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Formal solutions of the second-order amplitude in the Born approximation to the quantal, microscop-
ic many-body problem of pion production from the collision of equal-mass nuclei are presented where
A-hole states are created in the intermediate nuclear states. The form factors containing nuclear struc-
ture information are solved in terms of particle-hole coefficients which describe any intermediate
particle-hole state, regardless of whether it is coherent or incoherent. In this approach, the important
tensor term has been included. A semiquantitative analysis is carried out which gives an indication of
the approximate conditions under which pion production may be maximized under the excitation of A-
hole states by the transition-spin, -isospin, one-pion-exchange interaction.

PACS number(s): 25.70. —z, 24.10.Cn, 24.30.Cz

I. INTRODUCTION

The subject of subthreshold pion production provokes
a great deal of interest both theoretically and experimen-
tally. On the theoretical side, for example, a number of
authors [1-4] have proposed various independent-
particle models which involve incoherent nucleon-
nucleon collisions as a basis for interpretation. Other
groups [5-8] have proposed various thermal models
which assume a local “hot spot” or a cooperative mul-
tinucleon process. Furthermore, collective or coherent
models have been proposed as playing a role in the inter-
pretation, especially near absolute threshold [9-15]. A
summary of typical experiments can be found in the ex-
cellent review article by Braun-Munzinger and Stachel
[16], where it is pointed out that the observed cross sec-
tions cannot be fully understood in terms of any of the
models yet proposed. Inclusive experiments [17-19] for
the production of neutral pions suggest that either collec-
tive or coherent effects may be needed to get better agree-
ment with data. However, a new generation of semiex-
clusive experiments [20] on charged pions in coincidence
with either target and/or projectile fragments may shed
greater light on the mechanisms that may be involved,
but they are still in an early stage of development. A
most exciting experiment has just been reported by
Erazmus et al. [21] that strongly suggests the existence of
a coherent subthreshold pion-production process.

This paper is the first in a series which presents the
rather long and involved microscopic formalism for A
production that for the first time under the present ap-
proach contains the tensor term of the one-pion-exchange
potential (OPEP) modified to produce a rudimentary
pisobar [22] in a nucleus. Because of the lower energies
involved in the subthreshold range, only 7 exchange is
considered. However, p exchange will be included in sub-
sequent work. Also, the formalism will be applied only to
7° production so as not to unnecessarily complicate an al-
ready complicated formalism with Coulomb effects.
Furthermore, pion absorption will be considered in later
work. In this paper I will concentrate on finding out un-
der what conditions will pion production be maximal in
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the subthreshold regime. The motion of the nuclei will
be treated in the Born approximation, so that resulting
calculations will represent an upper estimate of pion pro-
duction. The reasons for starting with the Born approxi-
mation is that not only will the initial calculation be more
tractable, but theoretical comparisons can be made be-
tween the tensor and central contributions in the interac-
tion to the overall production amplitude and the impor-
tance of the shell-model signature on the outgoing pions
can be determined without the entangling effects of dis-
tortion complicating the picture. The present formalism
includes pions from both the valence and core of each nu-
cleus, and it is expected that surface pions will only be
minimally affected by absorption.

This work represents a completely new formulation
compared to previous work [14,15] as it contains the all
important tensor term in the nucleon-nucleon interaction
and is an important step forward. This paper will be the
first in a series of papers that describe solutions to the
general problem. The latter part of this paper is a semi-
quantitative analysis of the formal results and will be use-
ful in providing a feel for the various aspects of the solu-
tion before lengthy computer codes are written. The next
paper in the series will describe the formal solutions to
the A- and particle-hole coefficients where it is assumed
that coherent spin-isospin modes are excited in both nu-
clei. This work is itself quite lengthy and is specific
enough that it warrants a separate paper. The next paper
will describe the cross sections obtained from the ampli-
tudes, and the numerical results will be compared to ex-
isting data. The kinematics and energy dependences have
been solved formally, but are quite involved in detail be-
cause of the various relativistic transformations needed to
translate the results to the laboratory frame. Then a final
paper will include distortion effects so that a theoretical
comparison can be made with the Born-approximation
results as well as to the data.

