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Properties of dense nuclear and neutron matter with relativistic nucleon-nucleon interactions
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Within the framework of the Dirac-Brueckner (DB) approach, the properties of dense nuclear and

neutron matter are investigated using realistic nucleon-nucleon (NN) interactions which are derived

from relativistic meson-field theory and describe the two-nucleon system quantitatively. Single-particle

potentials, equations of state, nucleon effective masses, Landau parameters, and speeds of sound are cal-

culated and analyzed as functions of density, for both nuclear and neutron matter. In the DB approach,
the equation of state comes out stiffer than in the most sophisticated nonrelativistic calculation, but

softer than in the Walecka model. Possible extensions of the present approach to nucleon-nucleus

scattering and nucleus-nucleus collisions are also discussed.

PACS number(s): 21.65.+f, 97.60.Jd, 21.30.+y

I. INTRODUCTION

One of the fundamental goals of theoretical nuclear
physics is to explain consistently the properties of nuclear
matter, finite nuclei, and nuclear reactions (nucleon-
nucleus as well as nucleus-nucleus collisions) with one
realistic nucleon-nucleon (NN) interaction that has a solid
theoretical basis and describes the two-body system accu-
rately. First attempts towards this aim were based on the
simplest model for the atomic nucleus: nucleons obeying
the nonrelativistic Schrodinger equation interact through
a two-body potential that fits the low-energy XV scatter-
ing data and the properties of the deuteron. This work
was done in the framework of Brueckner theory by solv-

ing the Bethe-Goldstone equation which yields an
effective NN interaction in the medium [1—6]. Similar
calculations have been performed in the framework of the
variational method [7—9]. The predictions by this nonre-
lativistic model for nuclear saturation with a variety of
XX interactions show a systematic behavior: in an ener-

gy versus density plot the saturation points are located
along a band ("Coester band") which does not meet the
empirical area.

Many improvements of this simplest model have been
proposed in order to overcome this difticulty. For exam-

ple, meson and isobar degrees of freedom have been taken
into account, in addition to the nucleon degree of free-
dom [10] (see Ref. [11] for a recent review). One of the
most important developments in the extension of nuclear
many-body theory is the replacement of the nonrelativis-
tic Schrodinger equation with the relativistic Dirac equa-
tion to describe the single-particle motion in the medium
[12—16]. This Dirac-Brueckner approach was inspired
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by the success of the Dirac phenomenology for the prop-
erties of finite nuclei [17,18] as well as nucleon-nucleus
scattering [19,20]. Indeed, when the Dirac-Brueckner
method is used together with the one-boson-exchange
(OBE) potential of the Bonn group [11,21], the empirical
properties of nuclear matter are quantitatively repro-
duced [22]. (A comprehensive survey of the literature in
the field of relativistic as well as nonrelativistic Brueckner
and variational methods is given in Refs. [11,22].) An ap-
plication of this approach to finite nuclei yielded also
promising results [23]. It is thus reasonable to apply and
extend this approach to other domains of nuclear phys-
1cs.

An important application is the study of the properties
of dense nuclear matter. These properties are important
for particle physics, astrophysics, as well as nuclear phys-
ics. The nuclear equation of state, especially its in-

compressibility, is an important prerequisite for the study
of the dynamic evolution of the early Universe and the
stability of neutron stars [24,25]. Experimentally,
intermediate-energy heavy-ion reactions offer the unique
opportunity to obtain a piece of dense nuclear matter in
the laboratory. However, for the analysis of these reac-
tions the properties of nuclear matter at high density are
needed which can only be obtained from theoretical in-

vestigations [26,27]. For example, in the calculation of
meson production cross sections in heavy-ion reactions,
one needs the meson-baryon interaction in the dense
medium in order to estimate the reabsorption of the pri-
mordial mesons by the baryons [28—30]. In this sense,
the theoretical investigation of the properties of dense nu-

clear matter, as well as the properties of hadrons in the
dense medium [31],is of great importance.

There exist some phenomenological investigations of
the properties of dense nuclear matter, e.g., in the frame-
work of the Walecka model [32—34]. It is an empirical
model in the sense that it contains free parameters which
are adjusted to fit the saturation properties of nuclear
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matter. Thus, the connection to the underlying realistic
(bare) NN interaction is lost.

Another important topic is the properties of dense neu-
tron matter which are useful in the study of supernovae
and neutron stars. There are calculations of the proper-
ties of neutron matter within the Walecka model; the re-
sulting equation of state has been used to study the struc-
ture and stability of neutron stars [35—37]. It is also of
interest to study the properties of neutron matter based
on realistic NN interactions.

