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Using the example of ' C- Pb elastic scattering at El,b
——1449 MeV it is shown that, at

sufficiently high energies, a full quantum mechanical inversion of heavy-ion scattering data can be
performed. Furthermore it is pointed out that the strong absorption model as parametrixed by
McIntyre, Wang, and Becker is associated with a potential having strong repulsion at the origin.
That repulsion is a remnant of the built-in point Coulomb S matrix. Finally, a systematic study is
presented to define the necessary accuracy of experiment required to extend the knowledge of the
nucleus-nucleus interaction to smaller radii.
PACS number(s): 25.70.Bc, 24.10.—i

I. INTRODUCTION

Heavy-ion scattering has been a most active field of
research in nuclear physics in the last decade. Central
in analyses of most of the data from heavy-ion scatter-
ing experiments is the inter-ion interaction which may be
deduced from elastic scattering cross sections (and vice
versa). But the measured elastic scattering (differential)
cross sections are quite diverse functions of moment;iim
transfer. Depending upon the energies and masses of the
colliding ions those cross sections vary from ones typical
of Fraunhofer diffraction to ones characteristic of rainbow
scattering. Analytically, such a variation in the shape of
potential scattering cross sections reflects the interplay
between the Coulomb interaction and a nuclear interac-
tion; the latter often characterized by strong absorption.
That interplay and the relative importance of each com-
ponent is the basis of the success of algebraic models
of the total scattering S matrices [1]. Also, the strong
absorptive character of the nuclear interaction has been
exploited to define the various strong absorption models
(SAM) of the nuclear S matrices [2]. The SAM functional
form given by McIntyre, Wang, and Becker [3] is a par-
ticularly successful, yet simple, parametrization of such
nuclear S matrices for heavy-ion scattering. But physical
descriptions of scattering processes generally are given in
terms of forces and potentials, and, until recently, it was
not clear just what specific forces and potentials under-
lay SAM analyses [4]. Finding the local potentials which,
from direct solutions of the relevant Schroedinger equa-
tion give the SAM S matrices, corresponds to solving
the inverse scattering problem at fixed energy [5]. Using
different methods, several inversions of heavy-ion scatter-
ing data have been performed [6—ll]. In some cases the
inversion methods [6, 7] have led to strongly fluctuating
potentials with doubtful physical relevance. The semi-
classical WKB inversion [12], however, has been found

[4, 10, 11) to be both stable and accurate in defining po-
tentials to small radii.

In two recent papers [10, ll], we studied the energy
and mass dependencies of the local nucleus-nucleus po-
tential using a semiclassical inverse scattering procedure
and starting from a parametrization of the S matrix of
the form of McIntyre, Wang, and Becker [3]. In all cases
considered, the process produced strong absorptive po-
tentials with a short-range repulsive component in the
real part of the potential. However, the onset of that
repulsion is far inside of the radial region sensitive to
the data, so that there is no implication that such re-
pulsion is physical. Moreover those analyses aimed at
a good reproduction of the cross section rather than an
excellent description of the S matrix over the whole an-
gular momentum range. Other SAM parametrizations
also yielded repulsive cores. At present it is not clear
whether the repulsion observed is a feature of the spe-
cial parametrization [3] of the S matrix or an artifact
of the inversion procedure. For further applications of
the strong absorption model in reaction calculations, it
is worthwhile to clarify this point.

The accuracy with which current data have been mea-
sured means that this repulsion cannot be attributed to a
physical effect because its onset does not lie in the sensi-
tive radial region. Therefore, the question arises whether
this peculiar behavior is an intrinsic feature of the partic-
ular parametrization of the S matrix. In order to eluci-
date this point we consider C- Pb elastic scattering at
El ~ ——1449 MeV, a good example for the successful ap-
plication of the strong absorption model ~ Unfortunately,
to our knowledge, there is no way to determine analyt-
ically the potential associated with this S matrix. In
our investigation we rely on the semiclassical %KB ap-
proximation [12]. At sufficiently high energies the WKB
approximation has proved to be [10,11] an excellent and
stable method of solution and so should be an adequate
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tool for the purposes of this investigation. We will check
the quality of the WKB approximation by a comparison
with the corresponding full quantal inversion, which has
not been done in previous work [10,11].The question as
to the reality of any short-range repulsion in the SAM po-
tentials in heavy-ion systems obtained by WKB inversion
cannot be answered as yet because the strong absorption
means that experiments where the radial sensitivity is
not restricted to the peripheral region are difFicult. For
a better understanding of the interaction mechanism, es-

pecially for analyses and interpretation of reactions that
originate within the region of overlap of colliding nuclei,
it is desired to extend the sensitive radial range to the
inner part. With this in mind, we study the izC-zosPb

elastic scattering, seeking the requirements of future ex-
periments so that they yield information on the short-
range interaction.