II. FORMALISM

The problem addressed is that of the collision of two
nuclei producing a A-isobar-hole state in either nucleus
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FIG. 1. Diagram showing a A-hole state excited in the target
with simultaneous excitation of a particle-hole state in the pro-
jectile. The A then decays, producing a pion.

where each nucleus is excited and the pions are then gen-
erated by the decay of the A isobar as shown in Fig. 1.
For example, if coherent excited states are formed, then
A-hole states may be created in the target while particle-
hole states are created in the projectile. If we consider
12C as the projectile, it might be excited to the M1 state
at 15.11 MeV, whereas the target, which could also be
12C, is excited to a '>C(A) coherent state, which returns
to its ground state after ejecting the pion. The diagram
shows only the valence nucleons being promoted to excit-
ed states, but it is meant to be representative of excitation
of any of the nucleons in either nucleus. Also, the labels
P and T can be switched to generate the amplitudes for
A-hole states excited in the projectile, and the total am-
plitude for excitation of A-hole states in either nucleus
will then be the sum of the individual amplitudes.

N —Van Ko TkaTLE £ ofl “ Ka
gpA §p5§A>r)_ 4 2 1 p Afn(kn) 0 0
nkpkAL
and
1 =van N kP
gpA(gp’gA’r)_ 4 E l kpkAfn(kn)
nkpkAL k==1

The longitudinal and transverse components of f)(k,)
and f,(k,) as well as gl,(k,, and g,,(k,) are given in
Ref. [23] with the addition of the nucleon form factor,
which comes from the momentum-transfer dependence of
the coupling constants, which leads to [24]
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FIG. 2. Coordinates involved in the nucleus-nucleus collision
viewed from the nucleus-nucleus rest frame.

A. Multipole decomposition
of the interaction producing isobars

The spatial coordinates used in this calculation are
shown in Fig. 2, where amplitudes for A production and
decay will be calculated from the nucleus-nucleus rest
frame. Then appropriate relativistic transformations are
taken to relate all the input and output quantities to the
laboratory frame. By using the Fourier integral theorem
and generalized angular momentum expansions for the
plane waves and products of plane waves and spin opera-
tors that appear in the Fourier transforms, it is possible
to decompose the nn interaction into complicated sums
of separate functions which are, individually, functions of
the relative coordinate r, and the projectile and target
coordinates, £, and §, as [23]

gpA(s)=g,l'A(§p,§A,r)—g;A(§p,§,,r) , (1)

where

!
0 ] {[‘H’L(k,,,é'p)><‘Ti“A(k,,,gA)]-‘TL(k,,,r)}(TP-TA) (2a)

(T (ko8 )X T (K €201 T (Ko D)) (7,Ta)

(2b)

where A, =1300 MeV. This factor is essentially constant
over the subthreshold region and provides convergence
for very large momentum transfers.

The other sums in (2a) and (2b) are sums of the projec-
tile and target total angular momentum transfer and the
relative orbital angular momentum transfer k,, k,, and
L, which are coupled as L=k, +k, via the 3-j symbols.
Note that because of the 3-j symbol in (2a), the angular
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momentum sums are restricted to k, +k, +L =even.

The tensors of rank k; in (2a) and (2b), which separate
out the relative motion space from the nuclear spaces, are
also given in Ref. [23].

B. Second-order amplitude

The second-order amplitude Cp; for the process of
An ~! excitation in the target while simultaneously excit-
ing the projectile to nn ~! states and then the subsequent
decay of the A to a produce a pion is

(FIV,IN)Y(NIV,|T)

Cu=X% .~ , @)
N Ep—Ey

in which the initial, intermediate, and final states are
given by

[I)=|P,T®p ®710,) , (5a)
IN)=IN(P)N(T(8)®p ®7,0,), (5b)
|F)=|F(P\T,®p ®r,1,) , (5¢)

where the first two states in the kets refer to the ground,
intermediate, and final states of the projectile and target
nucleus, the next two refer to the center-of-mass motion
of each nucleus in the initial, intermediate, and final
states as seen in the nucleus-nucleus rest frame, and the
final ket refers to the pion space. In general, the nuclear
motion can be described by distorted waves, but since the
total energy of each nucleus is relatively high, plane-wave
motion will be assumed where the distorted waves
|® PKd>TK ) are replaced by the plane waves [PPKPTK) in

the Born approximation for K =1, N, or F.

