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Equivalent local potentials for energy dependent nonlocal interactions
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Various equivalent local potentials and their Percy factors are discussed. The Wronskian and
inversion-type equivalent local potentials for the energy dependent nonlocal interaction induced by the
coupling of the elastic to the nonelastic channels are investigated numerically. Their Percy factors are
found to be closer to unity than those associated with exchange-type nonlocal potentials.
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I. INTRODUCTION

Equivalent local potentials (ELP) have been introduced
to provide a simple and practical local description of the
elastic scattering in systems for which the original in-
teraction is nonlocal. This nonlocal interaction may be an
energy independent potential like the Percy-Buck poten-
tial [1] or the microscopic potential of the resonating
group method (RGM) [2]. The nonlocality of the latter
arises basically from exchange effects due to the action of
the Pauli principle, and is often phenomenologically
represented by a Percy-Buck potential.

Another type of nonlocal interaction is that arising
from the dynamical coupling of the elastic to nonelastic
channels. Here the elastic channel wave function can, in
principle, also be calculated from a single-channel
Schrodinger equation containing the energy dependent,
nonlocal generalized optical potential [3,4]. This may
then again be regarded as a nonlocal potential for which
an ELP can be constructed. In this case, however, it is
more convenient to relate the ELP directly to the system
of coupled-channel equations itself, rather than to the
corresponding generalized optical potential, for which ex-
plicit calculations have, in fact, only rarely been made
[5-7].

In the region of interaction the original, "nonlocal, "
and the equivalent, "local,"elastic wave functions usually
differ. Their ratio, the Percy factor [8,9] (more precisely,
its deviation from unity), is in a sense a measure of the
nonlocality of the original interaction. Percy factors also
provide a measure of the off-shell effects due to the
difference between the phase equivalent local and the
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nonlocal interactions. They show up, e.g., in distorted-
wave calculations for heavy-ion reactions [10] and in
bremsstrahlung [11].

In the present paper we point out that there is a
significant difference between the Percy factor for a non-
local potential arising from Pauli exchange effects, and
the Percy factor for an interaction whose nonlocality is a
consequence of the coupling of the elastic to the nonelas-
tic channels: The original Percy effect [12] for the nonlo-
cal Percy-Buck potential refers to the first case, and re-
sults in a Percy factor considerably smaller than unity.
On the other hand, our present calculations for the
coupled-channel case yield a Percy factor which may also
be larger than unity; more importantly, it is generally
much closer to unity than in the case of the exchange-
type Percy-Buck potentials.

Clearly, different types of nonlocal interactions lead, in
general, to different types of Percy factors. Even for the
same nonlocal interaction, different ELP's may be
defined, and the corresponding Percy factors will differ
from each other. We deem it worthwhile to make a few
comments on the properties of some of the different
ELP's. The coupled-channel nonlocal interaction con-
sidered in the present paper is actually used to calculate
two different ELP's: the Wronskian-type ELP [13] and
the ELP obtained by inversion of the nonlocal elastic-
scattering phase shifts [14—17]. Although different in de-
tail, the corresponding Percy factors turn out to exhibit
qualitatively the same behavior, viz. , near equality to uni-
ty, as pointed out above.

The result that the coupled-channel nonlocal interac-
tion gives rise to Percy factors with values near unity is of
considerable interest. It implies that the corresponding
ELP's produce nearly the same elastic wave functions as
the original coupled-channel interaction; these ELP's are
therefore not only on-shell (phase shift) equivalent, but
also nearly off-shell (wave function) equivalent.
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Qne consequence of these results is that optical poten-
tials obtained by fitting the elastic-scattering data (or
better by inversion of the phase shifts, if they are avail-
able) are apparently better suited to calculate the elastic
channel wave function in the coupled-channel case than
one might have expected from the known situation for
exchange-type nonlocalities.

The coupled-channel interaction used in the present
paper is only a schematic one. However, this is unlikely
to afFect the conclusions, which should be generally valid.
These conclusions help to justify the widespread use of
fitted local optical potentials for on-shell as well as off-

shell elastic channel calculations in situations where
nonelastic channels are coupled in significantly.

The paper is organized as follows: In Sec. II, we shall
discuss some theoretical aspects of the ELP, commenting
on some of the current types found in the literature. Par-
ticular attention is given to the Wronskian and
inversion-type ELP's. These are determined numerica11y
in Sec. III for the same energy dependent nonlocal in-

teraction arising from a schematic system of six coupled
channels modeled on n- Ni scattering at an incident en-

ergy of 60 MeV. Section IV contains our conclusions.

