
PHYSICAL REVIEW C VOLUME 45, NUMBER 6 JUNE 1992

Break-up eS'ect on the elastic scattering and the optical potential of "Li

K. Yabana, ""Y. Ogawa, ' ' and Y. Suzuki"'
"'Department of Physics, Niigata Uniuersity, Ikarashi-2, Niigata 95021-, Japan

' 'National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824
"'Graduate School ofScience and Technology, Niigata University, Ikarashi 2, N-iigata 950 21-, Japan

(Received 21 January 1992)

The elastic scattering of weakly bound projectiles such as deuteron and "Li nucleus are examined in-

cluding the break-up process to the continuum excited states. The eikonal approximation is employed to
derive the optical potential which includes the dynamical polarization potential due to the break-up pro-
cess. The dynamical polarization potential is realized to be closely related to the fluctuation of the con-

stituents of the projectile nucleus in its ground state. Strong effect of the break-up process on the "Li-
' C optical potential is found, which is qualitatively similar to those known for the deuteron optical po-

tential. The elastic scattering differential cross section for "Li-' C is calculated with the obtained optical
potential. It is found that the scattering cross section decreases rapidly for large scattering angle com-

pared with the Li elastic scattering.

PACS number(s): 24.10.Ht, 25.70.Bc, 25.45.De

I. INTRODUCTION

The halo structure of the neutron drip-line nuclei has
been extensively studied with the secondary radioactive
beam. The "Li nucleus has attracted much experimental
and theoretical interest as a typical case. Since the suc-
cessful measurement of the interaction cross section has
shown the anomalously large matter distribution of "Li
nucleus [1], the studies of the halo structure of the neu-
tron drip-line nuclei have been achieved and are under
progress making use of various kinds of reaction mecha-
nisms. Among them is the elastic scattering which we
are going to discuss in this paper. The theoretical study
of this subject has already been undertaken by both the
phenomenological [2] and microscopic approaches [3,4].

The ground state of "Li nucleus is just below the
Li+n+n three-body threshold. There exists no bound

state for the subsystems, Li+n and n +n. It is expected
that the ground-state structure of "Li nucleus is well de-
scribed by the ( Li+n+n) three-body model, where Li
nucleus is in the ground state and the halo is composed of
the two neutrons which are bound weakly to the Li nu-
cleus. (We will call these two neutrons as "halo neu-
tron. ") Such a three-body picture is strongly supported
by the microscopic three-body calculations [5,6].

For the heavy ion elastic scattering including weakly
bound nuclei, it has been known that the double folding
model for the real part of the optical potential fails [7].
The studies including the break-up process have revealed
the important role of the break-up process in the elastic
scattering and the optical potential, particularly in the
cases of deuteron projectile [8,9] and the light heavy ion
projectile [10]. It is strongly expected that the break-up
of the "Li nucleus into Li+ n +n three-body continuum
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states contributes signi6cantly to the elastic scattering
process.

In our previous paper [11]which we will abbreviate as
I in the following, we have proposed to describe the reac-
tion of the drip-line nucleus in the intermediate energy
region by the use of the eikonal approximation in a direct
reaction framework. We have found there the large cross
section of "Li-+( Li+n+n) three-body break-up reac-
tion. We will extend the framework of I so as to analyze
the optical potential and the elastic scattering of "Li.

Recently Canto et al. [3] have discussed, in an ap-
proach intimately related to us, the effect of the break-up
process on the optical potential and the elastic scattering
of "Li. They mainly discussed the imaginary part of the
dynamical polarization potential due to the break-up pro-
cess. In this paper we will show that the break-up pro-
cess appreciably affects the real part of the optical poten-
tial as well as the imaginary part. Our approach is also
advantageous in that the relation between the dynamical
polarization potential and the halo wave function is quite
transparent.

The construction of the paper is the following. In Sec.
II, the optical potential and the elastic scattering for the
case of the deuteron projectile are examined, for the pur-
pose of showing the usefulness of our framework in inves-
tigating the effect of the break-up process on the optical
potential and elastic scattering. In Sec. III, the optical
potential for "Li-' C system is discussed. In Sec. IV, the
elastic scattering of "Li-' C system is discussed. In Sec.
V, concluding remarks are presented.

