonal matrix, since the matrices u (Kr) and
w (Kr) are themse—lves diagonal: The elements of u (Kr}
are Riccati-Bessel functions u(K r) involving the ele-
ments E of the matrix K, while those of w (K r) are-
Riccati-Hankel functions w (K r}=v(K —r)+iu(K r),

(K)= V+( —K),
@(K,r) =4+(K, r)K 'V+(K), '

S(K)=K '"V (K)[V (K)] 'K-'". -
Let us rewrite Eq. (5) in the form

(12)

(13)

It is easy to show that Eqs. (7), (10), and (11) imply the
following identities:
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with

f [5(r —r')1 —A (K;r, r')]+—(K, r')dr'=u(Kr),
0

(14)

The solution of this linear system of equations involves
the determinant of the matrix 1 —R +—(K),

D —(K)=det[1 —R —(K)],
A —(K;r, r')= f Go (K;r, r")U(r", r')dr",

0
(15) the elements of which are labeled by the double index

b = (a, i) which specifies a channel and a position,
and let us give the position variables the discrete values
r„.. . , rT in such a way as to make T and rT arbitrarily
large while keeping Ar, = r, + &

—r,. arbitrarily small.
Thus, Eq. (14) becomes

N T

[5 r5;, —A*r(K;r, , r )br, ]%+—p(K;r )

[1—R (K)—]1&,=—5 5,;.—%+— (K;r;, r, , )br;

One has, in a standard fashion, the expansion

Tlv
( 1 )nD+ (K)=-1+g, D;+„,(K),nt

(17)

(18)

=u &(Kr, ) . where

R — R-+ +-

b)b) bi bn

D( )

~b b
~ ~ ~

+
bnbn (r;, r ) %+— (r, , r )n+n In In

Ar; Ar,
1 n

(19)

The Fredholm determinants D—+ corresponding to the solutions ++—are obtained by taking the limit hr; ~0, namely, by
performing the substitution g, hr, ~ f dr in (19).

Similarly, the Fredholm determinant corresponding to the regular solution 4(K, r) is

D (K)=det[1 —R (K)],
the relation between R (K) and

R(K;r, r')= f Go(K;r, r")U(r",r')dr",
0

being analogous to the one between R +—and A —.

(2O)

B. S matrix and Fredholm determinants

IA:~~a I. One always has

det[V+(K)] =D+(K)/D (K) —.

Proof. The matrix identity

Go (K; r, r') = Go(K; r, r') —K 'u (Kr)w (Kr'), —

jointly with Eq. (8), entails

5(r —r')1 %+(K;r, r')= —f "[—5(r r")1 A(K;r, —r")][5(—r"—r')I+8 +(K;r",r')]dr"—,
0

(21)

(22)

where

(K;r, r')=@(K,r) f w (Kr")U(r", r')d—r" .
0

P

Z,~= g (X;) r(Y, )rp,

Discretizing the position variables as earlier, one sees
that Eq. (22) implies

a —= (a, i) and b—:(P,j) being double indices, then one has

D —(K) =D (K)det[1+B (K)], (23)
q

det(1~~„+Z)=det 1 „+g Y,X,

where B—+ stands in the same relation to %—as R +—to %—
in Eq. (17).

Now, use will be made of the following identity, which
can easily be proved from well-known properties of deter-
minants: If X, and Y, (i = 1, . . . , q) are p Xp matrices
and Z is defined as

Identifying B+—(K) with Z, one gets immediately

det[1+B +—(K) ]=det[ot+(K) ],
which, inserted in Eq. (23), yields the relation (21).

Lemma I constitutes a generalization of a result ob-



45 MULTICHANNEL SCATTERING WITH. . . . I. 421

tained by Warke and Bhaduri [8] for symmetric nonlocal
potentials in the one-channel case. Nowhere, however,
did we have to assume that U(r, r') is symmetric in the
process of derivation.

If the potential is nonsymmetric, according to the re-
sult of Ref. [10],one should have, in the denominator of
Eq. (21) the Fredholm determinant b, associated with the
Jost solutions, which becomes identical with D for sym-
metric potentials only. The disagreement, still, is only
apparent and follows from the fact that the Jost functions
can be defined either from the asymptotic behavior of the
regular solutions, as was done here, or from the Jost solu-

I

det[V+(K)] =D +—(K) (local potentials) .

Lemma II. The S matrix is symmetric,

S p(K) =Ss (K) .

Proof. Using Eqs. (5) and (7) we get

(24)

tions at r =0, as was done in Ref. [10]. The two
definitions are identical for symmetric potentials only.

When the potential is local, Eq. (8), which defines
4(K, r), reduces to an integral equation of the Volterra
type. Consequently, D (K)=1 and one recovers the well-
known result [4],

S(K)=l 2iK—'/ f f u(Kr)U(r, r')4'+(K, r')dr dr' K
0 0

Writing the solution of Eq. (5) as a Neumann series,

++(K, r) =u (Kr)+ f f Go+(K;r, r')U(r', r")u (Kr")dr'dr" +
0 0

and using the fact that besides being diagonal, the
Green's kernel has the property

Go+ (K;r, r') =Go (K;r', r), (25)

we see immediately that condition (4) entails the symme-
try of the S matrix.

