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Microscopic analysis of alpha scattering from 28Si at 40 and 45 MeV
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Angular distributions for the elastic and inelastic alpha scattering from 2%Si at E,=40 and 45 MeV
are analyzed in the framework of microscopic folding model. Transition densities are calculated from
improved s-d shell-model wave functions and are also compared with those extracted from inelastic elec-
tron scattering data. The density-dependent Jeukenne-Lejeune-Mahaux interaction is used, besides the
M3Y interaction, in an attempt to fit the large-angle data. Fairly good agreement with the data is ob-
tained. The extracted M, /M, value for the 2% excited state of **Si also compares well with the shell-

model prediction.

PACS number(s): 25.55.Ci

I. INTRODUCTION

The microscopic folding model was proposed as an al-
ternative to the phenomenological description of the elas-
tic scattering data to avoid the ambiguities [1] associated
with the latter. Later it was extended to deformed fold-
ing model to describe the inelastic scattering events
[2-4]. The basic ingredients in the deformed folding
model are (i) the transition density, a quantity carrying
all the nuclear structure informations, and (ii) an effective
interaction fixed by the consistency requirement with the
elastic scattering data. Because of its capacity of incorp-
orate detailed structure informations and to bring out the
transparent relationship between the N-N interaction and
the nucleus-nucleus potential, the model has been found
to be quite successful in describing the inelastic scattering
data [5-11].

In this study a fully microscopic folding model analysis
of inelastic scattering of a particle from the 2% (1.78
MeV) state of 28Si at E, =40.0 and 45.0 MeV is present-
ed. The experiment was performed at Variable Energy
Cyclotron Centre, Calcutta. The details of the experi-
ment are given in Refs. [12] and [13].

Emphasis is given, primarily, in obtaining the transi-
tion density of the 0; . to 2% (1.78 MeV) transition in
288i. The shell-model transition density with amplitudes
obtained from the s-d shell calculation of Brown et al.
[14] has been used. This nuclear structure calculation
with the improved effective interaction [15] has proven
very successful in describing electron scattering
[14,16,17] and proton scattering at 200 to 400 MeV from
2*Mg and 2Si [11]. But as far as we know, it has not been
used in « scattering, an isoscalar probe, and is also rather
strongly absorbed in the nucleus, unlike a proton. We
therefore thought it worthwhile to test this in (a,a’)
scattering data. In addition to this, the proton transition
density derived from the inelastic electron scattering [18]
is also used. Then the neutron transition density for such
an isoscalar transition in a nucleus with N = Z is assumed
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to have the same shape. In the light of the a scattering,
it would be interesting to observe the shell-model transi-
tion density in comparison with the model-independent
transition density from the electron scattering data.

In the present analysis, we used the g-matrix-based
M3Y interaction as one of the effective nucleon-nucleon
interactions. The exchange effect that is important in
this low-energy domain is included as a pseudopotential
of zero range [8]. Being real in nature, the interaction
yields only the real part of the nucleus-nucleus potential.
It is energy independent and we did not consider the mul-
tiplicative factor to take into account the density-
dependent effect [8,9]. Instead, along with the standard
M3Y, we used the energy- and density-dependent
effective interaction of Jeukenne, Lejeune, and Mahaux
(JLM) [19]. Recently, Hogenbirk et al. [20] had indicat-
ed in their study of a scattering from *°S at E_,=36.61
MeV that for low beam energy the JLM interaction may
be more applicable than the standard M3Y. Good agree-
ment with the data was also obtained by the same authors
from proton scattering at E, =28 MeV [21] from *S.
Unlike the M3Y, the JLM interaction is complex and
generates both the real and imaginary components of the
potential on folding.