II. DEUTERON PROJECTILE CASE

The important role of the break-up process of the
deuteron into (p + n ) continuum states on the elastic
scattering process has been studied under the adiabatic
approximation [8] and the coupled discretized continuum
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channels approaches (CDCC) [9,12]. We consider the
same problem, further simplifying by employing the
eikonal and the adiabatic approximations. Assuming the
straight line trajectory of the deuteron, we no longer need
to solve any quantum mechanical equation. Furthermore
it provides us with the understanding of the break-up
effect in terms of the proton-neutron relative motion in
the deuteron ground state.

A. Elastic scattering amplitude

We describe the deuteron reaction in terms of the
(p +n)-target nucleus three-body model. The
Schrodinger equation,

p2
+ho+ U (r )+U„(r„)+(r~, r„)=EV(r,r„), (2.1)

2p

describes the deuteron reaction with target nucleus where
I

the target nucleus remains in the ground state
throughout the reaction. In Eq. (2.1), P represents the
center-of-mass momentum of the deuteron, p is the re-
duced mass of the deuteron and the target nucleus. ho is
the internal Hamiltonian of the deuteron. U~(r) and
U„(r)are the proton- and neutron-target nucleus optical
potentials, respectively. r and r„arethe coordinates of
the proton and the neutron with respect to the target nu-
cleus. The spin degree of freedom is ignored for simplici-
ty.

We employ the eikonal and the adiabatic approxima-
tions to solve Eq. (2.1), as we did in I. The eikonal ap-
proximation assumes that the deuteron moves along the
straight line trajectory specified by the impact parameter
b. The adiabatic approximation assumes that the internal
motion of the proton and the neutron is at rest during the
collision, and amounts to neglecting ho in solving Eq.
(2.1). Under these approximations, the elastic scattering
amplitude is given by

f„(q)=— fdbe '
[&Po~exp[iX (b+s/2)+iX„(b—s/2)]~$0) —1I . (2.2)

represents the ground-state wave function of the
deuteron. s is the projection of the vector r=r —r„onto
the x-y plane where we assume the incident direction to
be parallel to the z axis. y and g„arethe phase shift
functions and are defined by

x.p(b)= g x'"'(b) .
k=1

The first few terms of the expansion are given by

(2.6)

X~„(b)=— f dz U „(b+ze,) .

B. Optical potential

(2.3)
~x'"(b) =

, & (ix,„—& —ix,„))'&,1

x'"(b) =
3, &( x,.—& x,.&)'1

(2.7)

According to the prescription proposed by Glauber
[13], we can construct the local, energy-dependent, opti-
cal potential U, ,(R) in the following way. Define the
optical phase shift function x, ,(b) by

e "' =
&P 0~exp[i Xz(b+s /2) +i X„(b—s/2)]~$0) .

(2.4)

X,'p, (+R +x )
dx

0 &R '+x' (2.S)

To discuss the relation to the single folding model, let
us introduce the cumulant expansion [13] for the optical
phase shift function x, ,(b). Denoting x (b+s/2)
+x„(b—s/2) by x„„(b,s), we get

Then we construct the potential which gives the same
phase shift function as x, ,(b) Assuming th. at the optical
potential is local and spherically symmetric, it is uniquely
obtained as [ U, , ( ~ ) =0]

+ X,p,(b)
U, , (R)= — f b db

R dR z Qb2 R2—

where the notation & ) represents the matrix element
with respect to the wave function Po, for example,

&~'X „)=&Pol~'X „(b,s)I&0) . (2.8)

For each term of the cumulant expansion of Eq. (2.7),
we have the corresponding decomposition of the optical
potential

U, ,(R)= g U' '(R) .
k=1

(2.9)

~V(R)=V.„,(R) V'"(R)= y V'"'(—R) . (2.11)

As is verified easily, the first-order term just coincides
with the optical potential obtained by the single folding
model,

U"'(R)= f dr~go(r)~ [U (R+r/2)+U„(R—r/2)] .