Theorem I. The S matrix is completely determined by
D+(K),

D+(. . ., —K, . . . )
S (K)=

D+(K)
(26)

S p(K) =S (K)Spy(K)
+D (. . . ,

—K, . . . , —Kp, . . . )

D+(K)
(aAI3) .

(27)

Proof. These relations have the same form as in the
case of local potentials [4] (they are often referred to as
the LeCouteur-Newton relations) and since their proof
proceeds along much the same lines, we will just indicate
the differences between the two situations. One of them
lies in the denominator D (K) which appears in Eq. (21).
Since Go(E;r, r'), Eq. (9), is an even function of each one
of the K 's, D (K) by its very definition, Eq. (20), shares
the same property,

(26) as in Ref. [4], since, as a consequence of (28), the
determinants occurring in the numerator and the denom-
inator of (26) cancel each other.

The proof of (27) requires moreover that the S matrix
be symmetric. This is ensured by Lemma II.

The usefulness of identities (26) and (27) stems from the
fact that while the determinant D+(K) is well defined at
energies where some of the channels are closed, the ma-
trix 7+(K) need not be so. It is then more useful to use
them than (13).

So far, we have treated the K 's as independent vari-
ables. It follows from Eq. (2), however, that they are not
so. It will prove useful in the following to consider the
matrix K as a function of the single variable

k—:Ki, (29)

that is, the momentum in channel 1 which has the lowest
internal energy.

Theorem I implies two important corollaries which
have already been established in the context of local po-
tentials [2—4] and which therefore we shall simply recall.

Let So"(k) be the submatrix of S which refers to open
channels only.

CoroHary 1. The submatrix S' (k) is unitary,

S' (k)[S ~(k)] = 1 (k real) . (30)

Therefore,

D(. . . , E, . . . )=D(. .—.K, . . . ) .

Following Newton's demonstration [4], we rewrite

S(K) K
—1/2 —Icy~ (K )cy~ (K)

—1K1/2+I

where I denotes the partial wave, and

9''+(K) =K'V+(K)K

det[S'~(k)] =exp[2ib, +(k)],
where b, +(k) is a real function.

Corollary 2.

b+(k)= argD+(k) (k rea—l) .

C. Analyticity properties of D+

(31)

(32)

Since N(K, r)K is an even function of all the K s, it
follows from Eq. (11) that [V+(K)] & is an even function
of all the elements of K except K . This property, along
with (12) and (21), suffices to demonstrate the identity

The analyticity properties of the Fredholm deter-
minant D+ here can be demonstrated for "regular" po-
tentials. It has been shown [3] for local potentials that if
the condition
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f rl U p(r)le "dr & oo (33)

is fulfilled for all values of a and P for some b &0, then
D+(K) is analytical in all the half planes ImK & b—(the
E s being provisionally considered as independent vari-
ables). The analogous result for nonlocal potentials is,
however, more diFicult to state. We will only show that
for a certain class of nonlocal potentials condition (33)
can be replaced by

f r]-'sle&"IU. (r, r')lr Isle "dr dr'& oo, (34)
0 0 aP

for some b & 0 and for at least one value of s such that
lsl 1. In the following, potentials obeying condition (34)
for arbitrary b & 0 will be referred to as "regular. "

Lemma III. For the class of nonlocal potentials that
can be approximated arbitrarily closely by separable po-
tentials of rank P,

7

i[Go (K;r, r')]
l

&
l

exp(lImK r]+K r&

ImK r& ),—(35)

which holds for all partial waves, and r& r 'r'
where lsl & 1, one shows easily that all the M,"(K)'s are
finite in the half planes ImK & —b, as long as the ele-

ments of 8' and Y. satisfy

f rl"
l
Y (r)le 'dr & oo

and

f "r —
I llW (r)le "dr & oo,

for all values of a and j and at least one value of ls l

& 1.
These inequalities will surely be satisfied if all elements of
U fulfill condition (34). The same condition (with b &0)
also ensures the existence of the derivatives of D+(K)
with respect to the K 's in the half planes ImE & —b.

Lemma IV. If D+(K) is an analytic function of the
K 's for ImK &0 (a=1, . . . , N), then D (k), in the

U(r, r')= g W (r)g Y (r'),
j=1

where W, (r) a.nd Y~(r') are ¹omponent vectors, and
the overbar denotes a transposition, the Fredholm deter-
minant D+(K) is analytic in the half planes ImK, & b-
when condition (34) is fulfilled.

