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Phenomenolo~cal approach to high-spin quantum fields based on the Weinberg formalism

D. V. Ahluwalia and D. J. Ernst
Department ofPhysics and Center for Theoretical Physics, Texas AckM University, College Station, Texas 77843

(Received 9 January 1992)

We investigate the possibility of constructing a covariant phenomenology of high-spin particles based
on the work of Weinberg. We put forth a simple algebraic method for investigating the dispersion rela-
tions E =E(p, m) satisfied by the solutions to the free-particle Weinberg equations. We find that these
equations support solutions which do not satisfy E =+i/p +m . This motivates a proposal to build
the phenomenology without explicit reference to a wave equation. We demonstrate the practicality of
this approach by providing techniques for constructing the covariant spinors, free-particle field opera-
tors, and propagators which could then be used to construct a covariant perturbation theory.

PACS number(s): 11.10.Qr, 11.30.Cp

At new medium-energy accelerators, such as CEBAF,
PILAC at LAMPF, and KAON, it becomes possible to
study the excited states of the hadron in great detail. An
interesting possibility would be to produce an excited
hadron in the nuclear medium via a quasielastic scatter-
ing and then to use the final-state interaction to study the
interaction of the hadron with the nuclear medium.
Since these hadrons can have a high spin, this reaction
and others require a consistent Lorentz covariant phe-
nomenology of high-spin particles. At the moment, there
does not exist a totally satisfactory formalism within
which to build this phenomenology. While, in principle,
the Bargmann and Wigner formalism [1] is general
enough to treat any spin, its calculational usefulness does
not easily extend beyond the spin- —,

' formalism of Rarita
and Schwinger [2,3]. Even for spin —,

' there seem to be

several misconceptions [4] and fundamental difficulties

[5,6] associated with this formalism.
An alternate approach to the quantum field theory of

high-spin particles was proposed by Weinberg [7]. The
equations that he proposed have found some use in

phenomenologies [8—10]. We here investigate the Wein-

berg equations at the free-particle level and find that they

support solutions for which EN+1/p +rn, a situation

we call kinematic acausality. This makes it diScult to
utilize these equations in any phenomenology. One

would have to somehow ensure that the couplings did not
mix in any of the unwanted solutions. However, the logic

I

put forth by Weinberg [7,11] suggests an alternate ap-
proach. A phenomenology can be constructed from the
ingredients of a covariant perturbation theory. These in-
gredients, covariant spinors, field operators, propagators,
and model interactions, can all be constructed without
reference to any wave equation. Elsewhere [12] we devel-
op this approach in detail, providing explicit expressions
for the spinors up through j =2 and presenting some pos-
sible model interactions.

The first point to be made here is that the free-particle
Weinberg equations support acausal solutions. We here
put forward a very simple and totally algebraic way of
demonstrating this. We begin with the general form of
the spin- jWeinberg [11]equations,

(y!„!p!")—m ~I)f(p) =0,

where [p] is a set of 2j Lorentz indices and p!"!is a
product of 2j contravariant energy-momentum vectors.
For j =

—,', Eq. (1) is the usual Dirac equation for spin- —,
'

particles. For one-time- and three-space-dimensional
spacetime there are [4(4+1) . (4+2j —1)]/(2j)! y
matrices of dimension 2(2j+1)X2(2j+1) that are sym-
metric in the 2j Lorentz indices [p). To make this more
concrete, we provide [12] the explicit expression for the
case j =2. For this example case, the operator in Eq. (1)
is, in the chiral representation,

[rj„!P"), =2=r„kpP"P P P

+2(J.p) [(J.p)+p')n„Z "p

+—', (J p)[(J.p)' —p']I(J.p)+2p')]
(2)

+2(J.p) [(J.p) —p') n„g "p

+-'(J.p) I ( J.p)' —p'l[(J.p) —2p') )
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To study the solutions to these equations, we note that
Eq. (1) can be viewed as a set of 2(2j+1) homogenous
coupled equations. Consequently, the existence of solu-
tions to the equation requires

det(y p {"} m—JI ) =0 . (3)

This equation is a simple algebraic method for obtaining
the dispersion relation for the energy E=E(p, m) that
the solutions to the equation must satisfy. For a given j
this equation is a 2j[2(2j+1)]th order equation in E,
(40th order in E for j =2), which we then factor in order
to obtain the dispersion relation for E. We have done
this for j =

—,', 1, —'„and 2, and the results are given in

Table I for the spin-2 Weinberg equation. We find that of
the 2j [2(2j+1)] solutions there are Nc(j)=2(2j+1)
solutions that satisfy E=+}/p +m, i.e., the "kinemati-
cally causal" solutions. We also find N„(j)=2j [2(2j + 1)]—2(2j + 1)=2(2j —1)(2j + 1) solutions
that do not satisfy the correct dispersion relation, the
"kinematically acausal" solutions. The solutions
given in Table I are consistent with the observation made
in Ref. [13] that this type of equation is an operator ex-
pression of (p~") J=m J. Some of the solutions imply
propagation faster than the speed of light; we label these
solutions "tachyonic. " Only for j =

—,', the Dirac equa-
tion, are there no acausal solutions.