(2.10)

The remainder of the expansion of Eq. (2.9) thus gives the
dynamical polarization potential
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The cumulant expansion is an expansion with respect
to the fluctuation of the internal proton-neutron motion
in the ground state of the deuteron. Neglection of the
fluctuation gives us the single folding model. The dynam-
ical polarization potential defined by Eq. (2.11) thus
reflects the extent of the fluctuation. It is evident that the
dynamical polarization potential becomes significant for
the projectile whose ground state is weakly bound and
possesses large fluctuation.

C. Analysis of d-' Ni reaction

%e analyze the optical potential of the deuteron with
Ni at Ed =80 MeV. %e analyzed various cross sections

for this system in I. As in I, the internal wave function of
the deuteron is taken to be S state. The optical potentials
of p- Ni and n- Ni are chosen to be the conventional
%oods-Saxon shape. No spin-orbit force is included. Pa-
rameters of the potentials are the same as those employed
in Ref. [12] for the analysis of CDCC method. We
neglect the effect of the Coulomb break-up process, that
is, we assume that the Coulomb force between the deute-
ron and the target nucleus works between the center of
masses of both nuclei.

In Fig. 1, solid curves show the deuteron optical poten-
tial given by Eq. (2.5). The optical potential by the single
folding model, U"'(R), is also shown by dashed curves.
The dynamical polarization potential is shown in Fig. 2

by the solid curve which is the difference between the
solid and dashed curves in Fig. 1. The repulsive break-up

effect on the real part of the optical potential, which has
been stressed as the common feature of the weakly bound
projectiles [9,10], is clearly seen in the surface region.
The imaginary part increases, which is thought to come
from the loss of the flux due to the elastic break-up pro-
cess.

Also shown in Fig. 2 are the first few terms of the cu-
mulant expansion of the dynamical polarization potential
defined in Eq. (2.9). Inclusion of up to fourth-order con-
tribution is presented. It should be noted that the
second-order contribution, U'2'(R ), is qualitatively simi-
lar to the full dynamical polarization potential, though
the higher-order contributions even higher than fourth
order are required for the quantitative discussion.

It will be worthwhile to further investigate the second-
order potential, U' '(R), since it gives the correct sign of
the dynamical polarization potential and its structure is
fairly simple. By its definition, the second-order potential
reflects the fluctuation of the phase shift function with
respect to the internal motion of the deuteron. Decom-
pose the phase shift function, g~„(b,s), into the real and
the imaginary parts, g „=RE„+iImy„,each term of
which comes from the real and imaginary parts of the
nucleon-target nucleus optical potential, respectively.
%e note that both Rey „and Imp „arepositive definite
since both the real and imaginary parts of the nucleon-
nucleus optical potential are negative for whole spatial
region [see Eq. (2.3)]. The second-order optical phase
shift function defined by Eq. (2.7) can be expressed as

d — Ni Qptical Potential
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F&G. 1. The optical potential for the d-"Ni system at E =80 MeV. Solid curves include the break-up effect while dashed curves

are the single folding model.
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Dynamical Polarization Potential
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FIG. 2. The dynamical polarization potential of the d-' Ni system (solid curves) and its decomposition into the cumulant expan-
sion. The contributions up to the second, third, and fourth order are shown by dotted, dashed, and dot-dashed curves, respectively.

Rey' '(b)=(Rey „)(Imp „)—(Rey~„Imp~„)= —((Rey~„—(Rey „))(Imp~„—(Imp „))),
Imp' '(b)= —,'[[((Rey „)) —(Reg „)] —[((Imp „)) —(Imp „)] ] .

(2.12)

For not very high incident energy, both the real and
imaginary parts of the phase shift function are expected
to be of the same sign and nearly proportional,
Rey „~Imp„,because of the near proportionality of
ReU „and ImU „.Then we 6nd that Reg' ' becomes
negative. The second-order potential has opposite sign to
y' ' [see Eq. (2.3)] and will be positive.