In the following we address these questions in more
detail. After a brief review of the inversion methods for
heavy-ion potentials in Sec. II, we study in Sec. III the
potentials associated with the special parametrization of
the S matrix by McIntyre, Wang, and Becker [3]. Con-
sideration of requirements on future experiments are dis-
cussed in Sec. IV.

II. INVERSION METHODS AT FIXED ENERGY

It is well known that heavy-ion scattering can be suc-
cessfully described by the strong absorption model, cen-
tral to which is a parametrized form of the S matrix,
S(l, k). In this paper we are dealing with the analysis
of scattering data at a given energy (k=const). Con-
sequently, the determination of a local central potential
associated with the S matrix corresponds to an inverse

scattering problem at fixed energy [5], and for which
there exists several formulations [12—17]. Among these
the exactly solvable models of Bargmann-type [15] are
well suited for application. In particular, in the special
case of the (so-called) rational inversion scheme [16], the
S matrix is of very simple (rational) form,

A
s(~) = s(')(~) (2.1)

V(r) = ~~(r) (2.2)

V„(r) = V„,(r)+ V(")(.), n =1, ..., X, (2.3)

V(a)(r p2 2 1

r L(n —1)( ) L(n —1)(

(2 4)

Here Lz" (r) are the logarithmic derivatives of the 3ost

where A = I+ I/2 is the orbital angular momentum vari-

able and n„, p„represent the poles and zeros of the S
matrix, respectively. Furthermore S(o)(A) is the S ma-
trix of a possible reference potential Vo(r ). The potential
associated with the S matrix Eq. (2.1) is given by [16]

ke = eexp, V(e) = E(1 —expQ(~)
2E

(e)
)
(2.6)

In general, S matrices for optical model calculations are
not unitary due to the complex nature of the optical po-
tential. From the above formulas it is obvious that o.

and the quasipotential Q(a) also become complex. In
order to be able to perform an analytical continuation
of Q(0) into the complex o plane, an analytical solution
of Eq. (2.5) is required. Therefore it is very important
to know Q(o) in terms of analytical functions. In this
respect many functional forms of the S matrix have been
studied [21]. Of all, the rational form Eq. (2.1) leads to
particularly simple relations.

Using the rational S-matrix parametrization Eq. (2.1),
the WKB-inversion has already been applied successfully
to heavy-ion systems [10, 11]. Besides its simplicity it
has the great advantage that one need not be concerned
about the correct position of the poles and zeros of the
S matrix in the complex plane. On the other hand, one
should keep in mind that Eqs. (2.5) and (2.6) have been
obtained by semiclassical considerations and they will fail
at low energies where quantum mechanical effects (e.g. ,

tunneling) become important.
In the presence of the long-range Coulomb interaction

the behavior of the 5 matrix at large angular momen-
tum cannot be represented readily by the rational form
in Eq. (2.1). That behavior must be separated out by
an adequate reference potential Vo(r) with known S ma-

trix, S( )(A). Following previous calculations we use the

solutions f& (r) to the potential V„(r). A given S ma-
trix S(A) can be easily approximated by the rational
form Eq. (2.1) and from the resulting (n„,P„) values,
together with the reference potential, the associated po-
tential V(r) can be evaluated.

This procedure represents a full quantal inversion.
However, as has been pointed out [16], only genuine

Regge poles and zeros lead to reasonable potentials. False
Regge poles and zeros are connected with singularities in
the potential. As long as the false poles and zeros are
far from the real axis one can overcome this difhculty by
exploiting the similarity of the rational and a nonrational
scheme [17] on the real axis. Usually the mixed proce-
dure works rather well for higher energies. More details
about this mixed method have been given in previous
applications [18, 19].

