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Elastic scattering of deuterons from Pb in the energy range Ed =9 to 79.2 MeV is analyzed using a
dispersive optical model potential (OMP). In this analysis, a dispersion relation connects the volume in-
tegrals of the imaginary and the real parts of the OMP. Best-fit dispersive OMP parameters are obtained
from fits to experimental cross-section and analyzing power data at one energy, and dispersive OMP pa-
rameters with a smooth energy dependence are determined from fits to the entire data set. Comparisons,
showing fits of similar quality, of the predictions of the cross sections and analyzing powers given by the
best-fit dispersive OMP and standard OMP are presented. Dispersive OMP parameters with a smooth
energy dependence also give a good description of the experimental data.

PACS number(s): 24.10.Ht, 24.70.+s, 25.45.De

I. INTRODUCTION

In recent years, a great deal of theoretical attention has
been devoted to the development of an optical model po-
tential (OMP) that represents a consistent formulation of
the nucleon-nucleus mean field at both positive and nega-
tive energies [1—6]. In this unified description the real
central OMP is defined with two terms. One, which
varies slowly with energy, is taken to represent the local
equivalent of the energy-independent but nonlocal
"Hartree-Fock" component of the nuclear mean field.
The second or "correction" term, which often manifests a
more complicated radial and energy dependence, is de-
rived at positive energies from a phenomenological com-
plex potential based on a dispersion relation (a conse-
quence of causality). The combined potential, also called
a dispersive OMP, may be extrapolated to negative ener-
gies where it is taken to represent the mean field of the
bound nucleons.

The dispersive optical model has been successfully ap-
plied to an understanding of the energy dependence of
the optical potential for the n+ Pb and p+~ Pb sys-
tems [5,6]. The extrapolated potential also successfully
describes bound-state properties such as single-particle
energies, occupation probabilities, and absolute spectro-
scopic factors. This success suggests that it may be
profitable to apply this model to composite particle
scattering, at least at positive energies. These attempts
have been successful in the study of the energy depen-
dence of the real central potential for Pb(' 0, ' 0) Pb
and Ca(a, a) Ca elastic scattering as reported by
Mahaux et al. [1]. In those studies, the composite parti-
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cle analogues to the bound-state problem at negative en-
ergies were not investigated.

In this paper, the dispersive optical model is applied
for the first time to the analysis of d+ Pb elastic
scattering. The dispersion relation used previously for
the nucleus-nucleus case [1] is employed in the present
study. This dispersion relation is distinguished from the
nucleon-nucleus version by the absence of the correlation
component in the correction term [1,2] for the real cen-
tral potential.

The study of composite projectiles also requires a
prescription for the selection for the Fermi energy, the
lower limit of the dispersion relation integral. Ioannides
and Johnson [7] studied deuteron propagation through
nuclear matter and finite-size nuclei, and found that the
"deuteron" is less bound in the nucleus than in free
space, especially at low bombarding energies, and that it
may be regarded as an n-p pair. Thus we have chosen the
deuteron Fermi energy to be the sum of the neutron and
proton values [1,8], i.e., Ez= —11.56 MeV for Pb.
The real part of the dispersive OMP, evaluated in the
positive-energy region by fitting the d+ Pb elastic-
scattering data, may be extrapolated into the negative-
energy region. This extrapolated potential might be use-
ful in the study of the bound-state properties for n-p pairs
even though there are no bound deuteron states in the
same sense as there are bound single-particle states in the
nucleus.

In a nucleon-nucleus dispersive analysis, a set of
optical-model parameters are obtained that provide a
good fit to a large set of scattering data (positive energies)
as well as bound-state information (negative energies). In
these analyses [1—5], it is usual to assume that the geome-
trical parameters of the imaginary part of the OMP are
independent of energy. This simplifies the integrals in the
dispersion analysis and results in analytic forms for the
correction terms. Similarly, analytic forms for the energy
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dependence of potential depths are also assumed. In the
present analysis, we take a somewhat different approach.
The constraints of the dispersive analysis are applied to
the volume integrals of the potential, since they are better
determined by the data than any single geometric param-
eter. Initial values of the volume integrals are obtained
from best fits applying a standard OMP to individual
data sets. These volume integrals exhibit a smooth and
easily parametrized energy dependence. In the subse-
quent search using dispersive constraints, the volume in-
tegrals of the imaginary terms are kept fixed at the
parametrized values. The volume integrals of the correc-
tion terms in the real central potential are evaluated us-
ing the volume integrals of the imaginary potentials
through the dispersions relation (see Sec. III). In this
way, the energy dependence of the volume integrals of
the imaginary potentials and the correction terms are
determined before the search for individual dispersive
OMP parameters. The resulting dispersive OMP typical-
ly has a smooth energy dependence. This is helpful for
interpolating the OMP parameters to other energies.