As for the imaginary part, it is a difference between the
fluctuations of the real and the imaginary parts of the
phase shift function. Since the shapes of the real and the
imaginary parts of the phase shift function are similar, its
sign depends on the strength of the optical potential. For
the energy region below 100 MeV/nucleon, the real part
of the optical potential is dominant. We then get a posi-
tive contribution for y' '(b) and negative contribution for
ImU' '. The above discussion explains the sign of the
second-order potential shown in Fig. 2.

In Fig. 3, we show the angular distribution of the
deuteron scattering. Dots are the experimental result
[14]. The dotted curve is the analysis by the CDCC
method which solves Eq. (2.1) quantum mechanically.
The solid curve represents the cross section calculated
with the optical potential defined by Eq. (2.5), that is, we
solved the Schrodinger equation with the optical poten-

0. 1 =

I

~
I

'I

o
u

10050
SCAT. ANGLE (deg)

FIG. 3. Angular distribution of d-"Ni elastic scattering at
E=80 MeV, quoted from I. The dashed curve is calculated by
the eikonal approximation, the dotted curve by the coupled
discretized continuum channels method [9], and the solid curve
is calculated with the optical potential which is constructed by
the use of the eikonal approximation. Dots are the experimen-
tal data [14].
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tial of Eq. (2.5) quantum mechanically. Nice reproduc-
tion of the CDCC result indicates that the reaction mech-
anisms including break-up process are properly taken
into account in the optical potential of Eq. (2.5). The
dashed curve is the cross section by the scattering ampli-
tude of Eq. (2.2), namely, the cross section by the optical
potential of Eq. (2.5) under the eikonal approximation.
The momentum transfer q is related to the center-of-mass
scattering angle 8 by q =2K sin(8/2). The difference be-
tween the solid and dashed curves represents the accura-
cy of the eikonal approximation in calculating the elastic
differential cross section. Though we used the eikonal
and adiabatic approximations in deriving the optical po-
tential of Eq. (2.5), the error due to the straight line tra-
jectory for calculating the angular distribution of the
elastic scattering is considerably removed by solving
quantum mechanically the Schrodinger equation with the
optical potential of Eq. (2.5).

U (R, r, , rz) = U,„.(R ) + U„(R+r, ) + U„(R+r2) . (3.2)

R,P represent the relative coordinate and the momentum
between "Li and the target nucleus, respectively. r; is
the coordinate vector of ith neutron with respect to Li.
p is the reduced mass of "Li and target nucleus. hp is
the internal Hamiltonian of "Li as a three-body system.
U9t . (R ) and U„(r) are the optical potentials of Li- and

neutron-target nucleus, respectively. For simplicity, we
ignore the difference between the center of masses of "Li
and Li.

The wave function %(R,r„r2)describes the reaction
process where both Li and target nuclei are in their
ground states. We presented in I detailed discussion of
the reaction dynamics involved in Eq. (3.1) under the
eikonal and the adiabatic approximations. Under the ap-
proximations, the elastic scattering amplitude is given by

(3.3)

III. OPTICAL POTENTIAL OF "Li

We assume that the ground-state structure of "Li is
well described by the ( Li+n +n } three-body model. We
describe the "Li reaction by the (9Li+n +n}-target nu-
cleus four-body model:

p2
+ho+ U(R, r„r2) )Ii(R, r„r2)=E)Ii(R,r, , rz),

2p

(3.1)

ohio= ohio . (3.5)

+9~.( b ) and y„(b ) are the phase shift functions for

Ust, (R ) and U„(r), respectively.
Let us define the optical phase shift function y,p, (b) by

iy (,b)+iy (b)lgp t / ( iy(b, sl. s2~i w 9~; 2n
(3.6)

ir2„(b) i, )
i r„(b+s)) +i r„(b+s 2)( (3.7)

The optical potential is obtained from y,p,(b) by the same
formula as Eq. (2.5). As y, ,(b) is given as the sum of
+9t .( b ) and yz„(b ), the optical potential is also given as
the sum of Li and the halo-neutron contributions,

U, p(R)= U9„(R)+U. ~„(R), (3.8)

U9~. (R ) is the same potential of Li-target nucleus as we

employed in Eq. (3.1) as input. U2„(R) is obtainable
from yz„(b)by the same procedure as Eq. (2.5) and in-
cludes the effect of the halo-neutron break-up.