The final-state energy of the outgoing system in (4) is
E; and the intermediate energy Ey is given by
=Ey+AENy—iTy/2, (6)
where, in the interest of obtaining a simplified expression
for a preliminary calculation, the energy shift
AEy=A(m,c?) is approximately —30 MeV for the value
of A-shifted mass in a nuclear medium [25]. Further-

more, if binding energies are neglected, then the energy
denominator can be approximated by

Er—Ey=¢,+m,c*—mc?+iTy(€,)/2 , @)

where the kinetic energies of an individual nucleon or A
particle from Fermi-gas considerations are small com-
pared to their rest-mass energies. The pion energy depen-
dence of the A width T',(€,) will, however, be included
where €, is the total energy of the emitted pion. The
simplified second-order amplitude then becomes

S (FIV,INYNIV,II)

C =
I €,+m,c?—mjct+iT\(e,)/2

, (8)

where the primes on the A mass and width indicate
values of the A isobar inside the nuclear medium.

C. Formation amplitude

In this section formal expressions will be obtained for
the formation amplitude { N|¥,|I ) assuming plane waves
for the center-of-mass motion for each nucleus. Using a
particle-hole model for the nuclear excited states,

IN(4)=T x,(A)lph;J (M T ,T,), 9)
ph

where particle-hole (ph) coefficients x;, have to be deter-
mined for each nucleus 4 =P or T. The formal solutions
obtained in this work will depend on the values of these
coefficients, and so the solutions are quite general, involv-
ing excitations to any nuclear excited state described by
the particle-hole model. If the coefficients are in phase,
then the excitation is a coherent state. The ph states are
angular momentum coupled and are given in Ref. [14].

After a great deal of Clebsch-Gordan algebra, substitu-
tion of Egs. (1), (2), and (9) for the projectile and target
nuclear states, the following is obtained:

(NIV D) =(NIV{I)—(NIViII) , (10)
where
Il _ TZ(T) I Mp
(NIVIIIY= 4,7 g(K)z ), (K@ ()
—T,(P)
><8 15T & 8PP +Pr Pp +Pr (11)

with a similar expression for the transverse matrix ele-
ment. The amplitude

T,(T) T,(T)
4,5 =(—)""

V83 (4n/VWVari'T P, (1)
while the angular function for the relative nuclear motion
is

Jr Jp L

M, M, M| YO MK,

(13)

o) JT (K)—z

M

where the relative angular momentum and total target
and projectile angular momentum in the intermediate
states are coupled through the 3-j symbol in (13) as

L=J;+Jp. The coupled longitudinal and transverse nu-
clear form factors are given by
j]L(K)_GJ( )JTJPL 0 0 0 G ( ), (14a)
H} , ((K)=3 G} (K)J;J.L
TP —t1 T
Jr Jp L
1
Xl —x 0 GJP,_K(K) , (14b)

where the form factors for the target and projectile nuclei
are, respectively,

G (K)=3 bj «Fs i(K) (15)
k=1 ! !
and
1 1
1 —_— 1
G, e K)=—7 kl:z_leA,k‘_F,A,ki(K), (16)
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in which the coefficients for I =T or P and i =t or p are
defined as

bj k= \/JA (1—k;)/2, k;==%1, (17a)
and

. tik, k;=0 (17b)

bJ_A,k,.: (—1)1—ki)/2
— VI +(1+k)/2, k=%1,

A

(17¢)
where fA =\/2JA +1 for i =p or A. The individual tar-

get multipole form factor from the particle-hole model is

FJT,k,(K)zg(_l) xAhTATh?A}\hRJ —x, (K)
(JT/—\kT) Iy In Jr—k, va
Va. |0 0 0
Iy 1y Jr—k,
xli 2 1 |, (18)
Jn Ja It

with a similar expression for F Tpk, (K), where A—p,

T—P, t—p, and V4 is replaced by V6 6 and the center
element in the 9-j symbol is 1. The A-hole integral is