The database used in the dispersion analysis is dis-
cussed in Sec. II. The formulation of the dispersive OMP
is described in detail in Sec. III. The results of the disper-
sive OMP individual best-fit analyses are presented in
Sec. IV, while we present in Sec. V the dispersive OMP
with smooth energy dependence for deuteron scattering
from Pb. Section VI is devoted to discussion and Sec.
VII presents a summary of this study.

orbit potential in the optical model analysis. In set III,
the OMP parameters were obtained by Murayama et al.
[10]using a potential with central and spin-orbit terms fit
to data sets containing both cross section and analyzing
power information in the energy range 10~ Ed 23 MeV.
However, in this analysis, the potential was constrained
to allow only the variation of the real and imaginary cen-
tral potential depths. The rest of the parameters in the
potential were held constant at values similar to those
given in Ref. [17]. The set IV parameters [11—16] were
obtained by fitting central and spin-orbit terms without
constraints to data sets containing both cross section and
analyzing power information in the energy range
9 + Ed 79.2 MeV.

In order to complete the dispersive analysis of the
d+ Pb data in the way described in Sec. I, a smooth
energy-dependent set of volume integrals must be ob-
tained from the standard OMP parameters. The volume
integral per nucleon of the real and imaginary central po-
tentials, Jz and J~, are shown in Fig. 1. Both volume-
integral sets that are based solely on cross section data
(potential sets I and II) show considerable variation.
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II. THE DATABASE USED IN THE
DISPERSIVE ANALYSIS

We have made use of deuteron scattering data [9—16]
from Pb that have been published in the energy inter-
val between 8 and 90 MeV. At some energies the data
consist of just differential cross-section measurements,
while at other energies, both cross section and analyzing
power measurements have been reported. While the
differential cross section and vector analyzing power are
sensitive primarily to the central and spin-orbit corn-
ponents of the OMP, the tensor analyzing powers are
sensitive in addition to spin-1 tensor terms. Since the
focus of this study is on the relationship between the real
and imaginary parts of the central potential, we have
chosen to exclude tensor analyzing power data from the
analysis. A real spin-orbit potential is included as an
essential part of the description of the vector analyzing
power data. One possible extension of this work would
be to introduce an imaginary spin-orbit term, possibly at
the higher bombarding energies, and to expand the
dispersive model to include this spin dependence.

All of the elastic-scattering data sets have been repro-
duced using the standard optical model [9—16]. We clas-
sify these OMP parameters into four sets, based on the
method used in the analysis. The OMP parameters in
sets I and II are those tabulated in Ref. [9]. Set I with
data in the energy range 8 Ed 90 MeV has no spin-
orbit term and reproduces only elastic di5'erential cross
section measurements. Set II contains the same data as
set I (only differential cross sections), but includes a spin-
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FIG. 1. Energy dependence of the volume integrals of the

real and imaginary central optical potentials for deuteron elastic
scattering. The cross, diamond, fancy square, and filled circles
refer to optical potential sets I, II, III, and IV, respectively. The
solid lines denote the global optical potential of Daehnick et al.
[17] and the dashed lines refer to the global optical potential of
Bojowald et al. [19].
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Thus, they would not make a satisfactory basis on which
to understand the energy dependence. The parameters of
potential set III have a smooth energy dependence that is
an artifact of the constraint of the potential geometry. In
contrast, the values from potential set IV appear to vary
smoothly with energy in a manner similar to the nucleon
dependence of Ref. [5]. Thus we have restricted our con-
sideration to only this set. These data, available at ener-
gies of E&=9.0, 12.3, 22.0, 28.8, 56.0, and 79.2 MeV,
provide good coverage of the energy regime below 100
MeV. Once the analysis was underway, we obtained new
data, which contained both cross sections and vector
analyzing powers at E& =15.0, and 18.0 MeV from Ref.
[10] and E&=20.0 and 52.0 MeV from Ref. [18]. The
data are compared with the predictions given by the
present dispersive OMP in Sec. V.

The solid and dashed lines in Fig. 1 indicate the calcu-
lated energy dependence of the global optical potentials
of Daehnick [17] and Bojowald [19], respectively. Both
global optical potentials give good descriptions for the
volume integrals of the imaginary part of the optical po-
tentials, the sets I-IV, above about 30 MeV, but fail for
the sets II-IV at lower energies. The predicted volume
integral for the real central potential follows the average
trend of the empirical data.

d
i4aDW—D(E)

d
f(r, Rw aw)

dp
(2)

where f (r, RJ,aj ) with j= V, W is the Woods-Saxon
form. W(r, E) is the sum of the volume part Ws(r, E)
and the surface part WD(r, E). While the geometrical pa-
rameters may vary with energy, here we emphasize the
independence of the potential depths and the geometry.