II. THEORETICAL CONSIDERATIONS

In this section we make some remarks on various kinds
of ELP's in current use.

(i) Trivially equivalent local potential. This potential,
the simplest one, in a way, is obtained from the nonlocal
wave function VNL(r) by the simple prescription [4, 9, 13,
18, 19]

V(r) = E+ A' V +N„(r)
2m

In terms of the density p(r) and current j(r) calculated
from the nonlocal wave function,

V(r)=E — [V pip —(Vp) l2p] j lp +iAV j l—p .
4m

p(r}=
l pNL(r) l', j(r)=—Im+NLV'pNL,

m

the trivially equivalent local potential can also be written
as

function) and produces only that wave function from
which it is calculated in the first place. It is less a poten-
tial than a functional of the wave function: its real part is
a simple functional of the density and the current, and its
imaginary part is the divergence of the current per unit
density. Both are quite interesting quantities but they are
less fundamental than a potential, which is expected to
have a more universal application. Nevertheless, the
trivially equivalent local potential, appropriately
smoothed, has sometimes proven itself to be useful [19,
20].

(ii) Equivalent local potential for a nonlocal potential
in %KB approximation. This potential has been defined
for cases where the original nonlocal potential is real and
independent of the energy, i.e., of the exchange type
(Hartree-Fock or RGM potential). It has been obtained
in three-dimensional space [1,2] and for partial waves

[13,21]. The expression for the equivalent local potential
need not be quoted here; the Percy factor F(r } is simply
given in terms of the ELP V(E) by the formula [2, 22, 23]

F(r)=
I
1 a V(E)IaEI'" .

For exchange-type nonlocal potentials, F(r) ~ 1 ("Percy
effect" [12]).

In its three-dimensional form, the "ROM + WKB"
[21] leads to potentials which are energy dependent but
only weakly angular-momentum dependent. In the
partial-wave form of the WKB approximation, however,
we obtain ELP's which are both energy dependent and
strongly angular-momentum dependent at short dis-
tances. The same applies to the corresponding Percy fac-
tors.

It must be emphasized, however, that relation (5) is not
valid when the original nonlocal potential is itself energy
dependent, as is the case for all generalized optical poten-
tials which take account of dynamical effects like the cou-
pling to inelastic channels [3,4]. The numerical investiga-
tion in the next section will provide evidence for this.

(iii) Wronskian equivalent local potential. An exact
quantal equivalent local potential can be derived for a
particular partial wave I such that the nodes of the nonlo-
cal and local partial wave functions coincide [13]. This
potential is given by [24]

V&(r) =k —1(1+1)lr W/"(r)I2W—&(r)

(3) +3[W/'(r)I2W((r)] W('(r)IW((r), —(6)

Clearly, the potential (1) yields a local wave function +L
which is identical to the original nonlocal wave function
% N„. Therefore, the Percy factor,

F(r): l+N„(r) I+1 (r) l—, (4)

is here equal to unity. In this exceptional case, the Percy
factor is, of course, not a measure of the nonlocality or of
anything.

%"hile the trivially equivalent local potential fulfills the
function of a potential when substituted in the appropri-
ate place in the Schrodinger equation, it depends, of
course, on as many parameters (energy, angular momen-
tum, angle, etc.) as the wave function itself. It fluctuates
greatly (e.g. , it becomes infinite at the nodes of the wave

F,(r) =
l W, (r)l' (7)

Relations (6) and (7) are also valid for energy dependent
nonlocal interactions. Clearly the equivalent local poten-
tial (6) is angular-momentum dependent. It has been
shown [9] that the "RGM + WKB" potential in its
partial-wave form is an approximation to the fully quan-

with Wt(r)= W(u~(r), v~(r)} and W&'(r) —=
W( /u(r), v (rt)),

where W(x,y) =xy' —x'y is the Wronskian, and u&(r) and

v&(r) are the regular and irregular nonlocal partial wave

functions normalized such that asymptotically
W&(oo)=1. Expression (6} is easily derived from Eqs.
(2.2) and (2.8) of Ref. [9]. The Percy factor is given by
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tal Wronskian ELP. The deviation of the Wronskian
W&(r) from unity is a measure of the nonlocality of the
interaction, in accordance with the fact that two linearly
independent solutions ui, u& of a local potential would, of
course, yield IVI(r) = 1. Equation (7) therefore provides a
direct connection between the nonlocality of the original
interaction and the ratio of the nonlocal over the local
wave function, i.e., the Percy factor. For nonlocal in-
teractions arising from the coupling to nonelastic chan-
nels, the nonlocal wave functions u&(r) and u&(r) are, of
course, simply the corresponding wave functions in the
elastic channel. The nonlocality then does not refer to a
potential but to the dynamics of the coupled-channel
scattering system itself. If one calculates a generalized
optical potential for this system, this must have nonlocal-
ities consistent with the Percy factor (7). Such a potential
has been obtained in Refs. [5—7].