2
given by

Ry, (K)=

S dgu, 1 (s (KO, (&), (19)

with a similar expression for R}’:vk (K). The three-
P

dimensional harmonic-oscillator function u,(&§) is
corrected for rest mass. The nucleon mass m,, is replaced
by the nuclear medium value m in order to calculate the
A-harmonic-oscillator length parameter [15]. The
particle-hole integrals will be large whenever the overlap
between the oscillator and spherical Bessel functions is
maximal. The factors V'4 and V'6 in the form factors
come from evaluations of the spin matrix elements for A
formation. Because of these factors, it is slightly easier to
excite the particle hole than the A hole in terms of spin
considerations.

D. Decay amplitude

After the A-hole state is formed in the target, the pion
is produced by the decay of A—n, and it is assumed
that this decay is independent of the projectile nucleus
with the target returning to its ground state. Plane waves
are again assumed for the intermediate and final nuclear
motion, and the final state of the projectile may be excit-
ed to an isobar analog state that may decay via either the
weak or electromagnetic interaction. The decay ampli-
tude then reduces to

AT (k) =h (kF, (k)Y (K,) (20)

m

where the angular distribution of the target state is
picked up by the pion since the target returns to its
ground state and

" amk fok,)
v 2e,V
which contains the nucleon form factor

falk )= [ d*€p(&lexp(—ik, ) . (22)

The target form factor from the particle-hole model is
given by by a multipole expansion as

k1 Jp
00 0

4

hk,)= |3

FAnn' ’ 2n

Fy (k)=3 (—D*"'k
k

Dy i(k.), (23)

where the total orbital angular momentum J; delivered
to the pion comes from the plane-wave orbital multiple
angular momentum 7k and the spin difference AS =1
which comes from the conversion of the spin-3 A particle
to a spin-1 nucleon such that Jr=k, k*1, for all values
of k. The A-decay multipole form factor is defined as a
sum of 9-j symbols over A-hole states as

DJAT’k(k”)=2 (=1 )lthhTA/l\h?Athfh(kﬂ)

Ah
. L 1y k| L, 1y k
K vall 3 g
var |0 0 0 2 2 ’
Jn Ja JIr
(24)
where the multipole decay integral is
REMky)= [ “d&u,,, (©jk £y, (€) . (25)

E. Sum over intermediate states

After summing over intermediate states, the amplitude
for excitation of the projectile to any excited state and A
formation and decay in the target is

p* M. M
> A k)4, " (K), (26)

JrMp

AF

A)—Tm

T(k,) is given by Egs.
(20)-(25) and the formation amplitude A, J P(K) for

the projectile momentum transfer K=k P, _k”r from the

such that the decay amplitude ar Iy

initial to final state is given by

MM t, ()
AJJ,, h= Ji Jp 2 [g'(K HLJP gl(K)HJlTJPL(K)]
x@; 57 (K) 27)

where the quantities in (27) are given in Egs. (12)-(19).
Since the amplitude for A-hole production in the projec-
tile and excitation of the target is obtained simply by ex-
changing the target and projectile references, the total
amplitude for exciting either nucleus to a A-hole state
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and the other nucleus to an ordinary particle-hole state is
finally given by

* *

__ A;(A)—>T7+AIZ}A)->P7 28

Crr— 2 2 iy . (28)
€. +tm,c—myc+il)(€.)/2

This completes the presentation of the formal solutions
of A-hole excitation and decay in one nucleus with simul-
taneous particle-hole excitation in the other nucleus.
These results are general solutions to any particle-hole
excitation since the results depend on the particle-hole
coefficients found in the form factors of Eqgs. (18) and
(24). Solutions in which these coefficients are solved
where the particle-hole states form a coherent excitation
will be described in a subsequent publication.