I

III. DISPERSION OMP FORMALISM

The deuteron-nucleus OMP, U(r, E), is given by

U(r, E)= Vc(r) —UD(r, E)—U, 0 (r, E),
where the Vc(r) is the Coulomb potential and is taken to
be that of a charged sphere of radius Rc=rcA'
UD(r, E) is the central part of the deuteron-nucleus opti-
cal potential and U, , (r,E) is the spin-orbit part. The
central part is defined as [17]

UD(r, E)= V(r, E)+iW(r, E)
= Vv(E)f (r»v av)+'Ws(E)f (" Rw aw)

In the dispersion relation treatment [1], the real term
V(r, E) consists of a term slowly varying with energy,
V0(r, E), plus a correction term 6 V(r, E), which is calcu-
lated using a dispersion relation, so that

UD(R, E)= V0(r, E)+6V(r, E)+iW(r, E) .

In the nucleon-nucleus case, the Va(r, E) term is called
the Hartree-Fock term VHF(r, E). The correction term
b V(r, E) can be evaluated from the subtracted dispersion
relation in nucleus-nucleus scattering [1], which may be
expressed in the deuteron-nucleus case as

W E'
&F E' Er —E E'— (4)

The symbol P denotes the principal value. In the
deuteron-nucleus system, the correlation component of
EV(r, E) is absent [1]. EF is the sum of the proton and
neutron Fermi energies [1,8].

We will make the connection between the imaginary
potential and the real correction term though the volume
integral per nucleon,

Jw(E)= f W(r, E)r dr,
T d

(5)

Jw (E')

F

Jw (E')

F

(7)

where Jw (E') and Jw (E') ar the volume integrals per
S D

nucleon of the imaginary volume and surface potentials,
respectively. Accordingly we rewrite Eq. (2) as

where AT and A& are the masses of the target and pro-
jectile deuteron, respectively. The subtracted dispersion
relation [see Eq. (4)] stated in terms of the volume in-

tegral is

P - Jw(E')

F

The absorptive term W(r, E) consists of a volume part
8'z(r, E) and a surface part WD(r, E). Thus the volume
integral Jzv(E) can be expressed as the sum of a volume
and surface part, J&v (E) and Jzv (E):

S D

UD(r, E)= V(rE)+i W(rE)= V0(r, E)+A VS(r, E)+6 VD(r, E)+iWS(r, E)+i Wz(rE)

d= V0(E)f (r, Ra, a0)+AVs(E)f (r, Rs, a&) —4aDb, VD(E) f (r, RD, a&)
df

+i Ws(E)f (r,Rs, as) —i4az WD(E) f(r, RD, aD),d
dT

(9)

where f (r, RJ, aj. ) with j =O, S,D represents the function-
al Woods-Saxon dependence. The volume integrals of the
imaginary potential used in Eqs. (7) and (8) are obtained
at a given energy from a best-fit analysis with the stan-

l

dard optical model. The geometry for bVz(r, E) and

AVD(r, E) use the parameters of Wz(r, E) and WD(r, E),
respectively, and the potential depths b, Vs(E) and
5VD(E) are given by
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b, Vs(E) =
ff(r, Rs, as)dr

(10)

IV. INDIVIDUAL BESTFIT USING
A DISPERSIVE OMP

J~v
AVD(E) =

4aD f (dldr)f (r, RD, aD)dr

%'e apply the dispersion analysis just to the central
part of the deuteron-nucleus potential, keeping the spin-
orbit term U, , (r,E) unchanged from its form in the
standard OMP. The Thomas form factor is used as

U, , (r, E)=2V,
O
— f, „(r,R, o, ,a, , , )1 s
1

r dr

+i2W, , — f... (r, R, ,;,a, , ; )I s . (12)
1

"rdr
In the present analysis, only the real term appears.

Equations (7), (8), (13), and (14) are the essential inputs
for the dispersive OMP calculations. The bottom part of
Fig. 2 contains the curves corresponding to J&v and

Jzv values as functions of energy between —16 and 100
D

MeV. The volume correction term J~v is always posi-
S

tive at E &0, and the surface correction term Jzv
D

crosses zero at E =25 or 12.5 MeV/nucleon. This behav-
ior is similar to that seen for nucleon-nucleus scattering
[5].