Proof. For a separable potential [15] of rank P, the
terms D;„~(K) in the expansion (18) vanish identically for
n & P. One finds therefore

D+(K) =det[M (K)],
where M (K) is a P XP matrix, the elements of which are
given by

MJ(K)=5; —f f Y;(r)GO+(K;r, r')W (r')dr dr' . .
0 0

Since D+(K) can be expressed as the determinant of a
finite matrix, its analyticity properties are determined by
those of the matrix elements M,~(K).

Using the inequality

complex k plane, is an analytic function of k on the first
sheet for Imk ~ 0.

Proof I.n the complex k plane, D+(k) has branching
points on the real axis at points k such that K (k)=0
(a&1). Setting up the cuts from —oo to —k and from
+k to + oo (a&1) just below the real axis, one sees
easily that the first sheet of the k plane is mapped on the
half planes ImK &0 (a&1). Lemma IV thus follows.

D. Bound states

has a nontrivial solution only when k takes a value k0
such that D+(ko) =0. Inversely, a zero of D+(k) implies
a solution of Eq. (36). The solution y+(k, r) has the form
of a column vector, since it involves no entrance channel.

As a consequence of the analyticity properties of
D (k) described in the previous section, the zeros of
D+(k) are of integer order except perhaps at branching
points k=+k (a=2, . . . , N), where D+(k) is not ana-
lytic. At such points, for instance at k =kr (y%1), it is
easy to show that D (k) has a zero of order m /2 if D+,
expressed as a function of E~ only, has a zero of order m

at J( =0.
Lemma V. The set of solutions of Eq. (36) such that

g+(k, O)=g+(k, oo )=0 coincides with the set of bound
states of the system.

Proof. Applying Go (k; r ",r ') to the left of the
Schrodinger equation, (3), and integrating twice by parts
over r from 0 to ~, one sees using

Xo(K, r)GO (K;r, r")=—15(r r")—
and Eq. (25) that solutions of Eq. (3) such that

1((k,O) =P(k, oo ) =(d/dr)g(k, r) l„„=0,

(37)

namely, bound states, obey the homogeneous integral
equation (36). Conversely, applying the operator Xo(K, r)
to both members of Eq. (36) and using Eq. (37), one finds
that solutions of (36}are equally solutions of (3).

Le~ma VI. Bound states occur only for real values of
k and any two of them with k=k, and kb (k, Akb)
satisfy the "orthogonality" relation

(g(kb)lg(k, ))=—f [g(kb, r)) MP(k„r)dr=0.
0

(38)

Proof. As long as the potential is real and symmetric,
and

P *(kb, r ) P(k„r } P(k„r ) @*—(kb, r )
r=0

(39}

a condition which is satisfied by bound states, two solu-
tions of Eq. (3) with k =k, and kb can easily be shown to
obey the relation

According to the theory of integral equations, the
homogeneous equation associated with Eq. (5),

y+(k, r) =f f Go+ (k; r, r')U(r', r")y+(k, r")dr'dr",
0 0

(36)
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f u '~'(Kr) U(r, r')y+(k, r')dr dr'=0,
0 0

where u'~'(Kr) is the Pth column of the matrix u (Kr).
Now, (36) yields

(40)

y& (k, r) ~ K~ 'w+(K~—r) f"f"u '~'(Kr')U(r', r")
I' —+ 00 0 0

Xy+(k, r")dr'dr" .

(41)
Insertion of (40) in (41) shows immediately that both y&
and dy& /dr vanish at infinity for symmetric potentials,
except perhaps when k =k& because of the factor E& ' in
(41).

It has been proved for local potentials that bound
states on the real k axis occur only for k (k&, kN being
the value of k beyond which the N channels are open (the
so-called bound states embedded in the continuum). We
will now see that this restriction disappears for nonlocal
potentials. Then, one still has the relation [4]

det[P+(k)]%0, for k ~ kN, (42)

but while Eq. (24) implied D+(k)%0 and no bound states
for k ~ kz, Eq. (21) holds for nonlocal potentials and (42)
may still be true even if D+(k) =0, as long as D (k) has a
zero of the same order for the same value of k. For the
N =1 case, one recovers the well-known result according

Lemma VI directly follows from this relation.
Of course, for degenerate levels, solutions can always

be defined so as to be orthogonal in the sense of Eq. (38).
Lemma VII. Solutions g+ of Eq. (36) which occur in

the half plane Imk ~0 vanish at both r =0 and r = ao,
except perhaps when they are located at points k =k
(a=1, . . . , N).

Proof. The very definition of Go (k;r, r') determines
the behavior of y+ at the origin, y+(k, 0)=0. Inspection
of Eq. (36) shows that y,+(k, r), the component of y+(k, r)
in channel 1, cannot vanish for r —+ 00 if Imk (0, which
suSces to prove that no bound state can lie in this half
plane. It can also easily be shown that, if the potential is
regular, y~ (k, r) vanishes at infinity if Imk )0 or if k is
real and under the ath threshold. Let us see what hap-
pens to g& (k, r) when k is above the Pth threshold. One
can easily show, using Eqs. (5), (36}, (25), and (4), that

to which only nonlocal potentials can have bound states
for real values of k: these are the continuum bound states
(CBS's).