III. SEMIQUANTITATIVE ANALYSIS

It is interesting, now that the formalism has been
developed, to examine these expressions and approxi-
mately determine, to the extent possible, the conditions
that would maximize the production of pions, before em-
barking upon the long road of writing all the programs
that are needed to produce the final results. This analysis
will then serve as a useful guide for the subsequent nu-
merical calculations.

A. Breit-Wigner denominator

Beginning with the Breit-Wigner denominator in Eq.
(28) and neglecting the energy dependence of the width
for the moment, the pion kinetic energy at resonance is
t,.=124 MeV in the nucleus-nucleus rest frame where the
in-medium values of the A-isobar mass and width are 30
MeV smaller and 40 MeV wider than the free values.
The interesting pion kinetic energies that lie within the
resonance width roughly range from 50 to 200 MeV.

B. Decay amplitude

If the decay amplitude [Eq. (20)] is considered, it can
be seen that the angular distribution is given by the
spherical harmonic for a given value (J;, M 1), which is
maximized for pions in the forward direction. If we ex-
amine the factor A4 (k) in Eq. (21) and assume for simpli-
city that the nucleon form factors take the approximate
form from the cloudy-bag model [26],

f(k_ )=~exp[—(k_ R)*/10], (29)
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where the bag radius R =1.0 fm. The factor h(k ) is a
broad function that starts linearly with k_ at small
values, maximizes around 1.70 fm ™!, and tails off in a
Gaussian shape for large values of k.. The pion kinetic
energy at maximum is about 223 MeV. This will provide
a tendency to emphasize the larger values of pion kinetic
energies so that the range of interesting pion values might
go from 50 to 220 MeV.

Now examine the target form factor F JT(kv) as given

in Eq. (23). The main convergence properties come from
the radial form factor R2*(k ) as given in Eq. (25). This
integral will be maximal when the maxima of the A-hole
shell-model states match the maximum of the spherical
Bessel function. An estimate has been made for these
matching conditions. From the virial theorem, the rms
value for a three-dimensional harmonic oscillator is
rms=1/N +3b, where the oscillator length parameter

b=1'#%/m,0 and the energy quantum number
N =2(n —1)+1, where n is the number of radial nodes in
the radial wave function including the one at infinity, but
excluding the one at the origin. The average rms value
for a nucleus described by the three-dimensional harmon-
ic oscillator is given by

4
(r)pe=A4"1 3 Anlilr3nd;)

i=1

(30

and the empirical expression for 4!/3>2 is [27]

rms=(0.824'2+0.58) fm . 31)

If we consider '2C, rms,,,=2.46 fm, and solving for
the oscillator parameter, b =1.67 fm. From this value
the rms value in the 1p state is 2.64 fm. Since rms values
are weighted by an r? factor, the rms values are greater
than the maximum value of the radial wave function, but
they should give an approximate indication as to where
the maxima are located. For the case where a A is pro-
duced in '2C, the oscillator parameter b, becomes slight-
ly smaller [15] since b, =(m, /m’)!"*b. Therefore, per-
forming a similar calculation as above, the rms value for
the A-particle state shifts downward by the same factor
and for the 1p(A) state is 2.48 fm. Averaging these
values for the A- and nucleon-hole state, the folded maxi-
ma should occur at a radius value of §,,<2.56 fm. If
the maxima of j (x,,) are known, then a matching will
occur when k7% =(x_ .. /2.56). In Table I approximate
values for the first maximum of the spherical Bessel func-

TABLE I. Estimated values of pion kinematics matching the first maximum of j, (x).

k Xmax (fm) k7™ (fm~") pr (MeV/c) t, (MeV) 1% (MeV)
0 0 0 0 0 3

1 2.10 0.82 162 74 113

2 3.30 1.29 255 150 211

3 4.50 1.76 347 234 316

4 5.60 2.19 432 314 416

5 6.80 2.66 525 403

6 7.90 3.09 610 486

7 8.90 3.48 687 561
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tion are listed [28] for various orders k, along with the
pion wave number at this maximum value kT?* its
momentum p ., Kinetic energy ¢, and its kinetic energy
in the laboratory rest frame, ¢'°, where an incoming pro-
jectile energy of 85 4 MeV was chosen as an example, and
relativistic transformations were used to determine the
laboratory kinetic energies. Using conservation of energy
and momentum in the forward direction, the maximum
kinetic energy that can be attained is 370 MeV in the
nucleus-nucleus frame, which corresponds to 486 MeV in
the laboratory frame, so that the entries below 416 MeV
in the last column are now allowed. The values in the
other columns are allowed for a higher incident energy
such as, for example, 1204 MeV.