The values of the correction terms J&v and J&v were
S D

fixed during the search of the geometrical parameters for
the dispersive best-fit OMP. This constrains the potential
depths b, Vs(E) and b, VD(E) to the values calculated from
Eqs. (10) and (11). Similarly the imaginary potential
depths Ws(E) and WD(E) are calculated from

Jw,
Ws(E) =

ff(r, Rs, as)dr

(E —EF ) —c(E—EF )

Jii, (E)=a e
(E —E, )4+b4

and

(13)

Jii, (E)=d
(E —E~)4+e'

(14)

In producing the curves in the top part of Fig. 2, we use
the following parameter values: a = 135.0 MeV fm,
b =25.56 MeV, c =0.01191 MeV ', d =76.21 MeV fm,
and e =93.16 MeV.

In the re-analysis for the cross section and analyzing
power data in the dispersive OMP frame, the volume in-

tegrals of the surface and volume imaginary potentials,
Jii (E) and Jii (E), are fixed to the values given by the

D S
best-fit optical potentials reported in Refs. [11—16].
These values are plotted in the upper part of Fig. 2. The
Jii,(E) values are a measure of the absorption for the in-

cident Aux, and it is expected that these values are more
stable than the individual OMP geometrical parameter
values. In the upper part of Fig. 2, the filled circles, vert-
ical crosses, and diamonds refer to the Jw, Jw, and JwS D

terms, respectively. The horizontal axis (E) in Fig. 2
refers to the incident deuteron energy when E &0, and
the binding energy between an n-p pair and the nucleus
"'Pb when E &0. At E =EF the absorptive potential of
the n ppair is exp-ected to vanish [1]. This has been
shown as one additional filled circle in this plot. Below
E =40 MeV, the individual best-fit volume imaginary po-
tential values are reported to be zero.

For the dispersive OMP analysis it is useful to
represent the energy variations of the volume integrals
Jw and Jw in suitable functional forms. Following the

S D

schematic model of Jeukenne and Mahaux [20], the ener-

gy dependence of the integrals for these best-fit imaginary
volume and surface potentials Jii (E) and Jii (E) have

S D

each been described using the parametrizations [20]
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FIG. 2. In the upper plot, the filled-circle, cross, and dia-

mond points represent the volume integrals of the imaginary po-
tentials of J~(E), J~ (E), and J~ (E), respectively, from best-

S D

fit analyses. The analytic parametrizations of the energy depen-
dence of J~ (E) and J~ (E) are shown by the dashed and dot-

dashed curves, respectively. The energy dependence curves of
the volume correction term Jq~ (E) and the surface correction

S
term, J~ v (E), calculated using the dispersion relation, are

shown in the lower plot.
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and

4aD I (d Idr)f (r, RD, aD )dr
W (E)= (16)

nary potential, were allowed to vary. This gave ten ad-
justable parameters

(Vo ro ap rg ag rD ag)&Vsp & spr ~ sprr,a, ),

The other parameters, including the real central and
~ ~

spin-orbit depths as well as the radial shape of the imagi-

the same number as the standard OMP

&& ~&& ~aa~w~aw& Vs. o. ~ s.o.r. & s.o.r.r a )

TABLE I. Best-fit dispersive optical model parameters.

E {MeV)

Vp

rp

ap

s
Vs

as
8'D
AVD

ag)

V,

as.o.r.

99.84
1.217
0.458
0.05
1.81
1.217
0.458
5.83
6.18
1.667
0.520
8.11
1.07
0.66

12.3

95.99
1.194
0.409
0.08
2.16
1.216
0.503
7.30
5.17
1.553
0.667
3.27
1.036
0.45

22

88.47
1.217
0.661
0.31
3.28
1.217
0.661

12.13
1.60
1.262
0.911
5.71
1.07
0.66

28.8

85.15
1.221
0.805
0.61
4.04
1.250
0.495

12.77
—1.42

1.320
0.848
5.38
1.00
0.40

56

81.55
1.223
0.873
3.69
7.19
1.257
0.682

10.99
—8.39

1.257
0.887
6.31
0.837
1.00

79.2

76.29
1.221
1.015
5.56
5.52
1.438
0.607
6.65

—8.25
1.258
1.100
5.39
1.167
0.55
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[11—16]. Despite the similarity in the number of adjust-
able parameters, the dispersive optical model brings addi-
tional physical constraints to the description of the elastic
scattering, resulting in a more self-consistent model.

In order to carry out the analysis, the computer code
SNOOPYSQ [21] was modified [22] to include the form of
the central part of the dispersive optical potential
UD(r, E) as defined in Eq. (9). The individual best-fit pa-
rameters in this dispersive analysis were obtained when
the minimum y„, was achieved for the difference between
the cross-section and analyzing power data and their cal-
culated values.