For many cases, especially at high energies, the inver-

sion procedure can be facilitated by employing the WKB-
approximation to the inverse scattering problem at Axed

energy [12, 20]. The key quantity in this approach is the
quasipotential Q(a) which is determined from the S ma-
trix as follows:

.2E1 d
Q(o) = i ——— dA lns(A)

z o do i/'pz —(r2

(2.5)

Subsequently, the evaluation of the potential in coordi-
nate space is straightforward and one must solve the sys-
tem of transcendental equations,
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reference S matrix,

S(o)(P) ig(A +Ac, ) (2.7)

where g is the Sommerfeld parameter and Ac is a smooth-
ing parameter which shifts the singularity away from the
origin. In the present calculations we choose A~ ——3g.
The reference S matrix has the same asymptotic A de-
pendence as the Coulomb S matrix. The corresponding
potential Vo(r) is found accurately by the semiclassical
inversion Eqs. (2.5)—(2.7). It is smooth with a finite value
at the origin and has the correct Coulombic tail asymp-
totically.

III. THE STRONG ABSORPTION MODEL

The elastic scattering of heavy ions is characterized by
the strong absorption which they experience. In a semi-
classical picture, all contributions with an impact param-
eter smaller than the so-called strong absorption radius
(which in turn relates to a grazing angular momentum

lz) are completely absorbed. In terms of the S matrix,
this behavior is described by

iSi(k)i « 1 for I & I„ (3 1)

S(P) () )
2ibn„, |(A)SPomt() ) (3.2)

where g(A) and b„„,l(A) describe mainly the effect of the

and is the basic content of the strong absorption model

[2]. There exist several parametrizations of the S matrix
[3,22, 23] modeling this basic feature. In the following we

deal only with the parametrization of McIntyre, Wang,
and Becker [3] which has been applied successfully to a
wide range of reaction systems. Therefore the following
parametrization of the total S matrix is used:

nuclear interaction. Explicitly they are given by

r)(A) = 1+exp
~ ). (3.3)

I —I' )
bnUd (A): bo 1 + exp (3.4)

Using this five-parameter model, excellent fits to difI'er-

ential cross sections have been obtained for a diversity of
heavy-ion systems in a wide energy range.

As an example we consider i~C-~0 Pb elastic scattering
[24] at El~b = 1449 MeV. Within the SAM parametriza-
tion a complete description of the elastic scattering cross
sections can be given. The relevant parameter values are
listed at the bottom of Table I and designated as the
"plain SAM parametrization. " Using them, the calcu-
lated diAerential cross section is that compared with the
data in Fig. l. However, because of the strong absorp-
tion for l & 100 the behavior of the S matrix, apart from
its absolute value, is not determined from the experimen-
tal cross section. Rather the specific low l-value behav-
ior is a direct consequence of the SAM parametrization.
Therefore, we restrict our full quantal inversion of the S
matrix to the range l & 50 which includes enough values
below the grazing angular momentum to contain all the
physically relevant information. The parameters of the
best rational representation are given in Table II. Since
all false Regge poles and zeros have rather large imagi-
nary parts the associated potential can be determined by
full quantal inversion in the mixed scheme [18]. We have
also evaluated the corresponding potential in the WKB
approach. Both calculations, the quantal and the semi-
classical ones, lead essentially to the same potential and
cannot be distinguished on the scale of Fig. 2.

A closer look at the S matrix reveals significant diIFer-

ences between the rational representation Eq. (2.1) and

TABLE I. Parameter and y values of the modified SAM parametrization for C- Pb scattering at E»b = 1449 MeV.

10
8
6
4
2

10
8
6

4
2

10
8
6

2

100

80

60

267.2039
267.0769
266.7859
266.1583
266.2149

266.9289
266.6681
266.3914
266.3133
266.2305

266.3533
266.2800
266.1751
266.1780
266.1728

27.0625
27.2637
25.2614
23.9942
23.9961

26.1831
25.4496
24.5523
23.9574
23.8172

24.3870
24.0549
23.8451
23.8856
23.8587

I

lg

213.6129
212.4376
212.4376
208.9814
208.2838

211.0531
210.4868
2Q9.3650
208.3515
207.9617

208.8552
208.3651
207.9623
207.9572
208.0077

16.6635
16.7441
18.6213
20.01Q7
20.1087

17.8673
18 ~ 5851
19.4913
20.1373
20.3120

19.7056
20.0596
20.2741
20 ~ 2437
20.2576

99.5880
103.6670
113.7210
125.9740
128.3956

133.3280
117.5175
123.5435
127.7501
129.4946

125.6608
127.7739
130.0324
129.9181
129.9956

51.06
49.51
49.35
49.78
49.91

49.60
49.28
49.51
49.83
49.94

49.50
49.60
49.86
49.93
49.95

Parameters for plain SAM parametrization

266.1897 23.8822 207.9316 20.2484 130.0369 49.96
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FIG. 1. Reproduction of the ' C- Pb elastic scattering
cross section by the McIntyre parametrization of the strong
absorption model. The data are taken from Ref. [23].