The third row in Table I is particularly interesting
where k =2. In the case the first maximum of j,(x)
matches the folded maximum of the A-hole states. This
corresponds to a pion kinetic energy of 150 MeV, which
for an 854 MeV incident energy transforms to 211 MeV
in the laboratory frame. This matching would then max-
imize the decay radial form factor R2*(k_) of Eq. (25).
Furthermore, it is also close to the resonant energy of 124
MeV, so that both the decay amplitude and Breit-Wigner
factor are large.

The energy behavior of the radial form factor is expect-
ed to be a peaked function about the matching value of
k.. For low pion wave numbers, because of the low-
energy behavior of j, (k_.&), the form factor is expected to
go as k ., whereas at high energies, the Bessel function os-
cillates so quickly that the integrand will have approxi-
mately equal and opposite contributions such that the in-
tegral will become very small. Also, the k dependence for
a fixed argument strongly dies off for large k values, so
that R2%(k_) will provide a convergence of the sum over
those values.

C. Formation amplitude

The formation amplitude AJA;ZMP (K) is given in Eq.
(27). Again, because of the spherica]élarmonics present
in Eq. (13) for the angular function ®, 7 [(K), the max-

imum value will be obtained when the projectile scatters
in the forward direction. This means that magnitude of
the projectile momentum transfer in the forward direc-
tion, #K (0), will also attain its maximum value where

K (6p)=k;[1—2(Pp_/Pp )cosOp+(Pp_/Pp )]/,

(32)

in which PPl=ﬁk, is the incident projectile momentum,
Pp_is the final projectile momentum, and 65 is the pro-

jectile scattering angle from the incident direction. Since
the nuclear form factors have properties very much like
that of the decay form factor, similar arguments can be
made concerning their convergence properties. The max-
imum values of these nuclear form factors will also de-
pend on the matching conditions of each radial form fac-
tor. Since the particle-hole states set the scale for match-
ing with the spherical Bessel function, a minimum value

of K(0) will be needed for that matching. Using nonrela-
tivistic kinematics for the nuclei, which works well at
subthreshold energies, but relativsitic kinematics for the
pions, and solving the equations of conservation of ener-
gy and momentum in the forward direction, the following
is obtained for equal-mass nuclei:

K (0)=k, [1—\/T,,I/T,,F] , (33)

TPF: (TPI—€W/2)

—V (pi/24m, Tp—e,/2—p2/84m,), (34)
and
— e )2
Ty, = [‘/T,,F+\/p$,/2Am,, , (35)

where the initial and final projectile kinetic energies are
TPI and TPF’ the total pion energy is €, of momentum p_,

and the baryon number of each nucleus is 4. If a nonre-
lativistic assumption is made for the nuclei, then the in-
cident projectile energy in the nucleus-nucleus frame is
Tp, =1A41)*, where 1)*° is the incident energy per nucleon

in the laboratory frame. If the third term is neglected un-
der the square root in Eq. (34), then because the terms
under the square root must be positive, the maximum
value for the pion kinetic energy is approximately

1M =LA —m e (36)

For 85 MeV/nucleon, t,~370 MeV, but for 120
MeV/nucleon it is approximately 580 MeV. This is the
reason for the cutoff of the laboratory values of ¢, in
Table 1.