The experimental values and relative uncertainties of
the cross-section and analyzing power data at Ed=9.0
and 79.2 MeV are available [11,16] and were used in
searches conducted at individual energies. The data sets
at Ed =12.3, 22.0, 28.8, and 56.0 MeV were not available
in numerical form and were read from the graphs in the
publications cited. Although done with care, this method

introduced additional uncertainties estimated at up to5'. We assigned equal uncertainties (5%%uo for 0 ~ 50' and
10% for larger angles) to all data points at Ed=12.3,
22.0, 28.8, and 56.0 MeV. In this context, a comparison
of g for different analyzing methods, such as dispersive
and standard optical potentials, applied to this data set
would be meaningful, but not a comparison of the y be-
tween data sets with different assigned uncertainties.

In our dispersive best-fit parameter search, initial
values for Vp ~p, ap, rD, aD, V...r„„and a„, were set to
the values given by potential L form the global analysis of
Daehnick [17]. The initial parameters rs and as were set
to the same values as rp and ap, respectively. The ab-
sorptive potential depths, 8'z and 8'D, were calculated
using Eqs. (15) and (16). The best-fit dispersive OMP pa-
rameters are listed in Table I. The cross sections (ratio to
Rutherford) and vector analyzing powers calculated us-
ing these parameters are shown in Figs. 3 and 4, respec-
tively. The best-6t dispersive OMP provides fits of simi-
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FIG. &. The circles and diagonal crosses are geometrical parameters and potential depths of the dispersive OMP for d +' 'Pb as
determined from the best-fit and five-parameter searches, respectively. The solid lines represent parametrization of geometrical pa-
rameters and potential depths used in our dispersive OMP with smooth energy dependence as defined in Eq. (21). In the bottom right
figure, the vertical crosses refer to the ratio of y' for the five-parameter (5P) to best-fit (DB) dispersive calculations.
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lar quality to those obtained with the standard parame-
trization [11—16] shown by the dashed lines in Figs. 3
and 4.

The best-fit dispersive OMP parameters Vo, ao, ra, az„
and V, , are shown as circles in Fig. 5 (see Sec. V for oth-
er symbols in this figure). We make the following obser-
vations.

(i) The geometry of the real central potential Vo(r, E).
The variation of ro with E (not shown in Fig. 5) in the en-

ergy interval between 9 and 79.2 MeV is rather small,
ranging from 1.194 to 1.223 fm. However, the parameter
ao shows a strong energy dependence; its value increases
more than twice in the same energy interval.

(ii) The geometry of the imaginary central potential.
Significantly larger rD radii, and smaller az diffusenesses,
are needed to achieve best fits for the data sets E =9.0
(rD=1.667, an=0. 52 fm) and 12.3 MeV (rD=1.553,
aD=0. 667 fm) compared to the higher energies. This
trend of rI, is consistent with the geometrical parameters

rn obtained in a standard OMP best-fit analysis [11—16].
No smooth energy dependence is observed for the rest of

the geometrical parameters of the central potential, sucI
as rs d s.

(iii) The potential depth Vo(E). Values of Vo(E) in-
crease as the energy decreases in a smooth, nearly linear
way.

(iv) The spin-orbit term V, , (r,E). No smooth energy
dependence is observed for the geometrical parameters
r... and a... as well as the potential depth V, , This
is consistent with the results obtained in the best fit using
a standard OMP [11—16].

In order to get a better understanding of this dispersive
OMP, it is useful to compare the dispersive and standard
OMP's in terms of the radial shapes of the real central
potential V(r, E), its volume integrals, and root-mean-
square (rms) radii. The following are our observations.

(i) Radial shapes of the real central potential. The real
potential radial shapes are shown in Fig. 6. The solid
lines at each energy are the total potential, which is the
sum of the terms (shown as dashed lines) from the cen-
tral, "Hartree-Fock" piece Vo(1), the surface correction
EVD(2), and the volume correction b, Vs(3). The dot-
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FIG. 7. Energy dependence of the volume integrals of the real central potential. The open circles and filled squares are given by
the best fits of the standard and dispersive OMP, respectively. The solid curve is given by the full potential Jv= J& +Jzv +J«
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The dotted line refers to the term Jv (E). The dashed line represents the sum of the two terms J& (E) and Jzv (E). The diamonds

refer to the optical potential set III described in Sec. II, and the diagonal crosses are the sum of the volume integrals of the proton
and neutron bound states, which are located in bound-state orbits corresponding to correlated, two-particle state configurations ob-
served in (a, d) and (d, a) reactions [24-25], with a scaling factor 0.85.

