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Mass distributions in various nuclear collisions
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The cluster size distributions in proton-nucleus collisions and in nucleus-nucleus collisions are dis-

cussed using a simple exactly soluble model. These distribution can be characterized by a single parame-
ter involving volume, temperature, binding energy, and level density effects. As this parameter varies,
the shape of the distribution of cluster size changes. Good agreement is found between a simple theoret-
ical prediction and experiment.

PACS number(s): 24.60.—k, 25.40.Ve, 25.70.Mn

(nk)= A! Q~ -k(x)
k ( A —k)! Q„(x)

Here x=(x„x2,x3, . . . ) and Q„(x) is the canonical par-
tition function for a system with A particles which is
given by

Q„(x)= g M2(A, n)g[x;']
I n,. I ~ i

(2)

The main purpose of this paper is to illustrate an appli-
cation of a recent model of a fragmentation process to
some data on very-high-energy proton-nucleus and medi-
urn energy nucleus-nucleus collisions. Fragmentation
phenomena induced by both protons and nuclei is of
current interest and many reasons exist for looking at
such collisions. Some of them are (1) to understand the
underlying mechanisms, forces, and pathways that lead
to the final distribution of products; (2) to produce nuclei
at high temperature T and density p to see how nuclei
behave as a function of T and p', (3) to search for phase
transitions in the nuclear system; and, more recently, (4)
to look for possible intermittent behavior in the distribu-
tion of products.

The fragmentation model initially developed in Ref. [1]
and extended in Refs. [2—4] leads to a very simple expres-
sion for the distribution of fragments as a function of
density and temperature. For example, the mean number
of clusters ( n„) of size k is given by

=x(U)exp fE;(T)T dT/kit (4)

When the x s are written in the form of Eq. (4), the ex-
ponential part is the path integral of the temperature-
dependent Hamiltonian with the imaginary time T
The E;(T) is the total energy at the temperature T of the
cluster with i nucleons which is the sum of the thermal
kinetic energy of the cluster and the internal energy of
the cluster. The latter energy consists of the binding and
excitation energies of nucleons in the cluster. The x(v)
represents the volume dependence of the partition func-
tion and kz is the Boltzmann constant.

In Ref. [1] a particular choice x; =x was taken. More
generally [4], if x, =xX'„ then the canonical partition
function of Eq. (2) is

Q~(»=Xi"Q~(x) =Xi"

and the mean number of clusters (nk ) of size k is given
by

A
(nk) =

k xB(x+ A —k, k)

n=In;] =(n„nz, n3, . . .) and the x; contains the ther-
rnodynamic weight for each cluster i. A normal-
ized weight given to any partition n is

Mz(A, n)g, [x,. ']/Q„(x). In Ref. [4] the weighting pa-
rameter x; is related to the thermodynamic partition
function of a cluster of size i:

x;( T)=x (u)exp —fE;(T)d (1/ks T)

The sum in Eq. (2) is over all the possible combinations of
n s with the constraint of

x A! I (x+A —k)
k (A —k)! 1(x+A) (6)

in;=A . (3)

The Cauchy's number M2(A, n)= A!/g, .[i 'n, !] con-
tains the microstate counting rule for the partition
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The B is the beta function B (a, b) =I (a)1 (b)/I (a +b)
and the I"s are gamma functions. The
( t", ) = A!/( A —k)!k! is the binomial factor. Here A is
the total number of baryons in the system which may be
partitioned among the clusters produced in the fragrnen-
tation process. Notice here that X~ disappears in (nk ) of
Eq. (6): X& is the same for every nucleon independent of
the cluster it belongs to. Thus X, in the x;=xX', gives
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the same weight X& for every partition n in the canonical
partition function Q„(x) of Eq. (2). The distribution
(nI, ) depends only on the variable x; thus we call this
case with the x s in the form of xX& the one-parameter x
model. The x is a tuning parameter and this variable,
which changes with temperature and density, contains
the physical contents of the model. Note here that the
weight x is independent of the cluster size and thus gives
the same weight x for any partition n having the same
multiplicity M =g, n; [see Eq. (2)].

