PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Elastic scattering of 5 GeV/c pions from *‘He

David M. DeMuth, Jr.* and Joseph S. Chalmers
Physics Department, University of Louisville, Louisville, Kentucky 40292
(Received 19 August 1991)

The elastic scattering of negative pions with a momentum of 5 GeV/c from “He is analyzed using a
single-scattering optical potential in a relativistic integral scattering equation. The potential is computed
using several nuclear and nucleon form factors as well as both phase-shift and exponential representa-
tions of the pion-nucleon amplitude. Predicted scattering observables are compared with experiment.
The effect on the calculated observables due to an increase of effective nucleon size is also shown.

PACS number(s): 25.80.Dj, 24.10.Ht, 21.10.Ft, 27.10.+h

INTRODUCTION

Bedelek et al. [1] (BCFH) obtained extensive, high-
precision data for the elastic scattering of negative pions
from “He at 5 GeV/c. The four-momentum-transfer data
fall in the range 0.12 < || <0.90 (GeV/c)* and exhibit a
diffraction minimum and secondary maximum. In this
experiment, the helium nucleus is probed by a strongly
interacting particle at rather high momentum transfer
while still close to the pion-nucleon energy shell. This
permits investigation of nuclear and nucleon matter dis-
tributions as well as pion-nucleon interactions under con-
ditions in which multiple-scattering calculations of low
order are expected to be reliable.

In BCFH, the data were compared with a Glauber cal-
culation using an averaged pion-nucleon amplitude to-
gether with Gaussian shapes for the nuclear and nucleon
densities. As observed by those authors, the main
features of the data were not well reproduced by the cal-
culation.

In this work, we will compute the differential scatter-
ing cross section using a relativistic integral scattering
equation with a single-scattering optical potential. The
single-scattering potential will be constructed from vari-
ous combinations of pion-nucleon amplitudes and nuclear
form factors. The two-body amplitude will be represent-
ed by phase-shift representations as well as by the ex-
ponential form used in BCFH. The nuclear form factor
will be obtained from nuclear charge densities and nu-
cleon form factors as obtained from electron scattering.
The effect of increasing the effective nucleon size on nu-
clear matter will also be investigated.

ANALYSIS

The partial-wave amplitudes for pion-nuclear scatter-
ing are obtained from the integral scattering equation,
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where R; and V, are the partial-wave components of the
reaction matrix and the optical potential, respectively.
The single-scattering optical potential is given by

V(q)= Ar(q)F(q) , (2)

where A is the nucleon number, 7(q) is the averaged
pion-nucleon transition operator, and F(q) is nuclear
form factor.

The exponential form of the pion-pion amplitude, used
in BCFH, is given by

f=(ok /4m)(i+a)exp(bt/2) , (3)

with 0=27.6 mb, a=—0.22, and b=7.0 (GeV/c)~ %
Parameters for the phase-parameter representation are
taken from Arndt [2].

F(q) is obtained from the electron scattering data for
the nucleus and nucleons by means of

F=F nuclear /F nucleon ? )

where the quantities on the right are the charge form fac-
tors of the nucleon and nucleus as determined by electron
scattering.

The helium charge density was described by
McCarthy, Sick, and Whitney [3] with a three-parameter
Fermi (3pF)

p(N=po[1+w(r?/c)]/{1+exp[(r—c)/z]}, (5

and a shape which leads to the modified Gaussian (MG)
form factor,

F(q)=[1—(aq)"?]exp(—b2q?) (6)

with parameters as given in Ref. [3].
The nucleon form factor used to describe the proton in
BCFH is the simple Gaussian

F,(g)=exp(—(r?)q*/6) (7)

with an rms radius of 0.87 fm.
In addition, we also used the simple dipole shape [4]
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F(@)=1/(1+(r?)q?/12)? (8)

with an rms radius of 0.81 fm.

The neutron shape, which is more poorly known, may
be represented as a point neutron with F, =0, or more
accurately as an extended charge, with the ansatz

F,(9)=Bq’F,(q) , )

where 3 has been determined [5] to be 0.0199 fm?.
The form for F, .., in Eq. (4) is
Fructeon=F, + N /ZF, , (10)

nucleon

in which N and Z are the neutron and proton numbers.
The partial-wave components of V are obtained by
Legendre projection and used in Eq. (1), which is numeri-
cally solved by a matrix inversion method [6]. The reac-
tion matrix R is constructed from the partial-wave com-
ponents and used to obtain the pion-nuclear scattering
matrix T from which observables may be calculated. The
partial-wave for T is continued to an /_,, of 40. Higher
partial wave components of T are accounted for by the
observation that above /., the partial-wave components
of T converge very strongly to those of V. This permits
the summation of the partial waves to all orders rather
the usual truncation. The resulting T matrix is given by

max

T=47S 2 +1NT,—V))P/(x)+V . (11)

Coulomb effects are found to be negligible in the region
of these data.

The expectation is that the single-scattering potential
(2) obtained by combining the best two-body amplitude
with the best nuclear density should lead to the best fit to
the experimental data.