If it is desired to keep K(0) minimal in order to maxim-
ize the matching conditions, then from Eq. (34), assuming
that the square-root term can be neglected, substituting
into Eq. (33), and expanding for small argument with
€, << 2TP1’

#K (0)~+/ Am, /8T, €, . 37

This means that in order to minimize K(0), either look for
lower pion energies and/or increase the incident projec-
tile energy in the attempt to maximize the nuclear form
factors. Calculations with various values of pion kinetic
energies, incident energies per nucleon, final-state ener-
gies of the projectile and target, and the momentum
transfer in the forward direction have been done for ?C
on 2C with only the mild assumption that
pi/84m, <<Tp —€,/2 in Eq. (34). These calculations

show that K(0) becomes smaller for lower pion energy
and higher incident energy, and the results are given in
Table 11, where the last column is arranged with increas-
ing momentum transfer starting from absolute threshold,
reaching a maximum, and then decreasing with higher in-
cident energies. If a similar argument is made for the ra-
dial form factor R JAT"_ k,(K ) in Eq. (19) as was done for

the decay radial form factor, then for a average rms value
of 2.56 fm for the product of the 1p-A and 1p-hole states
along with a matching of the first maximum of j,(K§),
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TABLE II. Energies and momenta transfer in the forward direction.

t, (MeV) t2® (MeV/nucleon) Tp, (MeV) Tr, (MeV) K(©0) (fm™!)
0 85 185 185 1.81
10 85 175 184 2.09
74 85 135 161 3.32
124 85 106 139 4.33
150 85 92 127 4.87

8 25 0.68 1.31 5.97
150 170 333 398 3.30
150 340 825 925 2.44
74 270 674 731 1.91
124 800 2200 2340 1.61
124 1600 4570 4770 1.31
124 2100 6050 6890 1.20

which occurs at K£=3.30 fm, then the value of the
momentum transfer at matching is K (0)=1.29 fm™!. It
can be seen that this value is smaller than most of the
values in Table II except for the highest incident energies
which occur above threshold, and it appears to match at
approximately 1600 MeV/nucleon. For subthreshold
values the momentum transfer needed for a strong
matching is not attained, so that the radial form factors
will not be maximized in the subthreshold region. This
mismatch will reduce the magnitude of the formation am-
plitude. The physical picture that emerges from this en-
ergy analysis for the case of a A produced in the target is
roughly the following: The energy gained by the pion
comes from the energy lost by both target and projectile;
however, the projectile loses more energy than the target,
since it has to provide energy in the forward direction to
the pion that subsequently emerges in the forward direc-
tion. This asymmetry of energy loss tends to increase the
momentum transfer. At higher projectile incident ener-
gies, the projectile plows its way forward more forcefully
because of its greater momentum and is associated with
more peripheral collisions. This leads to smaller energy
and momentum transfer. The smaller energy transfer
then gives less energy to the pion. So higher incident en-
ergies and smaller pion energies are associated with
smaller momentum transfer.

IV. CONCLUSIONS

Summarizing the semiquantitative results, it appears
that the maximum number of pions will be produced in
the forward direction and for peripheral collisions, which
is consistent with forward scattering of the projectile.
For a pion kinetic energy of, say, 150 MeV, which is near
the resonance value (~ 124 MeV), and at an incident en-
ergy of approximately 1600 MeV/nucleon, the formation

and decay amplitudes may be near their greatest values.
As one proceeds into the subthreshold region, the forma-
tion form factor is reduced as more mismatching occurs,
but with a judicious choice of a range of pion energies,
the decay form factors and resonance can still be maxim-
ized. The interesting range of pion energies might be
from, say, 50 to 220 MeV. Since these results are applic-
able to any excited state well described by the particle-
hole model, the effects of coherence has yet to be exam-
ined; however, each of the nuclear form factors in the for-
mation and decay matrix elements depends on the sum of
particle-hole coefficients over the shell-model states. It is
plausible that large effects for the formation and decay
amplitudes can be obtained, depending on the degree of
coherence between the various coefficients. This provides
the motivation for examining coherent, giant resonances,
especially if produced in both nuclei.

A careful balancing may have to be performed if one
considers thermal “hot spots” which produce low-energy
pions [16] and the fact that higher incident energies open
up many more channels, including fragmentation. This
implies that the higher pion energies should be examined
in the range suggested and that incident energies below,
but near the threshold value, may be of significance.
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