Starting from the definition of Go (E;r,r'), one can
show that D+(K)=[D+( K—*)] as long as the poten-
tial is real. Since K ( —k*)=—[E (k)]*,one can write

D+(k)=[D+( —k")]" . (43)

This implies that if D+(ko)=0 for a real ko, then
D+( —ko)=0. These two symmetrical zeros on the real
axis correspond to the same bound state.

Lemma VIII. (a) To a zero of order m of D+(k) in the
half plane Imk ~0%+@ (a= 1, . . . , N}, correspond m
linearly independent bound states. (b} The converse of (a)
is also true.

Proof. Lemma VI and the proof of Lemma VII show
that the zeros of D+(k) which are in Imk ~0 occur for
real values of k and correspond to bound states, except
perhaps at k=kk .

Assume that D+(k) has a zero of order m at
k =koA+k~, where ko is real and Imk0~0. At least
one bound solution of Schrodinger s equation (3) is asso-
ciated with this zero. We shall call it P, (r) and assume
[17] that (g, lP, ) =1. Let P(k, r) be a solution of the same
equation for kPko, which does not necessarily vanish as
r~00. It may thus be a solution in the continuum.
Even then condition (39) is fulfilled by 1t, and g, since
both g, and its first derivative vanish at infinity, as we
have seen. One may thus get from Eq. (38),

(gi(ko)lg(k))=0 (krak, ) . (44)

Consequently, g(k, r) is equally a solution of the modified
Schrodinger equation,

Xo(k, r)g(k, r)+ f U&(r, r')P(k, r')dr'=0,
0

where

(45)

Ui (r, r') = U(r, r')+ a&MQ&(r) g&(r')M, (46)

a, being an arbitrary real number. Notice that U, (r, r')
is symmetric if U(r, r') is. The bound state f,(r) is equal-
ly a solution of the inodified Schrodinger equation (45),
with k =k0+a&. Since the second term on the right-
hand side of (46} is a separable potential of rank 1, one
can show that the Fredholm determinant D&+ associated
with U, is

D &+ (k) =D+(k) 1 —ai f f g&(r)MG+(k; r, r')Mfi(r')dr dr' (47)

where G (k;r, r') obeys the equation

Xo(K,r)G+(k;, r')+ f U(r, r")G+(k;r",r')dr"
0

= —15(r r') . —

The double integral in (47) is simply (k2 —k02)

consequently,

k —(ko+a, )
D,+ (k) =D+(k)

0

Thus D,+ (k) has a zero of order 1 at k =Qko+a, and
another of order m —1 at k =k0. The bound state, let us
say gz(r), with normalization (fzl Pi) = 1, which is a solu-
tion of Eq. (45) and corresponds to the zero of D,+ (k) at
k =ko, cannot be identical with P, (r) since, according to
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Lemma VI, they are orthogonal. Furthermore, this
orthogonality implies that Pz(r} is also a solution of the
original Schrodinger equation (3) for k =ko. If one re-
peats the same argument for the zero of order m —1 as
for the zero of order m, starting from Eq. (45), and so on,
one identifies m bound states g, (r) (i = I, . . . , m) which
are mutually orthogonal and obey Eq. (3) for k =ko.
Statement (a) of Lemma VIII is thus proved.

Statement (b) is easily proved by reversing the previous
argument: Given m degenerate bound states at k =kp it
follows that D+(k) must have a zero of order m') m at
k =ko. Using statement (a) we conclude that m'=m.

If there is a bound state f& at a branching point k =k
or at k =0, the components of which satisfy

f r' lg, (r)ldr & ~, (49)

then U, (r, r'), Eq. (46), satisfies condition (34) with b =0
and s =

—,
' and, according to the proof of Lemma III,

D,+ (k), Eq. (48), is not singular at k =kr. Consequently,
the zero of D+(k) at k =kr is at least simple when y%1
and double when y=1. We cannot conclude that the
converse statement is also true however.

Condition (49) is certainly too severe in general since
for a local potential in the one-channel case it is well
known that a double zero of D+(k) at k =0 occurs pro-
vided the bound state is normalizable [4]. If it is not nor-
malizable, one has a "half-bound state" and the zero of
D+ at k =0 is simple.

In a similar way, we shall define a half-bound state as a
solution associated to a simple zero of D (k) at k =0 or
a zero of order —,

' at k =k, y%1. However, we have not
been able to prove that the condition of normalizability is
sufficient to distinguish bound states from half bound
states in the present situation.