The work of Weinberg, however, does not crucially de-

pend on the existence of a wave equation. As he noted,
the covariant spinors can be constructed directly from
the precepts of quantum mechanics and Poincare covari-
ance. We note [12] that a generalization to arbitrary spin
of the approach used in [14] for spin —,

' provides a practi-
cal way of constructing the needed spinors. The
particle/antiparticle spinors, u+ (p), . . . , u (p);
v+i(p), . . . , v J(p), are obtained by the action of the
boost operator (given here in the generalized canonical
representation)

cosh(J qr) sinh(J qr)
M sinh( J.y) cosh( J ip)

4

on the 2(2j+ 1) rest spinors in the form of the 2(2j+1)-
dimensional columns

u+J(0)=

N(j)
0

, . . . , v i(0)= (5)

N(j)

Here N (j ) is a normalization factor which can be chosen
conveniently so that in the m ~0 limit (i) the "rest spi-
nors" vanish and (ii} the m ~0 covariant spinors have a
nonsingular norm. The simplest choice that satisfies
these criteria is N(j) =m J. In Eq. (4) the parameter y is
defined by cosh'=E/m, sinhip= lpl/m, y=p/lpl.

TABLE I. Dispersion relations E=E{p,m) associated with
the spin-2 Weinberg equation.

Solutions Multiplicity Interpretation

E=++p +m

E= —+p +m

E=++p —m

E= —&p' —m'

E=+V'p +irri

Z= —&p'+im'

E=+&p im—

E= —&p' —im'

Causal

Causal

Acausal, tachyonic

Acausal, tachyonic

Acausal

Acausal

Acausal

Acausal

[(i}'J}„,a(~} m'JI]G'—1'""1'(x—x') =5 (x —x') . (7)

This operator would propagate the acausal as well as the
causal solutions. However, the propagator needed to
construct a perturbation theory is properly defined as the
vacuum expectation value of time-ordered Geld operators,

&xl&&Dly) —= &lT[~p'(x)~p'(y)]l) . (8)

Of all the relativistic wave equations of the Weinberg
form, Eq. (1), it is only for the Dirac ( —,', 0}(0, —,

'
) spinors

that the Green function, Eq. (7), and the vacuum expecta-
tion value of time-ordered field operators, Eq. (8), are
the same operator. Using [a {p),a (p')]
=(2m)32ai 5 5(p —p') for fermions and a similar rela-
tion for bosons (with anticommutator replaced by com-
mutator), we obtain the configuration space Feynman-
Dyson propagator for arbitrary spin:

Here p is the three-momentum of the particle, and J are
the usual (2j+1)X(2j+1) angular momentum opera-
tors with J, diagonal.

From the covariant spinors we can construct the field
operators O'J(x). The arguments that are used for the
spin- —,

' case apply equally well here and give

+J deipj(x) = g f (2m. ) 2aiv

X[u {p}a(p,cr)exp( ipx)—

+v (p)bt(p, cr)exp(+ipx)],

with co =V m2+p2 and %~(x)=~Iijt(x}yixi. . . v. The con-
struction of the Feynrnan-Dyson propagator from the
(j,0)e (0,j) matter fields is conceptually straightforward.
The propagator cannot be identified with the Green func-
tion

&x lt&Dly ) = g f [u (p)u (p)e '«'" «'0(x y)+ev (p—)v (p)e+'«'" «'e(y —x )],d p
(2m. )' 2~v

(9)
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with e= + 1 for bosons and —1 for fermions. The Feynman-Dyson propagator in momentum space is

&k'IsjDlk&= f ", " e'"'"e-'" &~lt&Dly&
(2n. ) (2m. )

;fi{4}(k k) +i u (k)u (k) v ( —k)U ( —k)

(2n. ) 2ro~ . ko+iri —E(k) ko i—ri+E(k)
(10)

Note that only the physically acceptable causal solutions
of the Weinberg equations enter these propagators.
Thus, the explicit construction of the covariant spinors
by using the boost operator given in Eq. (4) provides the
field operators, Eq. (6), and the propagators, Eqs. (9) and
(10).

We have demonstrated that the Weinberg equations for
free particles of arbitrary spin support solutions with in-
correct dispersion relations. A phenomenology that uti-
lizes these equations would have to somehow avoid any
admixtures of these unphysical solutions. However, as

was pointed out by %'einberg [11], the wave equation
plays a secondary role in this approach to high-spin
fields. We are thus led to the proposition that the phe-
nomenology be defined by the perturbation theory which
can be constructed from the free-particle fields, the
Feynman-Dyson propagator, and model interactions.
Here, we provide a method of constructing the spinors,
fields, and propagators that are required in this approach.
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