Once we know the thermal and internal energy of each
cluster, thermodynamic arguments [1,3,4] establish the
behavior of x; through Eq. (4). If we neglect the surface
tension and the Coulomb interaction, the total energy
(binding, internal excitation, and translational) for a clus-
ter of size i has the form of

changes the number of clusters (particles) or multiplicity
and each cluster has associated with it a volume in phase
space d r d p/h . The az at T =0 is a coefficient in the

3 3 3

binding-energy formulas for a cluster which is taken as
EB(k)=aBk Th. e eo is the level spacing for excited states
of a cluster while Tp is a cutoff temperature introduced in
Ref. [5] to limit the contribution of highly excited states
to the internal partition function of a cluster.

For x s given by Eq. (9}, the canonical partition func-
tion [4] becomes

Q„(x)=X,"Q„(x,y)

=X,"g '
[x (y —1)]" "Q,(x) .A!

0 r!(A —r)!

E; ( T) =—', kB T +MBi EB(—i),
where the binding energy is given by

EB(i)=aB(T)(i f; ), —
2

k~ TTp
aB(T)=aB ——

Ep T+ Tp

(8)

x;=xy "X', , x =Xp,

y =1/X~, Xi XMX
(9)

The f; can be taken in various ways which depend on
how we account for the fact that the monomer has no
internal structure. One way, considered in Ref. [4], takes
f; =5;, and accounts explicitly for the fact that a free nu-
cleon (monomer with i = 1) has no internal or binding en-

ergy, EB(1)=0. All the clusters with i ) 1 have the same
binding energy per nucleon EB(i ) /i =aB ( T). Then the
thermodynamic partition function x; becomes, according
to Eq. (4),

The mean number of clusters of size k is then given by
Eq. (1) with this Qz (x,y). Similar to the case of Eq. (5),
the distribution ( nj, ) is independent of X, and depends
only on x and y; thus we call this case with the x s in the

form of xy "X', the two-parameter x-y model. The
monomer is then treated differently from other clusters
by taking y1 in this case. When y = 1, Eq. (11) reduces
to Eq. (5) and thus this x-y model becomes the x model
with the distribution ( nl, ) given by Eq. (6).

In our studies of various limiting cases [2] and numeri-
cal comparisons showed that the x model and the x-y
model with the same value of x, independent of the value
of y, are quite similar to each other for small clusters ex-
cept for the monomer, 1 (k & A /3. Equation (11}shows
that the x-y model can also be approximated by the x
model for ~x (y —1)~ (1. Thus we will use the x model
for comparison with data in this paper.

Taking y = 1, the x-y model reduces to the x model.
The choice of f; =0 in Eq. (8) gives y =1 with keeping
the x and X, unchanged in Eq. (9);

where x; —xX), x —Xp, X) —XMX~ . (12)

V =V
Up

M~
XM =—exp dT =exp

k~T

aB( T)
X& ——exp — d T

k~ T2

az l kz TTp
=exp +-

kBT eo (T+To)

(3/2)kB T
Xo =x (U)exp J dT

k, T'

(2m.MBkBT) ~

A

(10)

Equation (12) has the same thermal behavior (V and T
dependences) as the x-y model of Eq. (9) for the same x
value. However, the monomer here has a nonzero bind-
ing energy EB(1)=aB which is unrealistic. Thus Eq. (12)
should be considered only as an approximated version of
the x-y model of Eq. (9).

As a more realistic binding energy, the x model of
Ref. [1] uses a backshifted binding energy EB(k)
=aB(T)(k —1), i.e., f, =1 in Eq. (8). Then the EB(i) has
the property EB(i =1)=0 so that monomers have no
binding energy and also the binding energy per particle
EB(i)/i saturate at aB. Light clusters have a smaller
binding energy per particle. In this case, the model be-
comes the one-parameter x model with

The V and T are the freeze-out volume and temperature
and are the thermodynamic variables associated with the
fragmentation process. The vp is the quantum volume as-
sociated with the thermal de Broglie wavelength Xz-=vp,
where A. z- =h /(2~MB kB T)' ~ . Planck's constant h ap-
pears because the fragmentation or break up of a cluster

x,- =xX'), x =Xp/X~, X) =XMX~ . (13)

The corresponding canonical partition function and the
mean multiplicity distribution are given by Eqs. (5) and
(6). In this x model with the backshifted binding energy,
a rnonorner has the same weight x as any cluster.