FIG. 1. Schematic representation of the integration contour
C in the complex k plane. On the real axis, C avoids branching
points k (inner ends of bold lines) and zeros of D+(k) (bold
points).

as can easily be shown, using the inequality

i[GO'(&. ;r, r')]..I «lkl ' as lkl (53)

which follows from (35}. The integrand is perfectly well
defined on the rest of the contour, if one takes the precau-
tion of placing the cuts just beneath the real axis. Taking
Eq. (43) into account, one gets, for the contour integral,

n'

2ih(0) —2ib, ( ~ ) imp— p';. , (54)

where n' and p', are the quantities analogous to n and p,
for the zeros of D+(k) on the real axis. Equations (51)
and (54) yield

zeros of D+(k) in Imk )0 and no contribution comes
from the integral over the half circle, since, for Imk & 0,

(52)

K. The generalized Levinson theorem
6(0)—b(~ )=m(s+so/2), (55)

Let us introduce a function b, (k) which differs from the
phase b+(k), Eq. (32), only by the fact that it is defined
to be continuous at points where b, +(k) undergoes a
discontinuity of ~; this occurs for real values of k at
which D+(k) has a zero of odd multiplicity.

Theorem II. Let n" and n"" denote the total number
of bound and half-bound states. Then,

where s is the number of zeros of D+(k) on the semiaxes
Imk )0 and Rek )0 (krak, a = 1, . . . , X), and so is the
number of zeros of D+(k) at points k =k
(a = 1, . . . , X), the zeros being counted according to
their multiplicity.

Theorem II follows from (55), Lemma VIII and the
definition we gave of half-bound states at the end of Sec.
II D.

b(0) —b,(~ )=sr(n +n" /2) . (50)

Proof. The proof of this result can be carried out in a
standard fashion, and for this reason it will be outlined
only. Since D+(k) is analytic in the upper half of the k
plane, one has

n

(t)d lnD+(k)=2~i g p,. ,

for the contour shown in Fig. 1; n is the number of zeros
of D+(k) in the half plane Imk )0, the p, 's being their
respective multiplicities. The contour goes from —R to
+R on the real axis, avoiding all branching points and
possible zeros on this axis, and it is closed by a semicircle
of radius R. In the limit R ~ ~, the contour encloses all

III. MODIFICATIONS DUE TO CONFINED
CHANNELS

A. Definitions

We shall now consider the situation where scattering
can take place in Nz of the N channels, while the remain-

ing N& channels are permanently confined. Labeling
them from 1 to N~ and from Nz+ 1 to N, respectively, we

can express the vector g in terms of two vectors gs and

Wc



MULTICHANNEL SCATTERING %ITH. . . . I. 42'

Similarly,

Uss Usc
E =

Ucs Ucc

K, 0

0 EC

where Uzz (A, B =S or C) denotes an Nz XNz subma-
trix, while Ez and Ec are square diagonal matrices of di-
mensions Nz and Xc, respectively.

The main feature of the confining potential Ucc lies in
the fact that the Schrodinger equation, when restricted to
the confined channels,

elements remain finite for all values of r and r'.
It proves useful to define the ~'; 's which are related to

the potential Ucc+ 8' in the same way as the a,-'s are re-
lated to Ucc in Eq. (56), IV being an arbitrary
nonconfining potential acting within the subspace of
confined channels only. Obviously, a; =~'; '~ ~ o. The
integral equation of the N-channel problem can then be
written, for kWx,', in the following manner:

ql+(k, r)=allo (k, r)+ f f Qs(k;r, r')Us(r', r")
0 0

Xo(Kc(a ),r)p. ,(r)+ f "Ucc(r, r')pj, (r')dr'=0,
0

(56) X 4+(k, r")dr'dr", (57)

has no scattering states (the index s, 1 ~ s ~ cr, labels pos-
sibly linearly independent degenerate solutions). Its spec-
trum is assumed to be discrete, lower semibounded, and
to contain an infinite set of positive eigenvalues occurring
at points k =~; such that ~; is real. This occurs, for in-
stance, when the diagonal elements of the nonlocal poten-
tial Ucc(r, r') turn into local harmonic-oscillator poten-
tials for r and r' going to infinity, while the nondiagonal

I

T

Uss
Uw=

Ucs

Usc
g+—w

Go 0

0 G(w)c
and Gc '(k; r, r') is the Green's kernel obeying

where 4'0 is a diagonal matrix containing the Xz XNz di-

agonal matrix u (Kr) in its upper part and zeros else-
where. Moreover,

Xo(Kc, r)G& '(K, ;r, r')+ f [Ucc(r, r")+ W(r, r")]Gc~ ~(Kc,'r", r')dr"= —15(r —r') .
0

(58)

The integral equation (57) has been written in such a
way that Uw does not contain the confining potential
Ucc, so that the Freholm determinant Dw of the X-
channel problem should exist. It is still expressed by Eqs.
(16) and (17) with

Vl(k;r, r') = Uss(r, r')

+f f Usc(r, r")Gc(Kc, r",r"')
0 0

X Ucs(r"', r')dr"dr'" . (60)

~+(k; r, r') = f Qs,(k; r, r")U~(r", r')dr" .
0

It is worth pointing out that although the various Dw's
depend on the choice of 8' they constitute equivalent
definitions of the Fredholm determinant associated with
the physical solutions. For instance, when the full system
has bound solutions, the corresponding zeros are located
at the same point in all of them, since the energies of the
bound states are independent of 8'. They have the fol-
lowing relation with D+:Ds, ~ s, —

D+(k) =d~(k)Ds (k), (59)

where d~(k) is the Fredholm determinant defined by
Eqs. (16) and (17) with

R+(K;r, r') = f Gc(K ;r, r") fV(r"—,r')dr", '

0

Gc being Gc '~~ 0. Since ds, (k) is a real function, the
continuous phase A(k) of D~ is independent of IV.

