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Closed form theory of elastic breakup and applications
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We investigate the breakup process in light heavy ion reactions. With the help of a separable approxi-
mation proposed in a previous paper and using closed forms for radial integrals, we obtain simple ex-
pressions for the breakup cross section. The theory is applied to the reaction ' 0+ Si~a+' C+ 'Si,
and the results are shown to agree with the experimental data.
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I. INTRODUCTION

Breakup reactions constitute an important piece of the
total reaction cross section of intermediate energy heavy
ion collisions. It is now quite common to separate the
breakup process into two physically distinct processes:
elastic breakup, and inclusive inelastic breakup (also
called breakup fusion). Whereas semi-analytical treat-
ments of the latter process have been extensively
developed [1],only numerical recipes based on either post
or prior distorted wave Born approximation (DWBA)
description are available in the literature. Elastic break-
up reactions are of great importance since it represents
an appreciable part of the total break-up cross section.
Furthermore, it can be used as a vehicle through which
fusion cross section of light heavy ions at extremely low
energies, of great relevance to astrophysical research, can
be extracted through detailed balance arguments [2,3].
The above fact clearly calls for more theoretical analysis
of the elastic breakup process in order to render the
numerics simpler.

The aim of the present paper is to develop a semi-
analytical treatment of the elastic breakup cross section.
In this endeavor, we rely heavily on the work of Frahn
[4], who considered heavy ion inelastic and transfer reac-
tions at low energies. The approximations he employed
are, in fact, more valid at the higher energies we consider
here since they are, based to some extent, on the eikonal
method. We apply our theory to some recent data on the
reaction 0+2 Si~a+ C+ Si at 4A MeV and find
reasonable agreement.

The paper is organized as follows. In Sec. II the
DWBA amplitude for the elastic breakup process is fully
analyzed and its multipolarity content is studied. In Sec.
III closed form expressions for the nuclear and Coulomb
parts of the amplitude are derived. In Sec. IV the formal-

ism is applied to the reaction ' 0+ Si~a+ ' C+ Si at
4A MeV and the resulting breakup cross section is com-
pared to the recent data of Carlin et al. [5]. Finally, in
Sec. V several concluding remarks are made.

II. THEORY OF DIRECT BREAKUP

Let us consider the breakup of a projectile a in a col-
lision with a target A. Assuming that the projectile is
formed by fragments b and x, this process can be
represented as

a+A~b+x+A .

Tf (gf '(R)pf('r) ~b, V(r, R) ~y';+'(R)p, (r) ),
(2)

where r is the vector between the fragments b and x and
R is the projectile-target relative coordinate. The cou-
pling interaction is [7]

b, V(r, R)= U„a(r„a )+ Usa(rt, „)—U, „(R) . (3)

Above, U, „(R) is the projectile-target optical potential
and U„z(r„„)and U&„(rbz ) are fragment-target optical
potentials. The coordinates r ~ and rb~ are given by

m& m
r z=R — r, rb&=R+ r,

mg m,
(4)

Following Ref. [7], we adopt the prior representation and
use the DWBA. The corresponding T matrix can then be
written
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where m; stands for the mass of particle i .In Eq. (2),
yI+' (y& ') is the distorted wave with outgoing (ingoing)
boundary condition, P, (r) is the bound ground state of
the two fragments in the projectile, and pf(r) is the final
state with the fragments in the continuum.

It is convenient to separate nuclear and Coulomb parts
in the interactions and approximate the nuclear part of
the optical potentials as [6,9]

It is well known that Gaussian forms fail in giving a good
overall description of heavy ion optical potentials. How-
ever, it can accurately reproduce the tail region, which
dominates the breakup process. Assuming that the opti-
cal potentials have the same a, i.e., ab =a =a,:—o, , the
nuclear part of the coupling interaction takes the form

bV (r, R)=U, „(R) ubexp
r mb 2mb r'R

+
ma ma

+u exp
r m

+
m aa

2m rR
m, a 2

Tf~i g ( Tel )LM( Texc )LM
LM

(7)

where ub = U&„ /U, „and u„= U, „/U, „. Carrying out
partial wave expansions in Eq. (6), the nuclear part of the
T matrix [Eq. (2)) takes the factorized form

mb
(Te c)LM Zb

A. Calculation of {T,I )L~

+z
m, ma

X (yf(r) lr LYLM(r ) lp, (r) ) . (13)

where the elastic part is

( T,) )LM =4~(yf '(R)
~ YLM(P ) U, „(R ) ~y';+'(R) ),

and the excitation part is

(T...)LM= g ~pf(r)IYLM(r)vJL(r)~p;(r)) .