(iv) Equivalent local potential obtained by inversion.
The last method we wish to discuss here for introducing
an ELP is that by inversion [14—17]. Here one takes
elastic-scattering phase shifts from a nonlocal potential
or from a coupled-channel calculation, and finds the
equivalent local potential by solving the associated in-
verse scattering problem. The Percy factor is then calcu-
lated as the ratio of the true elastic channel wave func-
tion, i.e., the nonlocal wave function, over the wave solu-
tion of the local potential from inversion. This last step is
conveniently carried out for each partial wave separately.

In the calculations of the next section we shall use an
inversion scheme for fixed energy [25, 26]. The ELP's re-
sulting from this procedure are independent of angular
momentum, but do depend on energy. One may also con-
sider an inversion scheme at fixed angular momentum,
which would lead to an energy independent, but angular-
momentum-dependent ELP. We remark that this has
been done for the nucleon-nucleon interaction, e.g., the
Paris and Bonn potentials [27], and for n-d scattering
[28]. It is found there that the difference in off-shell
effects for the two potentials is rather small, correspond-
ing to a Percy factor near unity. We further note that the
ELP's obtained by inversion cover the two limiting cases
of ELP's, i.e., those for which the ELP is either purely
energy dependent or purely angular-momentum depen-
dent (Marchenko inversion), while the "WKB + RGM"
and Wronskian ELP's are both energy and angular-
momentum dependent.

The preceding considerations show that one and the
same nonlocal interaction can be associated with different
ELP's, and, therefore, different Percy factors. On the
other hand, we remark that a case is known where two
different potentials, a nonlocal and an equivalent quasilo-
cal potential containing a gradient term [29, 30], have the
same Percy factor.

V„(r)= Vo exp( r—la (8)

with Vo= —50 MeV and a =5 fm. The coupling poten-
tials are also identical between all channels, with the
value (n, n'=0, . . . , 5)

V„„,(r) = V, [1+exp[(r ro—)lb } ]'dr
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with V, = —16 MeV fm, r0=5 fm, and b =0.5 fm. The
coupling is peaked in the surface region r = 5 fm, where it
has the value of 8 MeV. The excitation energies (in MeV)
in the five inelastic channels are c&=2.92, c.&=4.89,
G3 8.01, c4= 12.24, and c5= 17.59.

(i) Wronskian ELP. Solving for the regular and irregu-
lar wave functions of the six-channel system the Wronski-
an ELP (6) and the Wronskian Percy factor (7) have been
calculated for the partial waves l =0, 1, 7, and 10 (cf.,
Figs. 1 and 2). The ELP shows strong oscillatory effects
of the coupling in the surface region r =5 fm. The devia-
tion of the Percy factor from unity is also concentrated in
the surface region. The Percy factor increases with angu-
lar momentum; moreover, it changes from values larger
than unity to values smaller than unity as the turning
point for the partial wave moves across the region of cou-
pling. In addition to the Percy factor, we give a direct
comparison between the nonlocal and local wave func-
tions in Fig. 3.

(ii) Inversion-type ELP. The calculations for the
inversion-type ELP make use of the elastic-scattering
function S& =exp(2i51) calculated from the six-channel
system. This function is shown in the Argand plot of Fig.
4. It has been "inverted" into a local angular-
momentum-independent potential using the method of
Refs. [25, 26]. The potential is shown in Fig. 5. The

III. NUMERICAL INVESTIGATIONS
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We have considered a schematic example of six cou-
pled channels modeled on n- Ni scattering at an incident
energy of 60 MeV. Forerunners of this work are Refs. [7,
29]. The diagonal potentials in this coupled-channel sys-
tem are all given by the same expression (r in fm)
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FIG. 1. Wronskian-type equivalent local potential V~(r) for
I =0, 1, 7, and 10.
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FIG. 4. Argand plot of the elastic-scattering function S~.
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does lead to local emissive current sources in the nucleus,
V j & 0 (cf., for example, the imaginary part of the "4 po-
tential" of Ref. [18] which is proportional to V j). These
are regions where more Aux is transferred from the in-
elastic channels to the elastic one than vice versa.