For the sake of completeness, we used the same
density-independent M3Y and density-dependent JLM
interactions in the analysis of the elastic scattering data
and obtained the ‘“renormalization” factors often neces-
sary for the folded potentials. The elastic scattering of al-
pha particle is a well known case where the a projectile,
instead of being restricted only to the peripheral region,
probes beyond the strong absorption radius producing
the enhanced large-angle scattering. An attempt is also
made to fit these data in the large-angle region in the mi-
croscopic model framework. The density dependence of
the effective interaction accounts for the weak absorption
in the interior and hence the density-dependent JLM in-
teraction in comparison with the density-independent
M3Y should give a better description of the large-angle
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data. Normalization factors are determined from the
overall fit to the data. Since the inelastic scattering
selects the higher multipole components of the same in-
teraction than the elastic, it provides a more consistent
and stringent test of the interactions.

II. CALCULATION

The detailed procedure has been described in Refs.
[22] and [23]. We will mention only the essential features
of our calculation. The effective nucleon-nucleon interac-
tion M3Y is employed in the form

VNN("IZ):(}‘R +i}\.1)UNN(r12) N (1)
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is the “standard” energy- and density-independent form
of the real M3Y interaction. The complex normalization
factor is used to take into account the effect of the ab-
sorptive component of the optical potential. In this
prescription it is tacitly assumed that the real and imagi-
nary parts have similar range and shape.

To include the JLM interaction in the framework, the
density, the energy, and the radial dependences of the
effective nucleon-nucleon interaction may be written in a
factorized form [24] as

vy =v(pppy, Eh(ry,) . 3)

In our calculation we do not consider the projectile densi-
ty (p,) dependence of the interaction and use the isoscal-
ar JLM interaction [19] in the improved local density ap-
proximation for v(p;,E). For the function h(r;,), the
usual Gaussian form is used with a range t =1.2 fm. The
energy E in Eq. (3) is actually the energy per nucleon of
the projectile after the Coulomb energy is subtracted. As
mentioned before, the JLM interaction is complex and
following Hogenbirk et al. we assume that the imaginary
part of the potential can also be generated by double fold-
ing. Because of low beam energy (=50 MeV) and the
large binding energy of the projectile alpha, breakup will
not have any significant effect. According to Negele and
Yazaki [25] the theoretical Im v(p,, E) is to be multiplied
by the k-mass factor to include the effect of nonlocality.
But in this low-energy domain (E /A ~10 MeV), as the
nature of the experimental curve (Fig. 1 of Ref. [25]) sug-
gests, this correction may not be necessary. Hence we
use the folded imaginary potential without the nonlocali-
ty correction.

Before the two interactions are applied to inelastic
scattering, to impose the consistency constraint, they are
used to yield reasonably good fit to the elastic scattering
data. The interactions, with the normalization factors
thus obtained, are used to generate the transition poten-
tial. For the folded optical potential, the density of the
projectile is taken to be Gaussian [8],
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pa(r,)=0.4229 exp(—0.7024r3) , )

and a Fourier-Bessel expansion is used to obtain the
ground-state density of the target 28Si. The coefficients of
the expansion are taken from Ref. [26] and the normali-
zation is determined from the relation

fpl(rl)d3r1=A . (5

The ground-state density is further unfolded to obtain the
point-nucleon distribution.
The proton component of the total transition density

prL(r)=p& (r)+pl(r) (©)

is derived by unfolding the charge transition density ob-
tained from the inelastic electron scattering [24]. Nor-
malization is fixed by

M,= [ pa(r)rt+ar
=[B(EL);J;—~J/]"/*. 7))

The charge transition matrix element M ; =e M,, is taken
to be 18.09 e fm? for 0; . to 27 (1.78 MeV) transition in
288i. The neutron transition density p} is, however, as-
sumed to have the same shape as the proton transition
density pf, an approximation often used for isoscalar
transitions in many nuclei with N ~Z. Hence

PL=N.p% ,
pL=(1+N,)pf .

A direct consequence of this assumption is that the ratio
of the neutron transition matrix element M, to the pro-
ton transition matrix element Mp, ie., M, /Mp, is equal
to N,, the normalization constant determined by fitting
the experimental cross section once the effective
nucleon-nucleon interaction is properly chosen. We will
present a comparison of the values of M, /M, obtained
with the transition density from electron scattering and
from the shell-model calculations.