dashed line is the standard best-fit optical potential used
to obtain the original volume integrals. At lower incident
deuteron energies, the best-fit real central dispersive po-
tentials are shallower and extend to larger radii than
those obtained from the standard OMP. Here, the in-
teraction between the incident deuteron and the nucleus
is located primarily in the surface region of the nucleus.
This is progressively reflected in the energy dependence
of the shape of the dispersive part of the central poten-
tial. The dispersive part of the central potential at
Ed =9.0 and 12.3 MeV has a small dip (at r =10 fm) in
the surface region. While this may appear to be a non-
physical shape, it is also likely that the deuteron is largely
insensitive to its details. At 9.0 MeV, a semiclassical cal-
culation indicates that the deuteron does not approach
any closer than 12.9 fm to the nucleus because of the
repulsive character of the Coulomb and centrifugal bar-
riers. The situation at 12.3 MeV may not be greatly
difterent. Only the lowest partial waves (L ~6) have
sufficient bombarding energy to penetrate the nuclear in-
terior, and in a standard optical-model analysis these par-
tial waves are strongly absorbed. Thus, these potential
shapes may serve only two purposes. The first is to pro-
vide sufficient attraction at large distances to account for
the values of the cross sections in Fig. 3 that are smaller
than the Rutherford cross section. Second, they provide
a volume integral of the size required to obtain the prop-

er phase shifts in each partial wave. If the two criteria
are met, details of the radial shape inside the Coulomb
turning point radius may not be important.

(ii) The volume integrals of the real central potential.
It is important to study the properties of the volume in-

tegrals of the potentials, which incorporate the energy
dependence of the geometry as well as the potential
depths of the dispersive OMP. The volume integral of
the full real central potential per nucleon, Ji,(E), result-

ing from the dispersive (filled squares) and standard (open
circles) parametrizations are shown in Fig. 7. The devia-

tions of the real volume integral of the dispersive OMP
from that of the standard OMP become larger at lower
deuteron energies. Also shown are smooth parametriza-
tions of the terms in the real central optical potential.
The integral Jz (dotted line) follows closely the standard

0

OMP values. The solid curve results from the addition of
surface and volume corrections to Jz and follows the

0

dispersive volume integrals. In the dashed line, the sum
of Jz and the surface correction J&v is represented.

0 D

Most of the deviation from the standard OMP is seen to
result from the surface correction term in the dispersive
OMP. This absorption occurs at a large radius for the
smaller incident deuteron energies, and is responsible for
the appearance of the extra attractive surface dip in Fig.
6.
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the same method as described in Sec. III for the disper-
sive OMP best fits. A grid search was conducted on the
real radius ro with step size 0.001. For each value of ro
(from 1.206 to 1.226), the five-parameter search was per-
formed for each energy data set. A best value of
ro=1.221 fm was chosen. We present in Fig. 5 values
obtained for the five dispersive OMP parameters (diago-
nal crosses) as a function for the deuteron energy. The
results of the five-parameter search show that Vo, ao, r&,
and aD have strong energy dependences. The real spin-
orbit potential depth V, , shows no strong energy depen-
dence, and its average value is V, , =5.7 MeV. Taking
guidance from the dispersive OMP parameters obtained
in the best fit and the results of the five-parameter search,
the mathematical forms of the parametrization equations
for Vp(E) ap(E) rir and air were chosen.

The Vo(E) potential depth was assumed to have the
form

FIG. 8. Energy dependences of the real, V, and imaginary,
8', rms radii. The open circles and diagonal crosses represent
the best-fit values of the standard and dispersive OMP, respec-
tively. The solid lines refer to the calculation given by the
dispersive OMP defined in Eq. (2). The dashed and dotted lines
are given by the deuteron global OMP reported in Refs. [17]
and [19],respectively.

a(E EF)—
Vp(E) = Vp(EF )exp

Vo EF
(17)

For ao(E), rD(E), and an(E), the functional form was

9.0 MeV

(iii) The rms radii of the central potential. The energy
dependence of the rms radii obtained in the best fit of the
dispersive and standard OMP are shown as open circles
and diagonal crosses in Fig. 8, respectively. The rms ra-
dii have similar energy dependences in both models. At
energies below 16 MeV, ( r ) ir from global potentials fall
well below the best-fit results.

10

10

18.3 MeV

V. cf + Pb DISPERSIVE OMP WITH SMOOTH
ENERGY DEPENDENCE

In this section, the development of a dispersive OMP
with a smooth energy dependence for all the parameters
is explored. This is necessary to reliably extrapolate to
the negative-energy region and to obtain OMP parame-
ters at any positive energy below 90 MeV. In this model,
the geoinetrical parameters in the real volume correction
term are kept at the same values as that of the real poten-
tial Vo(r, E), i.e., rs=ro and as=ac. This is the same
prescription used in the nucleon-nucleus dispersive OMP
analysis [5]. No energy dependence of the real radius ro
is assumed, and its initial value is the average value (1.216
fm) of ro at the six energies listed in Table I. Because no
smooth energy dependence for the spin-orbit geometrical
parameters was obtained, neither in the best-fit standard
nor in the dispersive OMP, the values r... and a...
were fixed at r...=1.07 fm and a...=0.66 fm, the
same values used in Daehnick's global OMP [17].