We now study the partial wave function O'L of this lo-
ca po1 otential in comparison with the elastic channe wave
function obtained in the coupled-channel calculation [ ]
(the nonlocal wave function VNi). These two wave func-
tions are shown in Fig. 6 for I =0, 1, 7, and 10. From
this figure one could, of course, extract the Percy factor.
We have chosen not to do so exp1icitly owing to numeri-
cal inaccuracies in the inversion, which would completely
distort the Percy factor at points where +L is small. It
can nevertheless be seen that the Percy factor for the
dynamical six-channel system is sometimes smaller and
sometimes larger ("anti-Percy efFect" [17])than unity.

We see from the results for the two types of ELP's that
the coupled-channel nonlocality has a rather different
effect on the Percy factor than the exchange-type nonlo-
cality (a fact which is sometimes ignored in actual appli-
cations, cf., Ref. [31] in this connection). When "aver-
aged" over the region of interaction and over the partial
waves, e cthe coupled-channel Percy factor is much closer
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The labeling of the curves is the same as in Fig. 3.

Comparison of Fig. 6 with Fig. 3 shows, moreover, that
local and nonlocal wave functions are closer to one
another for the Wronskian ELP than for the inversion-
type ELP.

By considering various incident energies in the neigh-
borhood of 60 MeV, we have been able to compute the
energy derivative of the inversion-type equivalent local
potential. Substituting this quantity in Eq. (5), we can
find the value of the %KB-type Percy factor; however,
we know it to be invalid, since the nonlocal interaction is
not energy independent. in the present case. And, indeed,
we have found that the Percy factor (5) differs more
strongly from unity than the inversion-type Percy factor
derived from Fig. 6. Apparently, the intrinsic energy
dependence of the gener ahzed optica1 potential, if
correctly taken into account by a modification of Eq. (5),
would compensate to some degree for the effects of its
nonlocality. It is interesting to note that it has also been
observed "empirically" in the analysis of the calculations
of Ref. [31] that the large exchange-type Percy effect is
almost completely canceled in a case where channel cou-
pling plays a role.

We have discussed two different ELP's for the energy
dependent nonlocal interaction induced by coupling to

nonelastic channels. The Wronskian ELP depends on the
angular momentum; it gives rise to Percy factors which
differ from unity only in the surface region of the poten-
tia1. The inversion-type ELF, on the other hand, is in-
dependent of angular momentum. For the determination
of the Wronskian ELP one needs to know the full "nonlo-
cal" wave function, whereas the input for calculating the
inversion-type ELP are simply the "nonloca1" phase
shifts.

From the point of view of minimizing the off-shell de-
viations arising from the difference of the nonlocal and
local wave functions, the Wronskian ELP appears to be
preferable: the difference ~%N„~

—~+L ~
is smaller and it is

concentrated in the surface region, in accordance with
physical intuition. The suppression of the angular-
momentum dependence in the inversion-type ELP ap-
parently increases the difference

~ +Nt ~

—
~ +L ~

and ex-
tends its range beyond the surface region into the interi-
or, where the partial wave functions of the ELP appear to
display a phase shift as compared to those of the nonlocal
interaction. Generally, it depends on the context in
which the ELP is to be used, whether one or the other
type of ELP is to be preferred.

IV. CONCLUSIONS

In the present paper it has been our aim to elucidate
various aspects of the concept and of the explicit forms of
the equivalent local potential. In particular, we have
made clear the difference between an ELP describing the
elastic scattering in a system with exchange effects but no
coupling to nonelastic channels, and an ELP for a system
with nonelastic couplings. In the former case the ELP is
equivalent to an energy independent nonlocal interaction
while in the latter case the ELP is equivalent to a nonlo-
cal interaction which has an intrinsic dynamical energy
dependence. Correspondingly, the relation between the
nonlocal and local wave function (the Percy factor) is
different in the two cases.

Two types of equivalent local potential for a coupled
system of elastic and inelastic channels have been studied
numerically. In the particular schematic example used in
the investigation, it turns out that the local and nonlocal
wave functions are closer to one another (the Percy factor
is closer to unity) than for the better known exchange-
type Percy-Buck nonlocalities. One consequence of this
result is that optical potentials obtained by fitting the
elastic-scattering data are apparently better suited to cal-
culate the elastic channel wave function in the coupled-
channel case than one might have expected from our ex-
perience with Percy-Buck nonlocalities. This may help to
justify the use of fitted local optical potentials for on-shell
as well as off-shell elastic channel calculations in situa-
tions where nonelastic channels are coupled in
significantly. It would be desirable to check the general
validity of our findings for a wide range of realistic cou-
pled systems, but at present we are not in a position to do
So.

H.F. thanks the Hahn-Meitner-Institut Berhn for its
hospitality.
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