As x increases from zero to infinity, the structure of
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the solution Eq. (6) changes. With increasing x, the ini-

tial systc;m breaks into more and more pieces. For very

small x, the result of Eq. (6) gives Fermi result for the

evaporation of a particle from a heated Fermi system [1].
A statistical evaporation approach to nuclear fragmenta-

tion is considered by Friedman and Lynch [6]. For large

x, the solution is that of clusters embedded in a gas of nu-

cleons where clusters are formed and destroyed by vari-

ous collision processes with balanced forward and back-

ward rates for the various processes. Specifically, the

solution of Eq. (6) reduces to the Saha equation or law of
mass action [1,3]. At x =0 ( T =0), the A nucleons exist

as a giant cluster while at x~00, only individual nu-

cleons exist as in a very hot system. At x = 1, a hyperbol-

ic power law results with ( nk ) = 1/k.
The x will be treated as a parameter and the high-

energy proton-nucleus and nucleus-nucleus data will be
analyzed using Eq. (6). Figures 1(a)—1(e) show how the

100

1.5 GeV) +

C0
~~
VI
M

10-
C0

~~
V 10-
M
40
l80
O

I

)s

0
I

20
I

40
I

60

(a)
1
0 20

I

60

(b)

Cluster Mass Number k Cluster Moss Number k

1000 .

p (5.7 GeV) + Ta

e ~ ~

~ ~ ~ $
~ I I

p (11.5 and 29 GeV) + Au

100

C0
~~
VI

M

10
C3

100

c0
VI
M

l5 10
l
O

1
S I 4 I I 4

0 50 100 150

Cluster Mass Number k

(c)

1
~ ~ a ~ I ~ ~ k I S I ~ s ~

0 50 100 150

Cluster Moss Number k

000 I

E
100

C0
VI
M
N 1P

D

~ ~

0
~ ~ I s ~ ~ ~ I s a ~ ~ s E ~ ~ a I ~ ~ a

50 100 150 200

Cluster Mass Number k

FIG. 1. (a) Fragment mass size distribution in the radiochemical measurements from the decay of a target residue produced in

high-energy proton-nucleus collisions (p+Cu). The solid circles are the data summarized in Ref. [7] and the histograms are the
thermodynamic statistical fits of Ref. [7]. The solid, dashed, and dotted lines are our model fits with y = 1 and x =0.3, 0.1, and 0.01,
respectively. Here A =65 is used in the fit. (b) Same as (a) but for p +Ag collisions. Here A =110is used in the fit. (c) Same as (a)
but for p +Ta collisions. Here A = 180 is used in the fit. (d) Same as (a) but for p +Au collisions. Here A =200 is used in the fit. (e)
Same as (a) but for p +U collisions. Here A =240 is used in the fit.
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qualitative features of the proton-nucleus data can be un-
derstood in terms of Eq. (6). These figures are taken from
the data summarized in Ref. [7] where these data and
some statistical model calculations are compared. In par-
ticular, the histograms in Figs. 1(a)—1(e) are from this
reference. As we can see, the simple x model of Eq. (6)
fits the data with the same level of similarity as the ther-
modynamic statistical calculations of Ref. [7]. These
cases show the U-shape distribution of cluster sizes and
correspond to the case of small x, x &0.3. The small x
indicates that the system breaks up at a low temperature
[see Eqs. (12), (9), and (13) with Eq. (10) and Table I].
This is consistent with the fact that the data is taken
through the radiochemical measurements which concerns
the decay mode of the target residue after irradiation by a
proton beam. Fragments produced directly from the
proton-nucleus collision have escaped from the target
residue system before the measurement. Only the de-
layed slow decay modes of the target residue, which is ex-
cited to a low-temperature thermal system, produces
fragments which remain in the target system. Fragments
produced in a hot system would have large enough kinet-
ic energy to escape the target system before measure-
ment.