It is not difticult to show that D+ can also be expressed
by means of Eqs. (16) and (17) with

is interpreted as an effective potential in the subspace of
scattering channels.

This interpretation of % becomes obvious when one
projects the complete system of equations on the sub-
space of scattering channels only, as is frequently done
when studying the many-body problem [14]or compound
nuclear reactions [13]. The equation for the confined
channels can be written, when kW~, ,

tPc(k, r)= f f Gc(k;r, r')Ucs(r', r")gs(k, r")dr'dr" .
0 0

(61)

Inserting (61) in the equation for the scattering channels,
one gets the reduced set of equations

Lp(Ks r)g, (k, r)+ f Q(k;r, r')P, (k, r')dr'=0 . (62)
0

Since U~z(r, r') obeys the symmetry relation (4), one
can show readily from Eqs. (58) and (60) that Gc(k;r, r')
and Vl(k;r, r') have the same property. There is only one
difference between the system of equations (62) and the
one considered in Sec. II: Now %(k; r, r') is a k-
dependent potential.

%+(K;r,r')—:f Go+(K;r, r")Vl(r", r')d ",
0

where the matrix A+ is now defined in the subspace of
scattering channels only and in the space of positions,
while

B. Miscellaneous results

Lemma IX. At a point k =+a. , D+(k) generally has
a pole, the order of which is ~ o. -.

Proof One can easily sho. w that the Green's kernel has
the following behavior in the vicinity of a 'J'
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p,,(r)a g,,(r')Gc(k;r, r')=Gc(k;r, r')+ g k —K

where Gc is a real regular function at k =+Kj The y, 's

are normalized according to (yi;. ~yi, )=1, where the spe-
cial product (

~
) involves only the submatrix Mc of M,

which is associated with the confined channels. Inserting
this in Eq. (60), one gets

(63)

where Q is the nonsingular part of the potential in the
same vicinity, and

A, (r) =f Usc(r, r')y, (r')dr' .
0

{64)

Let us denote by o. ' ~v the number of nonvanishing
functions A, (r) for a given j, and let us assume, more-
over, that the degenerate functions y, have been chosen
in such a way that o. '- be minimal, namely that the 2 -, *s

be linearly independent. Since the second term on the
right-hand side of (63) is a separable potential of rank o',
one has, in the vicinity of k =+Kj,

D+(k) =D +(k)det[Ti +(k)]. , (65)

where D +(k) is the Fredholm determinant associated
with the regular potential S' only and T is a o.,'Xo. '-

matrix. Its elements are

[Ti+]„„=&„„—
2 2 f"f"Ai„(r)G +(k;r, r')A, „(r'.)d, r dr',

0 0
J

where the vectors A,„(r)are nonzero and G is the Green's kernel that obeys the Lippmann-Schwinger equation

G +(k;r, r') =Go+ (k;r, r')+ f f "Go+ (k;r, r")5 (k;r", r"')G +(k;r"', r')dr'"dr" .
0 0

Since D +(k) is regular at k =+xi, a singularity of
D+(k) at these points can only come from det(T,+), with.
an order o.' & o. . No singularities may come from 6 +,
since they would be exactly canceled by zeros of D +(k).

The potential '9 will be said to be "regular" if it
satisfies condition (34) for some arbitrary b )0 and for a
value of s ~ 1, except at points k =+K;. We shall rnore-
over require that K;+ &

—K; )K,
+' where c & 0, as

It is easy to show that such potentials exist.
Take, for instance, the situation where there is only one
confined channel with the local confining potential
Ucc(r)=0 for r (R, and ~ for r &R. One then has, in
the I =0 wave,

1
Gc(Kc', r, r') = — . sin(Kcr & )

Kcsin KcR

Xsin[Kc(R r& )]—,
where r &

&'0 and r &
~ R, and V/ is easily seen to be per-

fectly well defined in the whole complex k plane except at
points k for which Kc(k)R =n m(n =0, . . . ,

.oo ) [18]. In
particular, when k is very large without being in the im-
mediate vicinity of any of the values k =+K;, one then
has

Vl(k; r, r') = Uss(r, r')+8(k ),

I

where a ~0.
Most of the discussion of Sec. II can be applied to Eq.

(62), as long as one takes properly into account the fact
that the various quantities defined there do usually not
exist at points k =+K, .