A five-parameter (Vo, ao, rD, aD, and V, , ) search
was performed for each energy data set. The potential
depths W&, WD, hV&, and EVD were determined using

10

10

10

I I I I I I I I I I I I I I

0 50 ioo i50

FIG. 9. Comparisons between the 1+ Pb experimental
cross section (ratio to Rutherford) and the calculation based on
the dispersive OMP defined in Eq (21) for Ez &. 30 MeV. The
calculations given by the deuteron global model reported in Ref.
[17]are plotted in this figure as dashed curves.
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taken to be

b (E E—~)
ao(E) =ao(E~)+

(E E—} +c

of ao than the calculations at higher energies (except the
calculation at 79 MeV). The resulting dispersive OMP
for d + Pb with a smooth energy dependence can be
written as

and

d (E E~—)
rD(E) = rD(EF )

(E EF)—+e
(19) Vo(E) =92.73 exp

ro=1.221 fm,

—0.227(E Ep—)
MeV,

92.73

aD(E) =aD(E+)+
(E EF)—+g

Values of the parameters Vo(EF), a, ao(EF), b, c,
rD(E~), d, e, aD(EF },f, and g were chosen to follow the
energy dependence shown in Fig. 5. Several of the pa-
rameter values fell away from these smooth curves. Real-
izing that such deviations might be the result of correla-
tions among the parameters, additional grid searches
were made in which one parameter was allowed to vary
while the others were fixed at the values given by the
functional form. The parameters Vo, ao, rD, a~, and
V, , were varied in this way. In many cases, values
closer to the smooth curve resulted. This procedure was
repeated resulting in the curves of Fig. 5 and the OMP
values shown by the crosses. The variation of ao with en-

ergy was reduced since values less than 0.4 fm did not ap-
pear to be physically reasonable, and the calculations
below 20 MeV appeared to be less sensitive to the choice
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FIG. 10. As in Fig. 9, but for Ed at higher energies. The bot-
tom set of data is from d + Pb.

(«g)
FIG. 11. As in Fig. 9, but for vector analyzing powers.
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(E E—~)J~ (E)Ad =271.89
(E —E~) +25.56

—O.01191(E—Ep ) 3Xe ~ MeVfm3,

(E E~—)
J~ (E)Ad = 153.49 MeV fm

(E E~—)4+93.16'

and V, , =5.4 MeV, r, , = 1.07 fm, and a, , =0.66 fm.
In Eq. (21), Ad is the deuteron mass.

We expect this potential to give a reasonably good
description of the experimental data at energies E &90
MeV. It may be extrapolated to the negative-energy re-
gion. At this point, it is not clear how to proceed to the
study of bound n-p pair properties using our potential.
Some comments on this subject are provided in the next
section.

Comparisons between the experimental deuteron elas-
tic data (circles) containing both cross sections (ratio to
Rutherford} and analyzing power data at 9~Ed ~80
MeV and the dispersive OMP predictions (solid curves)
as described in Eq. (21) are presented in Figs. 9—12. The
calculations based on Daehnick's deuteron global OMP
are also presented as dashed curves. The dispersive OMP
gives a good description of the experimental data. The
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FIG. 12. As in Fig. 10, but for vector analyzing powers.

data sets at Ed =15 and 18 MeV were extracted from the
graphs in Ref. [10]. The data sets at Ed =20 and 52 MeV
are given by Grabmayr [18] in numerical form. In the
bottom parts of Figs. 10 and 12, the circles are the experi-
mental data for d + Pb. In this data set [23], the cross
sections and vector analyzing power measurements have
been extended to larger angles than in the d + Pb data
set at the same energy. The same dispersive OMP pa-
rameters are used in the calculations for d+ Pb at
Ed=79.2 MeV and d+ Pb at Ed=79.4 MeV. A
better description to the cross-section and analyzing
power data at large angle for 79 MeV may be achieved
[16,23] if an additional imaginary spin-orbit potential is
used.

VI. DISCUSSION

Eb= —Q[ ' Bi(y,pn}]+E„[ Pb(a, d) ' Bi],
and in the Pb nucleus by

Eb = —
Q [ Pb(y, pn )]+E„[ Pb(d, a) Ti],

(22)

(23)

where the experimental Q values in Ref. [26] are used.
The estimated volume integrals of the real potential for
the n ppairs are the-sum of the volume integrals [5,6] of
the n and p, which are located in the bound-state orbits
specified in the two-particle state configurations. These
values have been scaled down by 15+5%%uo as suggested in
Ref. [27], where the comparison between the deuteron
optical potential and the sum of neutron and proton po-
tentials was made in the positive-energy region. The
dispersive OMP defined in Eq. (21} (solid line) gives a
reasonable fit for the deuteron elastic scattering as well as
the n-p pair bound states in terms of the volume integral
for the central potential.