Radius (fmj

FIG. 2. ' C- Pb optical potential at E(,b ——1449 MeV
obtained by full quantal inversion in the mixed (rational and
nonrational) scheme. The poles and zeros of the rational S
matrix are given in Table II.

the SAM parametrization at small l values. These differ-
ences are displayed in Fig. 3. Similiar differences are also
observed in comparisons with S matrices generated by
best-fit conventional optical model potentials of Woods-
Saxon or double-folding type. Since a local central po-
tential is uniquely determined by the functional form of
the S matrix on the positive real A axis, those potentials,
albeit reproducing the elastic cross sections, do not corre-
spond to the SAM parametrization. Hence the question
as to the precise form of the potential associated with a
SAM S matrix.

For a full quantum inversion of the SAM S matrix,
the simplest choice for Vo(r) is that of a point Coulomb
potential with, then, the nuclear part of the complete S
matrix, Eq. (3.2), being expressed by the rational form
Eq. (2.1). But it has been shown [17] that a I/r singular-
ity ta.ken in the background potential implies the same
singularity in the total potential. The SAM S matrix
therefore corresponds to a singular potential.

Using the background S matrix Eq. (2.7) we cannot ex-
tend the full quantal inversion to the whole positive real
A axis because the rational approximation then contains
false Regge poles and zeros with rather small imaginary
parts, making a transfer to the mixed scheme impossible.
The origin of these poles and zeros near the real axis in a
rational approximation of SAM can be easily understood
from the analytical form of ScP '„"t'(A), viz.

(3.5)

TABLE II. Poles a„and zeros P„of the rational represen-
tation of the SAM parametrization. A shift of A, = 21.15 has
been chosen for the Coulomb background S matrix [Eq. (2.7)].

2Tt
/

/
/

/
/

101.4711
4.3742

257.1517
240.9615
265.8890
165.9116
26.3270

215.8013
200.9318
268.1469
224. 1310

77.6289

Ime„
288.8987

-215.7872
-186.1334

-82.2528
-76.1656
-71.9888
-15.8196
45.4406
45.5382
75.2626

194.0603
314.0144

9.2802
87.4319

239.1705
175.8758
37.4563
22.4599
17.2048

202.2733
215.6065
160.6596

64 ~ 3072
250.9952

ImP

277.8517
127.7401
90.0771
86.2074
84.2195
25.4414
14.2004

-46.0926
-46.7973
-85.7738
-90.0973

-149.7245

-4
10

10

10 20 30 40 50

Angular Momentum (A. )

FIG. 3. Comparision of (a) the absolute values of the S
matrix and (b) the total phase shifts of the SAM (dashed line)
and of the rational representation (solid line) at small angular
momenta.
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Sc~ '„"~'(A+ 1) = exp 2iarctan
~ i ~ S& '„"& (A).+ ~l

(3.6)

Such equivalent "rotations" of the S matrix at low I val-
ues reflect the singularity of the point Coulomb potential
at the origin. In a rational approximation this can only
be simulated by additional pairs (n;, P;) having small
imaginary parts.

In order to reduce the number of rotations of the SAM
parametrization due to Sc~ '„"~'(A), we propose a slightly
modified parametrization of the SAM S matrix, namely,

s(p) () )
2ibn„, )(A)ssM (p)

with

(3.7)

(3.8)
I'(A + —+ a e ~" ~1'I~' —irI)

With appropriately chosen parameters a, b we obtain es-
sentially the same fit to the cross-section data. Those
parameter values are also given in Table I. With this
model there is clearly a smoother low-I behavior of the S
matrix. Taking into account the S matrix at all partial