It should be noticed that Lemma VI and, therefore,
Lemma VIII are not directly relevant to the reduced
problem (62), because the potential Q is k dependent,
which prevents the normalizable solutions of Eq. (62) to
be mutually orthogonal. Since, however, a solution of the
full X-channel problem corresponds to each solution of
Eq. (62), these lemmas and their generalization can be
proved quite directly by considering the full X-channel
problem instead of the reduced one. Thus, solutions of
Eq. (62) can be associated with solutions of the full prob-
lem for which Lemma VI holds, and Lemma VIII can be
restated in the following way:

Lemma VIII'. (a) To a zero of order m of D+(k) in
the half plane Imk ~0, kAx; and krak (a= 1, . . . , N)
correspond I linearly independent bound states of the
full E-channel problem. (b) The converse of (a) is also
true.

Proof. At points kAa, ., D+(k) is well defined and
Lemma VIII can be demonstrated here almost in the
same way as in Sec. II. One difference in the present situ-
ation is that the Fredholm determinant D,+ correspond-
ing to the potential U&, Eq. {46),now becomes

D,+ (k) =D+(k)
k —(ko+a, ) —1

2 2
1 —ai f f gi (r)McGc(k;r, r')Me/i (r')dr dr'

being the C part of the bound state P, . The confining
C

part of U, is then defined as U, =Ucc+a, ~P, )(t(~,
and the ensuing shift of the poles of D+ can be shown to
be carried out by the real factor between brackets.

Statement (b) of Lemma VIII' can be proved in the
same way as in Lemma VIII.

The following Lemma extends Lemma VIII' to points
k =+K, .
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Lemma X. (a) If D+(k) contains a factor (k —a. )
a. Wk (a= 1, . . . , N), then the full N-channel problem
has mj =a —

p~ bound states at k =aj. (b) The converse
of (a) is also true.

Proof. In order to deal with the points k =+a we

shall make use of D~ for 8'WO. When W is properly
chosen, Dz, is well defined at k =+~, contrarily to D+,
since its poles occur at points k =+~; . It is particular-

ly illuminating to use

, ', [k —(~ +P, )]
D+(k) = D~+(k) .

(k —a)'
J

(67)

Now, since D+ contains a factor (k —aj) ', D+
must contain a factor (k —xj ) ' '. But from Lemma
IX we know that p 0. . Therefore, D~ must have a
zero of order m =or —p at k=+v . Lemma VIII' can
be used here for D~ since it is well defined at k =+~..
While shifting the eigenvalues of the Schrodinger equa-
tion restricted to confined channels from a; to a;+P„ the
potential W obviously leaves the eigenvalues of the full
coupled problem unaffected. We conclude that the full
X-channel problem has m bound states at k =+a .

The converse of statement (a) is easily proved by rev-

ersing the argument.
One can as well formulate Lemmas VIII' and X in

terms of the solutions of Eq. (62) alone. The formulation
of Lemma X is, however, more intricate.

In order to do this, let us first put all sets of degenerate
bound states of the full ¹hannel problem in a form such
that the states are mutually orthogonal and linearly in-

dependent, while all the nonzero S parts (fs ) are linearly
independent. This can be achieved through the following
prescription. First, find arbitrary linear combinations of
the states such that all the nonzero S parts are linearly in-

dependent. Second, in order to get a set of mutually or-
thogonal states, use the Schmidt orthogonalization
method, beginning with the states for which the S part is
zero.

Whenever a state has a vanishing S part, its C part
I

W(r, r')= X P,Mcq, (r)yq , (r')M. c
s=1

where the coefficients P, are nonzero. While shifting the
eigenvalues of Eq. (56) from v~. to v +p„ this potential
leaves those of the full problem unaffected. One then ob-
tains from (59)

(gc) is a solution of Eq. (56) at k =v. for some j. More-
over, the term coupling the S and C channels must then
vanish,

f Usc(r, r')Pc(r')dr'=0 .
0

(68)

C. The generalized I.evinson theorem

Le~~a XI. When k is large and passes through a
point v, for which o =1, the phase b,(k) increases con-
tinuously by m within an interval of order v . Outside
this interval, b (k) =8(k ) (mod n n ) where a )0.

Proof. Even though D+(k) is singular at points k =v;,
the continuous phase b, (k) and its first derivative remain
perfectly well defined at those points since the leading
singular factor (k —a. )

' appears in front of both the
real and the imaginary parts of D+(k).

Let us consider the Fredholm determinant D+(k) in
the vicinity of a for a ~~. Assuming that (66) holds,
one can easily show that if Uzz is regular,
G +(k;r, r') =Go+ (k;r, r') and ~D +(k) —

1~ =6(k ),
a) 0, as k~ao. Thus, for o . =1, (65) becomes, near a,

Such a confined state gc is thus completely decoupled
from the scattering channels. Conversely, if a solution
tp., of (56) at k =a is such that the corresponding A;(r),
Eq. (64), vanishes, the state g=( ) is a solution of the

JS

full ¹hannel problem at the same value of k. It may be
worth stressing that this possibility is a consequence of
our considering nonlocal potentials: If Uzc were local,
condition (68) would be satisfied only in the trivial situa-
tion Usc(r)=0 Le. t us note finally that bound states
occurring at kA+~; all have linearly independent non-

vanishing S parts.
We thus conclude that as long as kA+a. ;, there is a

one-to-one correspondence between solutions of Eq. (62)
and those of the full ¹hannel problem. Therefore,
Lemma VIII' also holds for the solutions of Eq. (62) since
it has been established for the full problem.