As we have done in the deuteron case, we introduce
the cumulant expansion for the phase shift function and
the optical potential to the halo-neutron part,

+ oo

&g2„(b)= g ignis'(b),
k=1

(3.9)

U2„(R)=g Up„'(R) .
k=1

(3.10)

Ur, )d(R) = U9, (R)+ Uq„'(R) . (3.12)

The remainder of the expansion of Eq. (3.10) gives the
dynamical polarization potential which reflects the
break-up process of "Li into ( Li+n+n) three-body
continuum states,

hU(R)= U2„(R)—U2„'(R)= g U2"„'(R).
k=2

(3.13)

As an example, we will analyze the optical potential of
the "Li-' C system. First we discuss the radial depen-
dence of the potential at E/A =60 MeV. We utilize the
same setup as we used in I. We assume the (p)&2)z
configuration for the halo neutron,

Each term of the expanded phase shift function is defined
in the same way as Eq. (2.7).

The lowest-order term gives the single folding model,

U2"„'(R)=fdr p2„(r)U„(R r), — (3.11)

where p2„(r) represents the density distribution of the
halo neutron. The single folding potential of "Li-target
nucleus is given by

g(b s) sp) J9t.(b)+g„(b+s))+g„(b+s2), (3.4) ~0(rl r2} ~~(p / )( ))~(p (3.14)

where K is the relative wave number. s; is the projection
of r,- onto the plane perpendicular to the incident direc-
tion. (I)o represents the ground-state internal wave func-
tion of "Li as a three-body system and satisfies

The single particle wave function g( )(r) is constructed~ 1/2
with the Woods-Saxon potential, whose depth is chosen
so as to set the single particle binding energy equal to 0.1

MeV. As for the neutron-' C optical potential, we use
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the conventional Woods-Saxon potential without spin-
orbit force. Parameters for the potential are the follow-
ing:

P'=3/ 4 MeV r~
——] 2 fm, ag ——0 75 fm,

8 =10 Mev, ri=1.3 fm, ai=0. 6 fm .
(3.1S)

V=140 MeV, r& =0.7 fm, a& =0.9 fm,

8'=25 MeV, "I 0 98 fm, ar 0 75
(3.16)

The radius parameter Rz is given by rz(9'~ +12'~ ).
Figure 4 shows the obtained "Li-' C optical potentials.

Uz„(R)of Eq. (3.8) and the single folding result, U~2'„'(R),
of Eq. (3.11) are compared. U, . (R) is also shown for
reference. The long range nature of the optical potential
of the halo-neutron part is due to the spatially extended
density distribution of the two neutrons which constitute
the halo. As is expected, the strong effect of the break-up
is seen in both the real and imaginary parts of the optical
potential. The repulsive effect for the real part and the

The above parameters are enough for the calculation of
Uz„(R) of Eq. (3.8). To get a total "Li-' C optical poten-
tial, we should add Li-' C optical potential, U9 . (R), to
it. At present no phenomenological potential for U9L. (R)
is available. We also took the Woods-Saxon potential for
this case, whose parameters are chosen as

increase of the absorption are the same properties as
those of the deuteron case.

Figure 5 shows the decomposition of the dynamical po-
larization potential into the cumulant expansion. As in
the case of the deuteron shown in Fig. 3, the second-
order result gives the same sign as the fu11 dynamical po-
larization potential. However, the convergence of the cu-
mulant expansion is very slow. It means that the break-
up process is highly nonperturbative and the
classification according to the moments of the fluctuation
is not so useful, though it gives the single folding model
in the lowest order.