At the energy considered the Sommerfeld parameter g is
very large because of the big charges of the heavy ions.
Consequently, there exist several integer l values with
I + 1 ( ~rl~, which are connected with changes of the
phase shifts between 45' and 90' from partial wave to
partial wave, since

waves (I = 0 to 600) we have determined the correspond-
ing potentials for different a and b values using the semi-
classical WKB inversion technique. These potentials are
displayed in Fig. 4. For decreasing values of a and 6 the
total S-matrix Eq. (3.7) approaches the SAM S-matrix
Eq. (3.2) and it is obvious from Fig. 4 that the corre-
sponding potentials tend towards one which has a repul-
sive singularity at the origin. As expected, the singularity
at the origin exhibits a -„dependence and is caused by the
low-I behavior of the point Coulomb S matrix included in
the SAM parametrization Eq. (3.2). The very noticeable
changes in potential shapes with variation of the param-
eter values of a and b, while giving equivalent results for
cross sections, clearly show the limitations of heavy-ion
cross-section data fits in determining the potential.

IV. HEAVY-ION POTENTIALS AND THE
ACCURACY OF MEASUREMENTS

The success of the SAM parametrization in describing
the scattering of heavy-ion systems is certainly based on
the fact that the inner part of the potential is hidden by
the strong absorption of partial waves below the grazing
angular momentum. Consequently, modifications of the
potential at small radii cause only minor changes of the
corresponding cross sections. As long as these changes
are smaller than the accuracy of the measurements, no in-
formation about the potential at the corresponding radii
can be extracted from the data.

400 "', t

300 g'", i
~ I

200 I'",

ioo &'
'

= 100

a=0———Q-2———-a=4------ a=6———a=8
——.—--a =10

I3 =80300 Q&

200

100

I

t
CL

Q

O

0

0

300

200 I-',

100 ';

b =60

I I

5 10

Radius (fmj

10

oc~ (deg)

15

FIG. 4. Potentials obtained by semiclassical WKB in-
version using different parameters a and b in the modified
Coulomb potential.

FIG. 5. Envelopes of the C- Pb elastic scattering cross
sections at Ei b

——1449 MeV generated using the modified
potentials of Eq. (4.1).
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For a better understanding of the scattering processes
in heavy-ion systems, an extension of the radial sensitive
region to smaller radii is necessary. Such an extension
implies an improvement of the experiments with respect
to their accuracy and of their scope. A reliable estimate
of the requirements on a future experiment can easily be
given by systematic variations of a potential extracted
from the best experimental data.

In the following we give the example of such an es-
timate for i C- Pb elastic scattering at Ei b = 1449
MeV. We modify the potential of the full quantal inver-
sion (Fig. 2 and Tables I and II) by adding a contribution
of the form

!
b, V(r) = EVp 1+ exp

a (4 1)

We choose a rather small diffuseness a = 0.1 fm in or-
der to get a clear falloff of the additional contribution
Eq. (4.1). For a fixed radius R we calculate the cor-
responding cross sections assuming different AVO values
covering uniformly the interval —10 MeV & AVO & 10
MeV. The envelopes of the corresponding calculated dif-
ferential cross sections are displayed in Fig. 5. It is ob-
vious that information about the potential at a given
radius can only be extracted from the experimental data
when there is an angular range where uncertainties of the
experimental data are smaller than the bandwidth de-
fined by the envelopes. In particular one has to measure
the '2C-2osPb differential cross sections at Ei b = 1449
MeV for angles above 8' with a relative accuracy better
than 10% in order to extend the sensitive radial region
to R=6 fm.

tyre, Wang, and Becker. Based upon the physically de-
termined SAM S matrix and using the example of 2C-

Pb elastic scattering at Ei b
——1449 MeV, we have

shown that a full quantum mechanical inversion of heavy-
ion cross sections can be performed within the mixed ra-
tional and nonrational inversion scheme. The subsequent
study using the S-matrix values on the whole positive
real A axis revealed the peculiar structure of the strong
absorption model. Because of the inclusion of the point
Coulomb S matrix in the chosen SAM parametrization,
the associated potential exhibited a repulsive singular-
ity at the origin. However, the onset of this repulsion
is well below the sensitive radial region. Therefore, this
repulsive contribution is not physically significant and is
rather an artifact of the SAM parametrization. From
this point of view the short distance repulsions found in
previous analyses [10, 11] seem to be only a remnant of
the same inbuilt point Coulomb S matrix.