Let us denote by m
' the number of solutions of Eq. (62)

at k =a. (with, obviously, 1(ts%0) and by g the number
of solutions of the full ¹hannel problem with a zero S
part. One then has m'=m —g and cr'. =cr —gi. It is
thus possible to express p in terms of m' in Lemma X,
namely, pi=~i —m

D+(k) = k —v —f f A (r)GO+ (k;r, r') A (r')drdr'.
i

(69)

As pointed out in Ref. [11],the behavior of the phase
b, (k) near ~ is determined by the complex zero of D+(k)
near the real point k =~, say, at k =k, as for the usual
resonances. It follows from the inequality (53) that the
modulus of the double integral in (69) decreases at least
as fast as k '. Therefore, Rek - ~ a . +

~
6(x . )

~

and
~lmk

~

~ ~8(v )~, which indicates that, when k passes

I

through ~, the continuous phase 6{k) varies by ~ over
an interval of order ~ . Moreover, this variation is posi-
tive since, by rewriting the double integral in (69), for
k){),as
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where Pf stands for the Cauchy principal value integral,
and

1/2

A (k)= 2 f "A.(r)u(kr)dr,
0

we see that Imk & 0. Equation (64) also entails that, out-
side an interval of order tc, about tc, 6(k)=6(k )

(mod n m. ).
The 0. &1 case is more difficult to deal with, since

D+(k) involves the determinant of the o Xoj matrix
Tz+ (assuming g =0). We expect, as in the cr =1 case,
b,(k) to be determined by the o, zeros of det(T+) near
Kj We know moreover from Sec. II D that no zero of
D+(k) at a point k =k can lie in Imk )0, when
Rek %0. If t amongst the 0. zeros are on the real axis,
b, (k) will increase by m(o t ) as—k passes through tc~

within an interval of order ~ since a zero on the real
axis only causes a discontinuity of m, which, from the
definition of h(k), is not taken into account.

Theorem III. For large values of k such that

tr +~6(tc, )~ &k &tc +,—~8(tc +, )

one has the relation

tion is significant only in an interval of order sc,- near the
~, 's, where it can be shown to be discontinuous.

One thus has

b(0) —b(k) =tr(s +so/2 —
qj. )+6(k ), (71)

where s and q. are, respectively, the number of zeros and
poles of D+(k) on the semiaxis Imk )0 and the segment
0&Rek &tc (krak, a=1, . . . , N), and so is the number
of zeros of D+(k) at points k =k (a= 1, . . . , N), the
zeros and poles being counted according to their multipli-
city.

Using Lemmas VIII' and X, one can see that

J
s +so/2=nb+

i=1
(m,. )o,. )

(m, —o, )+n"'/2,

where nb is the number of bound states at points other
thanthe~ s, and

J
q~

= g (cr, —m;).
i=1

(0, ~ m,. )

Now, since

b(0) —b(k)=tr(n +n" /2 n')+0—(k ), (70) nj=
where n is the number of bound states of the full 1V-

channel problem, n" the number of half-bound states,
and n J the total number of solutions of Eq. (56) occurring
at points k =~; such that~;

Proof. The regularity of 'M ensures that D+(k) is an
analytic function in the half plane Imk )0 (see Sec. II C),
except at k =+~; and at branching points.

Let us come back to the integral on the left-hand side
of (51). Besides avoiding zeros and branching points of
D+(k) on the real axis, the contour C now must also go
around the poles k =+~;; the radius R of the semicircle
is located between ~ and ~ +, and is larger than any of
the zeros of D+(k) on the real axis. A given pole of
D+(k) is easily shown to give a contribution of opposite
sign to that of a zero of D+(k) of the same order.

As long as V/ is regular and ~k~, while being large, is
not close to any of the tc s, condition (52) holds and the
semicircle of radius k =R gives a vanishing contribution
to the integral. As indicated by Lemma XI this contribu-

J
rtb —nb++ m;

i=1

the right-hand sides of (70) and (71) are equal.
The discussion of this section would have been almost

identical, had we considered a local potential U instead of
a nonlocal one. In particular, Theorem III coincides with
the corresponding result of Ref. [11] when Ns= 1. The
main reason for this is that even when the complete po-
tential U is local, the effective potential G is nonlocal:
Nonlocality is thus an unavoidable feature of scattering
problems with confined channels. In particular, in the
light of the present discussion, the CBS's observed in Ref.
[11]appear to be a natural consequence of the nonlocality
of Vl.
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