(8)

(9)

To evaluate the nuclear and the Coulomb parts of
(T„)LM, we expand y', '(R) and yf '(R) in partial
waves. We obtain

4 2

(T„)LM= g i '&(2A, +1)(21+1)(lA,00~1k,OO)
i f A, , l, m

j=b, x

We have introduced the quantity

n. —(m. r/m a) . 2mjrRT
v L(r)=( —1) 'e ' '

jL igL
m Q'

a
(10)

b, V (r, R)

=4mZ„e g Zb
LAO, M

m

m
J

L
mb+Z
ma

YLM(R ) YLM(r )
X

(2L +1)R

Using this expression in Eq. (2), we obtain a separable
form for T, analogous to Eq. (7), with the elastic factor

4irZ„e, YLM(R )
(T„)LM= (Zf '(R)l '„, ly'+'(R)), (12)

2L +i f RL+~

where nj I. for j =x, nj 0 for j =b, and jL are spheri-
cal Bessel functions. In the imaginary argument of jL, we
made the approximation of replacing the coordinate R by
the sum R T =R, +R„. This approximation greatly
simplifies the calculation of form factors and it is reason-
able because the breakup dominantly occurs at closest ap-
proach in grazing collisions.

For heavy collision partners, the Coulomb contribution
to the breakup process is also important. In this case the
multipole expansion is straight-forward and we obtain [7]

X ( lkm0~1XLM ) YLM(kf )

XII2L(kf, k, ), (14)

where k; (kf ) is the initial (final) wave vector of the
projectile-target relative motion and It&L(kf, k; ) are the
radial integrals

I(2L(kf, k, ) = f u2*, (kfR)U, „(R)u,(k, R)dR . (15)
0

u i (kfR )ui(k, R )IfL(kf, k; ) =Z„e f ', dR .
(2L +1)R

(16)

In Ref. [7], the radial integrals were calculated with the
eikonal approximation. In the present work we will not
follow this procedure so that the validity of our results
can be extended to low energies and large angles.

B. Calculation of {T,„,)L,~

To simplify the calculation we approximate the initial
and the final internal states of the projectile as

P, (r) =P, (r) =X,e- (17)

Above, we have introduced the radial wave functions
u (kR), which corresponds to those of Ref. [8] divided by
kR.

The Coulomb part of T„ is given by Eq. (14), with the
replacement of the nuclear radial integral by its Coulomb
counterpart

and the excitation factor and
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P (r)=e f —+8exp — +-/ 4 t2
(18)

In Eq. (17), t is a parameter chosen as to give the right
I

projectile size and X,. is the appropriate normalization
constant. The second term on the right-hand side (RHS)
of Eq. (18) has been included in order that Pf be orthogo-
nal to P;. If one expands Pf in partial waves and uses the
expansion in Eqs. (9) and (13), we obtain

(T,„,)LM=N, g (rr/Yj ) ( —1) ' YIM(qf JI.
j=b, x

mR&

m, yja

X exp
4mR —m aq

4y m, a
—v'25L o(n. /I ) ) exp

4m. R2 —m2P a"t qJ T 0 J

4mI aa j
(19)

with

m

m~a

and the excitation part becomes

( T,„,)I~ =4&2~i Zb

L

+Z
mg

(20)

3/2 —~2 2/4
X — e (qf ) YLM(qf ) . (21)

2

I

%e followed this procedure for the multipolarities I. =0,
1, 2, and 3 and the results (assuming M =0}are presented
in Fig. 1, as a function of qf. As the monopole term
clearly dominates, we will henceforth neglect the contri-
butions of higher multipoles.

The Coulomb part should be dominated by the dipole
term How. ever, according to Eq. (21), the odd multipo-
larity contributions vanish when the two fragments have
the same charge to mass ratio. As this frequently occurs,
and it will be the case in the breakup reaction considered
in Sec. IV, we will restrict the sum over multipolarities to
the quadrupole term.

C. The dominant terms in the multipole expansion

One expects that the nuclear part of the T matrix will
be dominated by the monopole term. To check this point
we have studied the contribution of the lowest multipoles
in the breakup reaction ' 0+ Si—+' C+a+ Si. For
this purpose we use the orientation average or ( T,„,)~,
obtained through the replacement of Yl ~(qf }by I /&4m.

III. CLOSED FORM FOR THE BREAKUP T MATRIX

In this section we approximate the radial integrals of
Eqs. (15) and (16) by closed expressions. This way one
eliminates the need of optical model codes in the calcula-
tion of the breakup cross section.