In Table I we show Xo which is the x in the x-y model

Eq. (9) with the higher coexist density in a nuclear matter
equation of state considered in Ref. [4]. Also shown are
Xo/Xs which is the x in the x model of Eq. (13) with the
higher spinodal density. With these choices of the densi-

ty, the x model and the x-y model give similar values of
temperature T for a same x value. Considering the fact
that A ranges from —65 to —240, Table I shows that the
temperature k&T corresponding to x &0.3 is less than 7
MeV. These temperature ranges are comparable to the A k A

(14)

temperature range ks T=4.4 to 5.2 MeV in Ref. [7].
Similar fits as shown in Figs. 1(b) and 1(d) have been

given in Ref. [8] with x =0.01. However the data of Fig.
l(b) in Ref. [8] comes from two completely different
methods of extractions in the 300-GeV proton on the Ag
target; the low mass part comes from an interpolation of
a p +Kr collision [shown in Fig. 2(a)] and a p +Xe col-
lision. The latter is obtained through a direct counter
measurement in the p +Xe collision [10]. The large mass
part comes from the radiochemical measurement. The
large mass region (radiochemical measurement) corre-
sponds to a break up of a low-temperature thermal sys-
tem. On the other hand, the small mass region (counter-
measurement) corresponds to a break up of a hot thermal
system having a large x ) l. Unless x/A « 1, (nk ) de-
creases exponentially as the cluster size k increases for
the k « A region [see Eq. (15) below]. This suggests
that the p+Ag data considered in Ref. [8] should be
fitted with two different values of x, a large x [cf.,
x =0. 1A =10 for Fig. 2(a)] for the small mass fragmen-
tation region and a small x [x & 0.3 as in Fig. 1(b)] for the
large mass region. The shoulder which appears at k near
A cannot be accounted for in the simple x model. Refer-
ence [8] suggests using a k dependent xk. We will look at
this shoulder in a future paper.

The quantity x /A is an intensive quantity where the V
in x [see Xo of Eq. (10)] and the A result in 1/p= V/A.
For clusters of k « A with large A which can have a
large n„, the solution (n„) /A of Eq. (6) can be approxi-
mated [2] by

TABLE I. Temperature dependence of the parameter x. The free volume factor is taken to be V=( A /po)(po/p —1). The po is the
nuclear matter saturation density and p is the higher nuclear density of the coexist or spinodal point at the corresponding T for a nu-
clear matter equation of state considered in Ref. [4]. See Eqs. (9)—(13) for the various relations of Xp Xa x, and y.

k~T (MeV)

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00

y =1/Xz

0.000 000 13
0.000 336 29
0.004 442 7
0.015 846
0.033 550
0.054 807
0.077 283
0.099 479
0.120 57
0.140 15
0.158 10
0.174 42
0.189 20
0.202 56
0.214 63
0.225 54
0.235 41
0.244 36
0.252 47
0.259 86

p/po

0.999 24
0.995 70
0.989 67
0.981 44
0.970 94
0.958 30
0.943 66
0.927 13
0.908 79
0.888 70
0.866 85
0.843 19
0.817 64
0.789 95
0.759 84
0.726 84
0.690 19
0.648 55
0.599 32
0.535 54

Coexist
Xo /3

0.000 004 98
0.000 079 98
0.000 355 19
0.000 990 50
0.002 1914
0.004 188 2
0.007 240 6
0.011 646
0.017 744
0.025 933
0.036 696
0.050 621
0.068 456
0.091 209
0.120 24
0.157 50
0.206 02
0.270 98
0.362 56
0.507 95

p/po

0.676 91
0.676 14
0.674 77
0.672 62
0.669 54
0.665 44
0.660 31
0.654 17
0.647 02
0.638 90
0.629 80
0.61967
0.608 45
0.596 05
0.582 27
0.566 86
0.549 36
0.529 06
0.504 42
0.471 48