The confirmation or otherwise of the simple SAM
parametrization can only be given by more accurate ex-
periments extending the radial sensitive region. In this
respect the validity of the SAM parametrization might
be only a question of the required quality of description
of the scattering cross sections. In our final investiga-
tion we have tried to give a reliable estimate of the re-
quirements on future experiments. The accuracies of the
measurements required to resolve the heavy-ion potential
at smaller radii provide a challenge for experimentalists.
However, such accurate experiments will lead to valuable
information about the interaction of heavy-ion systems.

ACKNOWLEDGMENTS

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented a study of the poten-
tial asssociated with the SAM parametrization of McIn-

One of us (H.L.) wants to thank the School of Physics
of the University of Melbourne for the hospitality ex-
tended to him. The work has been supported by
Fonds zur Forderung der Wissenschaftlichen Forschung
in Osterreich (Project P6608).

[1] K. Amos, L. Berge, H. Fiedeldey, I. Morrison, and L. J.
Allen, Phys. Rev. Lett. 64, 625 (1990).

[2] W. E. Frahn, in Treatise on Heavy Ion Science, edited by
D. A. Bromley (Plenum, New York, 1984), Vol. 1; W. E.
Frahn, in Dsgractive Processes in Nuclear Physics, edited
by P. E. Hodgson, Oxford Studies in Nuclear Physics
(Clarendon, Oxford, 1985).

[3] J. A. McIntyre, K. H. Wang, and L. C. Becker, Phys.
Rev. 117, 1337 (1960).

[4] L. J. Allen, H. Fiedeldey, S. A. Sofianos, K. Amos, and
C. Steward, Phys. Rev. C 44, 1606 (1991).

[5] K. Chadan and P. C. Sabatier, Inverse Problems in

Quantum Scattering Theory (Springer Verlag, New York-
Heidelberg-Berlin, 1989).

[6] R. Mass, K.-E. May, and W. Scheid, Phys. Rev. C 39,
1201 (1989).

[7] R. S. Mackintosh and S. G. Cooper, Nucl. Phys. A494,
123 (1989).

[8] M. S. Hussein, M. P. Pato, and F. Iachello, Phys. Rev. C
38, 1072 (1988).

[9] R. D. Amado and D. A. Sparrow, Phys. Rev. C 38, 1072
(1988).

[10] L. J. Allen, K. Amos, C. Steward, and H. Fiedeldey,
Phys. Rev. C 41, 2021 (1990).

[11] C. Steward, K. Amos, H. Leeb, L. J. Allen, H. Fiedeldey,
and S. A. Sofianos, Phys. Rev. C 44, 1493 (1991).

[12] E. J. Kujawski, Phys. Rev. C 6, 709 (1972); ibid. 8, 100
(1973).

[13] G. Burdet, M. Gifon, and E. Predazzi, Nuovo Cimento
36, 1337 (1965).

[14] R. Newton, Scattering of Waves and Particles (Springer
Verlag, New York-Heidelberg-Berlin, 1982).

[15] H. Leeb, W. A. Schnizer, H. Fiedeldey, S. A. Sofianos,
and R. Lipperheide, Inv. Problems 5, 817 (1989).

[16] R. Lipperheide and H. Fiedeldey, Z. Phys. A 286, 45
(1978).

[17] R. Lipperheide and H. Fiedeldey, Z. Phys. A 301, 81
(1981).

[18] K. Naidoo, H. Fiedeldey, S. A. Sofianos, and R. Lipper-
heide, Nucl. Phys. A419, 13 (1984).



45 STRONG ABSORPTION MODEL AND ITS ASSOCIATED POTENTIAL 2925

[19] H. Leeb, H. Fiedeldey, and R. Lipperheide, Phys. Rev. C
32, 1223 (1985).

[20] H. Fiedeldey, R. Lipperheide, K. Naidoo, and S. A. Sofi-
anos, Phys. Rev. C 30, 434 (1984).

[21) G. Vollmer, Z. Phys. 226, 423 (1969).
[22] R. H. Venter and W. E. Frahn, Ann. Phys. (N.Y.) 24,

243 (1963).

[23] T. E. O. Ericson, in Preludes iu Theoretical Physics,
edited by A. de Shalit, H. Feshbach, and L. van Hove
(North-Holland, Amsterdam, 1966), p. 321.

[24] J. Y. Hostachy, M. Buenerd, J. Chavin, D. Lebrun, Ph.
Martin, 3. C. Lugol, L. Papineau, P. Roussel, N. Ala-
manos, J. Arvieux, and C. Cerruti, Nucl. Phys. A490,
441 (1988).