The shell-model transition density is derived in the
core plus valence nucleons approach. The valence contri-
bution A‘(r) (i=p,n) is calculated using the one-body
density matrices (OBDM) tabulated by Brown et al. [14]
(values given in isospin representation are converted to
proton-neutron representation multiplying by a factor of
1/V'2). The details of the calculation are given in Ref.
[10]. For the “core” transition density C'(r), which is
to account for the effects of excitation of valence nu-
cleons outside the model space as well as the polarization
of the closed shells, we have chosen the shape to be the
same as A '(r), so that

C(i)(r)zN(i)A(i)(r) . (9)

(8)

Hence the transition matrix elements become
Mi = f( A (i)+c(i))rL +2dr
=(1+NM} . (10)

The valence transition matrices M are known from 4.
The core normalizations N'” are evaluated using the
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TABLE I. The volume integrals per nucleon and the rms radii of the real and imaginary components.

Energy Volume integrals rms rad

(MeV) Interaction Ar Ar Real Imaginary (fm)

40 M3Y 1.05 0.25 —426.92 —101.65 3.625 3.625
JLM 0.90 1.00 —421.02 —103.02 3.910 4.131

45 M3Y 1.00 0.40 —406.59 —162.64 3.625 3.625
JLM 0.90 1.00 —416.93 —108.39 3912 4.148

effective charges e,,e, =1.35 and 0.35 for valence pro-
tons and neutrons, respectively, for the quadrupole exci-

tation in 2Si, an s-d shell nucleus.
III. RESULTS AND DISCUSSION

The folded optical potentials with the M3Y and JILM
interactions are presented in Fig. 1. The volume integrals
per nucleon and the rms radii of the real and imaginary
components are given in Table I. In the large r region, a
region most sensitive to a scattering, the potential ob-
tained with JLM interaction falls off more slowly com-
pared to that obtained with the M3Y interaction. The
elastic scattering fits obtained with these potentials are
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FIG. 1. Folded optical potentials with M3Y and JLM in-
teractions. (a) Real potentials and (b) imaginary potentials for
E,=40 and 45 MeV. Curve in (b) represents the imaginary po-
tential with the nonlocality correction for JLM interaction.

shown in Fig. 2. We note that the angular distribution
calculated with JLM interaction does not fit the elastic
scattering data well whereas an overall good fit is ob-
tained with the M3Y interaction. The maxima and mini-
ma in the case of JLM interaction tend to shift inwards.
The reason may be the greater diffuseness of the folded
JLM interaction in the outer region. In Fig. 1(b) we also
presented a plot of the imaginary potential for E, =45
MeV which included the nonlocality correction of Negele
and Yazaki. The use of this potential component yielded
an angular distribution which considerably overestimated
the data in the backward region without affecting much
the data in the forward angle region. Hence in our final
analysis we did not use this correction. The renormaliza-
tion factors (Ag,A;) needed for folded potentials are also
shown in Table I. As expected, the normalizations for
the real components (Agz ) of the M3Y and the JLM in-
teractions and also the normalization for the imaginary
component (A;) of the latter are close to unity. To main-
tain a consistency in the analysis the same set of A, and
A; are used to generate the distorted waves for the inelas-
tic scattering analysis.