Spinodal
Xo/AXq

0.000 000 04
0.000 002 98
0.000 072 86
0.000 404 03
0.001 212 3
0.002 651 8
0.004 821 6
0.007 792 4
0.011 629
0.016402
0.022 201
0.029 140
0.037 369
0.047 089
0.058 578
0.072 225
0.088 632
0.108 77
0.134 52
0.17060
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FIG. 2. (a) The cluster-size distribution resulting from a p +Kr reaction. The proton beam energies are 80—350 GeV. The data
(solid circles) and the solid line are from Ref. [9]. Our model fits for y =1 are the dashed, dash-dotted, and dash-dot-dot-dotted
curves with x/A =0.06, 0.1, and 0.2, respectively, and A =80. (b) The cluster charge distribution resulting from a C+Au reaction.
The data (solid circles) and the solid line are from Ref. [9]. Our model fits for y = 1 are the dashed, dash-dotted, and dash-dot-dot-
dotted curves with x/A =0.1, 0.2, and 0.3, respectively, and A =200. Here the mass number A is considered to be twice the charge
number Z in our comparison with data. Histograms are the fit of Ref. [12] using the statistical emission model of Ref. [6]. (c) The
cluster charge distribution resulting from a C+Ag reaction. The data (solid circles) and the solid line are from Ref. [9]. Our model
its for y =1 are the dashed, dash-dotted, and dash-dot-dot-dotted curves with x/A =0.1, 0.2, and 0.3, respectively, and A =120.
Here the mass number A is considered to be twice the charge number Z in comparison with data. Histograms are the fit of Ref. [12]
using the statistical emission model of Ref. [6]. (d) The cluster-size distribution resulting from a Ne+Au reaction. The data (solid
circles) and the solid line are from Ref. [9]. Our model fits for y =1 are the dashed, dash-dotted, and dash-dot-dot-dotted curves
with x/A =0.006, 0.01, and 0.014, respectively, for the beam energy of 5 GeV, and with x/A =0.02, 0.06, and 0.1, respectively, for
the beam energy of 42 GeV. Here A =200 has been used.
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where the Lagrange multiplier A, is determined through
the constraint of Eq. (3). For the case of A, & 0 and large
A, Eq. (14) reduces to

x
k

1

1+x /A
(15)

in the x model. The distribution (nk ) /A is independent
of the system size A when the intensive quantity x / A is
held fixed and is further simplified to
(nk)/3 =(I/k)(A/x)" ' as A, ~~, i.e., x~~.

Another set of data we have considered are those given
and analyzed in Ref. [9]. These data are shown in Figs
2(a) —2(d). Also considered here are the data quoted in
Ref. [11] which are shown in Fig. 3. In contrast to the
case of Fig. 1, the data of Figs. 2 and 3 are obtained from
a more direct measurement of the collision events. Thus
the fragments measured are the fragments produced
which then have escaped from the target system to the
detector system instead of staying in the target system.
The fragments are either fast or slow depending on the
measurement details. These cases considered in Figs. 2
and 3 show larger values of x(x ) 1) corresponding to
higher beam energies. Thus the system reaches a higher
temperature before its break up. Since these data show
only small clusters (k « A), we use the intensive quantity
x/2 appearing in Eq. (15) when analyzing the data.

Figure 2(a) shows the fragment distribution from

p +Kr reaction with a gas-jet target [10]. The kinetic en-

ergy of the fragment ranges from 5 to 100 Me V. The
fragments in these data are produced through the frag-
mentation of a highly excited nuclear remnant which has
had sufhcient time for many random nucleon-nucleon
collisions [10]. The fit shown in Fig. 2(a) is obtained in
our model with x / A =0. 1 . This value corresponds to
the temperature of kz T= 1 8 MeV in the x model
(x =Xo/Xs with the spinodal density in Table I) and to
k~ T= 14 MeV in the x-y model (x =Xo with the coexist
density). This is comparable to the temperature of 14
MeV used in Ref. [9].

Figures 2(b) and 2(c) show the fragment charge distri-
butions instead of mass distributions. In the fit given
here we have used A =2Z. Also shown by the histo-
grams are the fit of Ref. [12] using the statistical emission
model of Ref. [6]. These data show a rise in the mass dis-
tribution for larger clusters due to a fission tail which
cannot be considered in our simple model. To account
for the fission peak we need to use a k dependent xk .
This k dependence may be related to a more complicated
size dependence of the binding energy than Eq. (8) and
destroy the exact solubality of the model. Thus we con-
sidered here only the small cluster region. However, the
angular dependence of these data [12] indicates that the
emission time scale is smaller than the time scale for
reaching global equilibrium. Thus small clusters mea-
sured would be produced in a fragmentation process of a
smaller thermal system than the whole nucleus (the num-
ber of participants is smaller than A) with higher ternper-
ature. These figures show that the lower energy (15
MeV/nucleon) reaction has larger x / A values compared
to higher-energy reaction. However, larger x / A values