We next investigate the energy dependence of the opti-
cal potential. Solid curves in Fig. 6 show the energy
dependence of the halo-neutron contribution to the opti-
cal potential at E.=6.5 fm. The folding model results
given by Eq. (3.11) are also shown by dashed curves. The
parameters for the optical potential of the n-' C system is
given in I. The abrupt changes of the curves at a few en-
ergies come from the different parametrization of the n-
' C optical potential for each energy interval. As for the
real part, the dynamical polarization potential increases
for low incident energy. In the low incident energy re-
gion the dynamical polarization potential is so large that
it almost cancels the attractive potential due to the single
folding model. The imaginary part of the optical poten-
tial due to the halo neutron is closely related to the total
reaction cross section and the two-neutron removal cross

'~l,j — ' C Optical Potential
E/A = 60MeV

0
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I
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FIG. 4. The optical potential of the "Li-' C system at E=60 MeV/nucleon. Halo-neutron contribution to the optical potential is

shown by the solid curves. Halo-neutron contribution by the single folding model is also shown by dashed curves. The Li-' opti-

cal potential assumed in our calculation is shown by dotted curves.
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Li — C Dynamical Polarization Potential
E/A = 60MeV
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F&G. 5. The dynamical polarization potential of "Li-' C and its decomposition according to the cumulant expansion.
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FIG. 6. The energy dependence of the halo-neutron contribution to the "Li-' C optical potential at R=6.5 fm. Solid curves

represent the halo-neutron contribution including the break-up effect. Dashed curves represent the potential by the single folding

model.
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IV. ELASTIC DIFFERENTIAL CROSS SECTION OF "Li

The differential cross section for the elastic scattering
of the "Li-' C system at E/A =60 MeV is calculated us-

ing the optical potential obtained in the preceding section
and is shown in Fig. 7. The solid curve represents the re-
sult by solving quantum mechanically the Schrodinger
equation with the optical potential of Eq. (3.8}. The dot-
ted curve is the differential cross section by the scattering

Li — C Elastic Scattering
E/A = 60MeV
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FIG. 7. The elastic scattering cross section of "Li-' C at
E/A=60 MeV. The solid curve represents the cross section
with the optical potential of our theory. The dotted curve is the
cross section with the same optical potential under the eikonal
approximation. The dashed and dotted curves are with the po-
tential of single folding model and the optical potential of Li-
' C system, respectively.

section of "Li. In the energy region considered in this

paper, the total reaction cross section by our theory is
larger than that by the folding model as discussed in I.
At the incident energy of 200 MeV/nucleon, the dynami-
cal polarization potential almost disappears. This is con-
sistent with the discussion given below Eq. (2.12},that is,
the sign of the imaginary part of the dynamical polariza-
tion potential depends on the relative strength of the real
and imaginary parts of the neutron optical potential. At
about this energy, the real part of the optical potential
becomes less significant than the imaginary part. Above
this energy the inclusion of the break-up effect is expect-
ed to diminish the absorption. The same conclusion is

obtained in the analysis of the two-neutron removal cross
section at high incident energy based on the Glauber's
multiple scattering theory [15].

amplitude of Eq. (3.3) under the eikonal approximation.
The small difference between the solid and dotted curves
indicates that the eikonal approximation in calculating
the angular distribution is quite accurate for this system.

For comparison, the cross section with the optical po-
tential of the single folding model given by Eq. (3.11) is
also shown by the dashed curve. The dot-dashed curve
represents the cross section with U9 . (R) only, that is,

the cross section when we neglect the interaction between
the halo neutron and the target nucleus. In other words,
it represents the cross section of Li-' C elastic scattering
with the assumed optical potential of U9 . (R). It is how-

ever plotted in the center-of-mass frame of "Li-' C.
At large scattering angles, the solid curve is much

smaller than both the dashed and dot-dashed curves.
Compared with the dot-dashed curve which represents
Li-' C scattering, the solid and the dashed curves in-

clude the halo-neutron contribution to the optical poten-
tial. The attractive contribution to the real part of the
optical potential works to increase the cross section at
large angles while the absorptive contribution to decrease
it. The fact that the cross section of the single folding
model is close to that of Li-' C indicates that the effect
of the halo contribution to the real and the imaginary
parts works just to cancel each other. The inclusion of
the break-up of the halo neutron contributes to weaken
the real part of the optical potential and to make stronger
the imaginary part. Both contributions decrease the
cross section at large scattering angle. Then the solid
curve predicts the small cross section of "Li-' C at large
scattering angle.