The transition densities from inelastic electron scatter-
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FIG. 2. Elastic scattering fits with the folded potentials. Mi-
croscopic fits (a) for 40 MeV and (b) for 45 MeV. The solid
curve is with M3Y and the dotted curve is with JLM interac-
tion. All the curves for E, =45 MeV are scaled down by a fac-
tor of 0.005 for convenience in plotting.
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ing and from shell-model calculations are shown in Fig.
3(a). The calculations utilize the shell-model results of
Brown, Radhi, and Wildenthal (Table I, Ref. [11]). The
single particle wave functions were determined using the
Woods-Saxon shape potential with V,=—51.41 MeV,
ro=1.277 fm, a;=0.362 fm, A, =24.0, r,, =1.1 fm,
and a,, =0.650 fm, in an orbit-independent manner.
Search is performed over the binding energies with the
BOUND subroutine of code DWUCK4. With these wave
functions for the valence shell the valence neutron and
proton transition matrices are M,*'=10.1572 fm” and
MPV"‘= 10.499 fm?. Taking into account the core contri-
bution through the effective charges e,=1.35 and
e, =0.35 the total neutron and proton transition matrices
came about to be 17.3868 and 17.7286 fm?, respectively.
The real transition potentials are shown in Fig. 3(b). The
potentials, obtained by folding the density-dependent
JLM interaction, include the correction by Cheon et al.
[27] that incorporates essentially a dynamic dependence
on density for the transition potential. With this correc-
tion the imaginary transition potential with the JLM in-
teraction, having a node in its radial shape, differs vastly
from the others. In spite of this difference, the quantita-
tive nature of the agreement with the data improved
significantly and both the models now yield more-or-less
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FIG. 3. (a) Transition densities for 2% (1.78 MeV) state of
28Si. (b) The real form factors with M3Y and JLM interactions
for E,=45 MeV. Curves 3 and 4 of (b) are form factors with
and without Cheon correction, respectively.
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FIG. 4. Differential cross-section data for the 1.78 Mev 27
state of 2Si (a) for 40 MeV and (b) for 45 MeV. The solid and
dash-dotted curves are with M3Y interaction using the shell-
model and the macroscopic [from (e,e’) data] transition densi-
ties, respectively. The dotted curve is with JLM interaction us-
ing the shell-model transition density. All the curves for 45
MeV are scaled down by 0.001 for convenience.

similar angular distribution.

The differential cross sections for inelastic scattering to
2%, 1.78 MeV state have been presented in Fig. 4. Good
fits are obtained with the fully microscopic calculations.
Though like the elastic scattering description here also it
is observed that with the density-dependent JLM interac-
tion the distributions tend to shift inward. In the back-
ward angle region (6, ,, =90°), the fit obtained with JLM
interaction for E, =40 MeV is slightly better compared
to the calculated angular distribution with M3Y interac-
tion. For E,=45.0 MeV, in the large-angle region, none
of the calculated angular distributions fit the data well.
While the angular distribution with the JLM interaction
overestimates the data, that with the M3Y underesti-
mates it.

The isoscalar transition strength M,=M, +M,, which
gives a measure of the strength of the transition, and the
ratio M, /M, are determined form the distorted wave
Born approximation fit to the data with the transition
density from the (e,e’) form factor. The fitted density
gives M;=35.456 fm® and hence N,=M,/M,=0.96.
The shell-model calculation predicts M,=35.11 fm* and
the ratio M, /M,=0.98. The qualitative agreement be-
tween the shell-model prediction and the fitted value is
quite good, assigning greater confidence in the analysis
and the shell-model wave functions of Brown and Wil-
denthal for the low-lying quadrupole states.

IV. CONCLUSION

A fully microscopic calculation of a scattering from
28Si at 40.0 and 45.0 MeV with a density- and energy-
independent effective interaction (M3Y) and a density-
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and energy-dependent interaction (JLM) was attempted.
Our primary interests were twofold: firstly, to see how
far a microscopic calculation can describe the angular
distribution data that extend up to a very large angle, and
secondly, to test the shell-model transition density in
comparison with the density from the (e,e’) data that can
be used directly in the microscopic framework to gen-
erate the transition potential. Two types of effective in-
teractions were used to make our inferences independent
of the nature of the interactions. Following the con-
sistency condition the same folded interactions which de-
scribed the elastic scattering data quite well were used to
generate the distorted waves for the inelastic scattering.
We also derived the isoscalar transition strength M, and
the ratio M, /M, from the fit and compared with the

shell-model predictions.

It is observed that good quality fits are obtained in the
microscopic framework with both the density-dependent
and -independent effective interactions. This indicates
that the microscopic prescription can be successfully em-
ployed to describe the low-energy a-scattering data. The
improved s-d shell wave functions with correct radial fall-
off, as tested by the scattering of alpha particles, describe
the structure of the low-lying 2% state of 28Si well, a view
also supported by (e,e’) and (p,p’) scattering data.
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