The rms radii of the real and imaginary central poten-

In this section we present a discussion of the properties
of the dispersive OMP given by Eq. (21) in terms of
volume integral, rms values, and reaction cross sections.
The open circles and filled squares in Fig. 7 represent the
best-fit standard and dispersive OMP values, respectively.
The diamonds refer to the data reported by Murayama
et al. [10]. The sold line is the real volume integral of the
full real central potential JI (E) given by the dispersive
OMP with a smooth energy dependence [Eq.(21)]. The
dotted line is the Jv (E) term and the dashed line refers

0
to the sum of the JI, (E) and J&v (E) terms.

0 D

Also in Fig. 7, the diagonal crosses in the negative-
energy region are the estimated real volume integrals for
the n-p pairs as a function of the binding energies of the
n-p pairs in the nucleus. The n-p pairs are located in
bound-state orbits corresponding to correlated two-
particle state configurations observed in the (a, d) and
(d, a) reactions [24,25] on Pb. The three two-particle
states (dominant configurations} are the (n2f7/z, v2g9/g)
and (m liI3/z, v2g9/p) observed in the Pb(a, d) ' Bi re-
action [24] at E„=0.915 and 1.316 MeV, and the
(n3s&/~, v3p, /z) in the Pb(d, a) Ti reaction [25] at
E„=0.304 MeV. The binding energies of the observed
n -p pair states in the ' Bi nucleus are evaluated by
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tials are given as

( t2& 1/2

Jv, &"&v, +&av, &"&av, +&av. &"&av.

and

(24)

are the predictions given by the Daehnick [17] (set L) and
Bojowald [19]global model paratneters. The three curves
have similar shapes. All models overpredict the 26.5-
MeV o.

& data by about 20% and the 22.4-MeV o.
& data

by about 30%. In this analysis, we did not use the exper-
imental reaction cross sections as part of the data to ob-
tain the potential parameters because of the unsuccessful
attempts to predict these values for o.z reported in Ref.
[17].

( 2 &1/2—
Jw, &"& w, +&w. &"& w,

""
Jw

(25) VII. SUMMARY

where Jv is the sum of the three terms Jv, J&z, and
0 S

J~v, and J~ is the sum of the two terms J~ and J~ .
D S D

The values of the (r & v/ and ( r & tv/, as functions of the
energy E and calculated using the dispersive OMP
defined in Eq. (21), are plotted in Fig. 8. The predictions
given by the global deuteron OMP from Refs. [17,19] are
also shown.

Two comprehensive deuteron reaction cross-section
studies using attenuation techniques were performed at
22.4 MeV by Wilkens and Igo [28] and at 26.5 MeV by
Mayo et al. [29]. The experimental deuteron reaction
cross sections for Pb at these two energies are plotted
in Fig. 13. The prediction of the reaction cross section
using the dispersive OMP defined in Eq. (21) is shown in
Fig. 13 as a solid curve. The dashed and dotted curves

In the present work, a set of dispersive OMP parame-
ters are obtained by fitting the experimental cross section
and analyzing power data at several energies. The disper-
sion relation is used to fix the volume integral of correc-
tions to the real central potential based on the volume in-
tegral of the imaginary terms. A new "self-consistent"
computational technique, which may be useful in the
dispersion analysis of nucleon or heavy-ion scattering
from nuclei, was used. With the same number of free pa-
rameters, the best-fit dispersive OMP parameters give
similar quality fits to those obtained with the standard
best-fit OMP parameters.

The energy-dependent analytic forms in the dispersive
OMP give a good agreement with the empirical volume
integrals, including estimates for three n-p bound levels.
The volume integrals of the imaginary dispersive poten-
tials fall well below those of the standard global poten-

I I I I I I I I I I I I I I I I I I I I

3000—

2000—

1000—

I I I I I I I I I I I I I I I I I I I I

80 40 60 ao 100

E(~ev)

FIG. 13. The deuteron reaction cross sections o.~ on 'Pb. The two data points are experimental reaction cross sections at deute-

ron energies Ed =22.4 and 26.5 MeV. The calculations for deuteron reaction cross sections on Pb are shown as a solid curve
[dispersive OMP defined in Eq. (21)], a dashed curve (OMP in Ref. [17]),and a dotted curve (OMP in Ref. [19]).
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tials at energies below about 30 MeV. This energy depen-
dence is consistent with the condition that the volume in-
tegrals of the imaginary potential must go smoothly to
zero as the energy goes to the Fermi energy from above.
This implies that the use of standard global potential
model parameters at low energies may lead to signi6cant
errors.
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