RESULTS

In order to compare our calculation with that of
BCFH, the scattering of 5 GeV pions from *He, we calcu-
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FIG. 1. Comparison of calculation using exponential two-
body amplitude with data from Ref. [1]. (a) Gaussian nuclear
form factor; Gaussian nucleon form factor. (b) Modified Gauss-
ian, nuclear; Gaussian, nucleon. (c) Modified Gaussian, nuclear;
dipole, nucleon.
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FIG. 2. Comparison of calculation using KH80 phase-
parameter representation for the two-body amplitude, and the
modified Gaussian nuclear form factor, with (a) Gaussian, and
(b) dipole, nucleon form factors.

late the scattering with a potential obtained from ex-
ponential two-body amplitude, as used in BCFH, and
Gaussian nuclear and Gaussian nucleon form factors as
used in Ref. [1]. As may be seen in Fig. 1(a), the results
are similar to those obtained by BCFH, and do not fit the
data well. Figure 1(b) shows the result obtained when the
Gaussian nuclear form factor is replaced with the
modified Gaussian [3] form factor. As expected from Liu
and Shakin [7], the modified Gaussian shape for *He fits
the pion elastic scattering data much better than does the
simple Gaussian. However, when the Gaussian nucleon
form factor is replaced with the dipole nucleon form fac-
tor, as seen in Fig. 1(c), the quality of the fit is degraded.
Since the dipole shape is expected to be superior to the
Gaussian shape in representing the proton form factor,
we look to the pion-nucleon amplitude as the source of
the poor fit.

Figure 2 shows the effect of using a pion-nucleon am-
plitude expressed in terms of partial-wave amplitudes, in
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FIG. 3. Effect of inclusion of extended neutron. KH80 phase
representation of two-body amplitude and modified Gaussian
nuclear form factor. (a) point neutron; (b) extended neutron.
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FIG. 4. Effect of varying phase-parameter representation of
two-body amplitude. Modified Gaussian nuclear form factor,
dipole nucleon form factor, and extended neutron. (a) KRLH
phase parameters, (b) KA84 phase parameters.

this case, the KH80 phase-parameters set as tabulated in
the SAID [2] program. The nuclear density is represented
by the modified Gaussian shape, and the nucleon shape is
given by (a) Gaussian and (b) dipole form factors. As
may be seen, the dipole shape for the nucleon gives a fit
to the data which is superior to that of the Gaussian at
large momentum transfer. It is interesting to note that
the calculated cross section shows an inflection at the lo-
cation at which one would expect the second diffraction
minimum, while the data do not. The calculated cross
section obtained with the two-body amplitude given in
terms of the partial-wave amplitudes matches the data
better than one obtained from the exponential amplitude
when each is combined with acceptable nuclear and nu-
cleon form factors.

Figure 3 shows the effect of including the form factor
of the neutron in obtaining the density of nuclear materi-
al. As expected, the effect does not become significant
until large momentum transfers but beyond 0.7 (GeV/c),
the effect is quite noticeable.

In Fig. 4, we compare additional phase-parameter sets
from the SAID [2] program; (a) KRLH and (b) KAS84.
Both calculations are performed with the modified
Gaussian nuclear density and the dipole nucleon form
factor. Both calculations also contain the effects of the
neutron charge density. Comparison of these plots to-
gether with that shown in Fig. 3(b) shows that the
scattering obtained with the KAS84 set is significantly
better than that obtained with the KRLH set and is
somewhat superior to that of KH80.

Finally, in Fig. S5, we examine the effect of arbitrarily
increasing the nucleon rms radius in the dipole form fac-
tor by 10%, 20%, and 30%. This would simulate the
effect of nuclear deconfinement, proposed [8] as a possible
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FIG. 5. Effect of increasing nucleon radius. KA84 phase pa-
rameters, modified Gaussian nuclear form factor, dipole nu-
cleon form factor, extended neutron. Increase nucleon radius
by (a) 10%, (b) 20%, (c) 30%.

explanation of the European Muon Collaboration effect
[9]. All calculations are carried out with the KA84
phase-parameter set and the modified Gaussian nuclear
density, and include the effect of the extended neutron.
As may be seen, the effect of even a 10% change in the
nucleon rms radius is easily seen in these calculations.

CONCLUSIONS

We find that when the nuclear and nucleon shapes are
realistically represented, by the modified Gaussian and
dipole form factors, respectively, an acceptable fit to the
data is obtained when using a phase-shift representation
for the pion-nucleon amplitude. Our best fit is obtained
with the KA84 phase-parameter set. The exponential
amplitude yields a satisfactory fit to the data only when
used in conjunction with a Gaussian nucleon form factor,
which is a poor representation of the proton shape. The
effect of the extended size of neutron is significant at the
higher end of the experimental momentum transfers.

The fact that the scattering observables computed from
a potential obtained with realistic two-body information
and reliable nuclear and nucleon shapes are in the best
agreement with the data, leads to confidence in the calcu-
lational procedure. The very noticeable effect of increas-
ing the nucleon radius suggests that analysis of pion
scattering from light nuclei could yield information about
the effects of nucleon substructure on pion nuclear ob-
servables. The suggestion of a second diffraction
minimum in the observables calculated with partial-wave
amplitudes, while the data show no such minimum, sug-
gests that higher-order pion-nucleon scatterings need to
be investigated.
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