To investigate the role of the dynamical polarization
potential in more detail, we compare the follow-
ing in Fig. 8; the solid and the dashed curves are the
same as those of Fig. 7, i.e., the cross section
calculated with U, , (R ) = U9, (R )+ U2„(R) and

Uf fd (R ) = U9t . ( R ) + U2'„'(R), respectively. The dotted
curve represents the cross section where the real part of
the dynamical polarization potential is included,
U9L (R)+UI'„'(R)+.Red, U(R). In the dot-dashed curve

the imaginary part of the dynamical polarization poten-
tial is included, U9 .(R)+ U~ ''(2R)+i ImhU(R). Both
the real and imaginary parts of the dynamical polariza-
tion potential work to decrease the elastic differential
cross section to the approximately same extent. The de-
crease of the cross section due to the imaginary part of
the dynamical polarization potential would be simply un-
derstood by considering that the "Li nucleus is easy to
break-up on receiving the large momentum transfer. The
real part of the dynamical polarization potential, though
it is difficult to get an intuitive picture, plays also an im-
portant role as in the case of the deuteron scattering.

The uncertainty of our calculation mainly comes from
the lack of the knowledge of the Li-' C interaction. We
hope that the elastic scattering cross sections of both "Li
and Li will be measured to make a definite discussion on
the role of the halo neutron. At present the available
data for "Li-' C reaction at the intermediate energy re-
gion is only the total interaction cross section. Our
analysis in I showed that it was reasonably well repro-
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FIG. 8. The elastic scattering cross section of "Li-' C at
E/A =60 MeV. The solid and dashed curves are the same as
those of Fig. 6. The dotted and dot-dashed curves are the cross
section with the inclusion of the real part and the imaginary
part of the dynamical polarization potential to the single folding
potential, respectively.

duced by our model. To examine the dependence of the
qualitative features discussed above on the choice of the
assumed Li-' C optical potential, we show in Fig. 9 the
elastic differential cross section calculated when the pa-
rameter rl in Eq. (3.16) is varied from 0.98 to 1.08 fm. It
should be noted that this choice of the Li-' C optical po-
tential would somewhat overestimate the total interaction
cross section of "Li-' C. The elastic scattering cross sec-
tions of Fig. 9, though small in magnitude compared with
those in Fig. 7, show features qualitatively very similar to
those of Fig. 7. Thus the discussion concerning the role
of the halo neutron on the cross section will hold ir-
respective of the assumed U9„.(R ) optical potential.

V. CONCI, UMNG REMARKS

We have discussed, on the basis of the eikonal approxi-
mation, the role of the break-up process in the optical po-
tential and the elastic scattering of weakly bound projec-
tiles such as deuteron and "Li nucleus.

Our framework provides us with the description of the
dynamical polarization potential due to the break-up pro-
cess in terms of the phase shift function. Especially the
dynamical polarization potential is discussed in relation
to the Auctuatjon of the nucleon motion of the projectile

FIGe 9. The same as Fig. 7 but the parameter of the optical
potential of Li-' C is slightly changed. See the text for the de-
tail.

ground state. The deuteron scattering has first been
treated in our theory and its results has been compared
with the CDCC calculation. This test example has
demonstrated that our treatment is a quite good approxi-
mation to a description of the break-up process at inter-
mediate and high energies.

We have applied our framework to "Li-' C elastic
scattering at E/A =60 MeV. We have found the strong
effect of the break-up process both on the optical poten-
tial and on the differential cross section. As in the case of
the deuteron, the break-up of the halo neutron makes a
repulsive contribution to the real part and an absorptive
contribution to the imaginary part of the optical poten-
tial. Because of this property, the break-up effect works
to decrease the elastic scattering cross section at large
scattering angle significantly compared with the folding
model result. Comparison of the cross section is also
made with the elastic cross section of Li-' C at the
center-of-mass frame of "Li-' C. Our calculation pre-
dicts that the cross section of "Li-' C elastic scattering is
much smaller than that of Li-' C.
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