C0
~~
0I

V)

100
~'

10 r
W

1 r
W

0.1 r

0.01

10

10
R

10

10

10
0

I 0

P

C \

10 10

Cluster Mass Number k

FIG. 3. The cluster-size distribution resulting from Ar+ Au
and Ar+ Ca reactions. The data (solid circles) are taken from
Ref. [11]. The beam energies are 42 MeV/nucleon for (a) and
(d), 92 MeV/nucleon for (b) and (e), and 137 MeV/nucleon for
(c) and (f) ~ The cross sections in the figures are reduced by
X 10 ' for (b) and (e) and by X 10 for (c) and (f). Our model
fits for y = 1 are the solid, dashed, dash-dotted, and dash-dot-
dot-dotted curves with x /A =0.2, 0.3, 0.4, and 0.6, respective-

ly, and A =240 for Ar+Au reaction, and with x /A =0.3, 0.4,
0.6, and 1.0, respectively, and A =80 for Ar+ Ca reaction.

do not necessarily mean higher temperatures. Larger
x /A values can also occur from a smaller number of par-
ticipants A for fixed x or from a larger x due to the larger
freeze out volume V [see Eq. (10)]. In a low-energy col-
lision, mean-field effects also become important along
with the random nucleon-nucleon collisions which are re-
quired to form thermalized participants. For these reac-
tions, Table I shows that the corresponding temperature
is about 20 MeV in the x model and about 17 MeV in the
x-y model. In the fits shown in Figs. 2(b) and 2(c), the
number of participants used are A =200 for C+Au reac-
tion and A = 120 for C +Ag reaction. We would expect
a much lower temperature in these low-energy reactions.
To extract a correct temperature, we need to know the
correct freeze-out volume and effective size A.

Figure 2(d) shows the distribution of slow fragments
produced in Ne+ Au reaction. In each collision event,
fast fragments would be emitted through the direct
breaking up due to the collision or through the decay of a
local hot spot. On the other hand, the slow fragments
would be emitted through the decay modes of a rather
globally equilibrated hot thermal system. These fits show

that the corresponding x / A values are -0.0 1 for

E&,~
=5 GeV and 0.06 for E&,&

=42 GeV reaction. The
corresponding temperatures are about 9 and 1 5 MeV, re-

spectively, for E&,&
= 5 and 42 GeV reactions if we use

x =Xp /Xg with the spinodal density. If we use x =Xp
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with the coexisting density, then the corresponding tem-
peratures are about 8 and 13 MeV. In Ref. [9] the tem-
perature of 16 MeV has been used in the fit for the data
of both energy. This k~T =16 MeV is comparable with
our values for the E&,b =42 GeV data. These data show
that the higher energy reaction produces a hotter fireba11
than the lower energy reaction.

Figure 3 shows the energy and target dependences of
the fragment distribution. The fragments here are pro-
duced from the decay of a therrnalized subset of the tar-
get and projectile nucleons which formed a fireball.
Table I shows that the corresponding temperature is
more than about 20 MeV in the x model and more than
about 17 MeV in the x-y model. The larger value of x
corresponds to the higher temperature of the fireball.
These figures show that the higher energy reaction pro-
duces a hotter fireball before its decay into fragments
than the lower energy reaction. They also show that the
smaller target system achieves a higher temperature be-
fore its break up than a larger target for the same beam
energy. There are more participant nucleons to share the
beam energy in forming a fireball in a larger target system

than in a smaller target system.
In conclusion, a simple exactly soluble model was able

to describe the overall behavior of nuclear fragmentation
process in a wide range of reactions. The model gives a
simple result for the distribution of cluster sizes in terms
of a single parameter. This parameter contains a com-
bination of quantities that govern the fragmentation pro-
cess such as volume and temperature effects and binding
energy and level density parameters. As the parameter
varies from small to large values, the distribution of clus-
ter sizes changes its shape from a U-shaped behavior to
an exponential fall off with cluster size k. Temperatures
extracted with this simple model for various data are
similar to the values obtained with other models [6,7,9].
However, there is some uncertainty in determining the
temperature in the simple model due to the unknown
values of the break-up volume V and the effective size of
the participants A.
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