A. The radial integrals of the nuclear potential

Taking for the nuclear part of the elastic S matrix a
typical strong absorption parametrization [10]

SP(k) =
1+exp[( I —/ ) /Z+i c7)

where l and 6 are the parameters

(22)

(23)
1 —E/E o

l = Io+E Eo, b, =6o—
1 E/2Eo—

and E is the collision energy in the c.m. frame. The con-
stant phase a and the parameters Ep, 5p, and lp depend
on the collision partners. For the ' 0+ Si system,
which we study in Sec. IV, these parameters are [11]

Ep = 17~ 5 MeV lp =6.033

hp=0. 054, and a=1.5 .
(24)

q (fm ~)
A straightforward generalization of the closed form of

Frahn [4] leads to the approximation

FIG. 1. The excitation T matrix, T„,(q), Eq. (9) for L =0,
L =1,L =2, and L =3 for the system ' O+ Si~a+' C-P Si,
at 4A MeV. The optical potential used is a typical strong ab-
sorption potential (see Ref. [1]).

I, (k, , kf)= —[S (k, )S (k )]'

which can be easily calculated from Eq. (22).

(25)
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FIG. 2. The Coulomb radial integral for L =2 vs I. Solid curve is the exact result obtained from the radial wave functions, Eq.
(16). The dashed curve represents Eq. (26). See text for details.

B. The radial integrals of the Coulomb potential

To evaluate the radial integrals of the quadrupole term,
which dominates the Coulomb contribution to the T ma-

trix, we use the approximation [12]

I((L(k;,kf )=Co[S( (k, )Sp(kf )]' 2(u (k, , kf ), (26}

~1k2

2~'
3~(l+ I+i71)(1+2+iI))~ '

for I =A,+2, and

(27}

where 2 is the pure Coulomb radial integral, defined as in

Eq. (16) with the replacement of the optical radial wave

functions u& and u & by the corresponding regular
Coulomb functions FI and F(, as defined in Ref. [13]. Co
is an undetermined multiplication factor. If we neglect
the variation of the collision energy, taking k;=kf —=k,
the quadrupole radial integrals can be calculated analyti-

cally [13]. The result is

,~&= riIr[coth(riIr) —1]+2(l+1)

2 1—2ri g (2l + 1)
n —p El + 'g

(28)

for l =k, . In Eqs. (27) and (28), ri is the Sommerfeld pa-
rameter.

IV. APPLICATION. THE ' 0+' Si~a+' C+ Si
REACTION

In this section we apply the formalism described in the
previous sections to the elastic breakup of ' 0 in the field
of Si, at 4A MeV laboratory energy, which has recently
been measured by Carlin et al. [5]. Before presenting the
comparison of our theory and the data, we first access the
validity of the approximations employed in deriving our
closed form expressions. In Fig. 2 we show the Coulomb

I,O-
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FIG. 3. The nuclear radial integral vs 1. The solid curve
represents Eq. (15), whereas the dashed curve represents Eq.
(25). An overall normalization is involved. See text for details.
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FIG. 4. Comparison between our theory (solid curve) and the

experimental data of Ref. [5].
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radial integrals defined in Eq. (16) (solid line) and the cor-
responding closed form approximations (dashed line) de-
scribed in Eqs. (26)—(28}. Both the cases A, =l [Fig. 2(a)]
and A, =1+2 [Fig. 2(b)] are considered. It is clear that
the closets form expressions for II&z accounts very well for
the shape of the exact expression. It misses the width by
at most 5%. We should remind the reader that in the re-
action considered here the Coulomb contribution is negli-
gible. However, we present the above comparison for
completeness.

Next, we consider the nuclear radial integrals. In Fig.
3 we show the comparison between the exact one (solid
line}, defined in Eq. (15), and the corresponding closed
form of Eq. (25) (dashed line). Again the agreement is
reasonable. The position of the peak is slightly shifted
(by 51=2).

In Fig. 4 we show the result of the calculation with the
full closed amplitude. The data points are taken from
Ref. [5]. An overall normalization factor was employed.
The agreement with the major peak is quite reasonable.
The large tail at negative angles corresponds to a
different process, namely incomplete fusion [14].

V. CONCLUSIONS

In this paper, closed form expressions for the elastic
breakup amplitude of heavy ions are derived and ana-
lyzed. These expressions were found to represent the ex-
act amplitudes very well. Comparison of the theory with
the data for the reaction the ' 0+zsSi~a+ IzC+zsSi, at
4A MeV shows reasonable agreement. Application to
other systems as well as the extraction of fusion cross sec-
tion from the inverse reaction will be made in the future.
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