The purpose of the present paper is to study the prop-
erties of nuclear matter and neutron matter in the frame-
work of the Dirac-Brueckner approach with the relativis-
tic meson-theoretic potential of the Bonn group. Previ-
ous discussions of the properties of nuclear matter are
frequently expressed in terms of the Fermi momentum of
the system. Since the ultimate goal of the present study
is to connect the realistic NN interaction with heavy-ion
reactions where the density of the system rather than the
Fermi momentum is considered as a relevant quantity, we
will present our results in terms of density of nuclear
matter or neutron matter. In Sec. II we give a brief
description of the theoretical formalism. The results and
discussion are presented in Sec. III. Finally, in Sec. IV
we give our summary and outlook including a discussion
of possible extensions of the present approach to
nucleon-nucleus scattering as well as nucleus-nucleus col-
lisions.

II. SKETCH OF FORMALISM

The relativistic OBE potential to be used in the Dirac-
Brueckner calculation is constructed in the framework of
the covariant Thompson equation [38] which is a three-
dimensional reduction of the Bethe-Salpeter equation
[39]. In the center-of-mass (c.m. ) system of the two in-
teracting nucleons, the Thompson equation has the fol-
lowing form:

V(q', q) = v(q', q)

d3k, )m 1

(2~)3 Ek~ 2Eq 2Ek+i g—
X V'(k, q),

where m denotes the mass of the nucleon and
(k2+ m 2) 1 i2

k
The OBE potential is defined as the sum of one-

particle-exchange amplitudes of certain bosons with
given mass and coupling. Usually six nonstrange bosons
with mass below 1 GeV are used. The pseudovector
(derivative/gradient) coupling, instead of pseudoscalar
coupling is used for the pseudoscalar bosons (m. and g) in
order to avoid unphysically large antiparticle contribu-
tions. The details about the derivation of the OBE poten-
tial, the parameters (mass, coupling constant, and cutoff
of the bosons) and the description of the two-body system
have been extensively discussed in Refs. [11,21,22,40].
Three parameter sets, usually denoted by Bonn A, B, and
C, have been proposed and used in various calculations of
finite nuclei and nuclear matter [11,22,23]. In Table I we
show the predictions of these potentials for the energies
of H and ' 0 as well as for the saturation properties of
nuclear matter. Also shown in the table are the predic-
tions of a sophisticated nonrelativistic variational calcula-
tion [9], the Walecka model [34] and experiment. It is
seen that the Bonn A potential gives an extremely good
agreement with the experimental data. The essential
difference between the three potentials Bonn A, B, and C
is the strength of the tensor force as rejected in their pre-
dictions for the D-state probability of the deuteron
(PD =4.5, 5.1, 5.5 %%uo for A,B,C, respectively). This
strength of the nuclear tensor force is not determined
well by present NN data.

When two nucleons scatter from each other in nuclear
matter, the medium efFects, such as the Pauli blocking for
the intermediate states and the density dependence of the
nucleon efFective mass due to nucleon self-energy, should
be taken into account in the Thompson equation describ-
ing this process. As in the nonrelativistic case, one starts
from a bare interaction and carries out a Brueckner cal-
culation to get the effective interaction, often denoted as
6 matrix, in the medium. The properties of the nuclear
system are then derived from this effective interaction.
In the relativistic treatment, the Dirac equation is used
for the description of the single-particle motion in the
medium (hence the name of Dirac-Brueckner approach):

[a.p+P(m + Us )+ U~ ]u (p, s) =Zzu (p, s),

TABLE I. Energy of H and energy per nucleon of ' 0 and saturation properties of nuclear matter from various calculations and
from experiment. For nuclear matter the saturation energy per nucleon, 6/A, the saturation density, p, and the compression
modulus, E, are given. DBHF stands for Dirac-Brueckner-Hartree-Fock calculation.

Model

Bonn A

Bonn 8

Bonn C

AV14+UVII
Walecka

Calculational
method

34-channel Faddeev
DBHF

34-channel Faddeev
DBHF

34-channel Faddeev
DBHF

Variational
Mean field
Experiment

H
(MeV)

—8.32

—8.13

—7.99

—8.8

—8.48

16O

(MeV)

—7.08

—5.84

—4.95
—7.8
—5.57
—7.98

Nuclear
saturation

6/A (MeV)

—15.59

—13.60

—12.26
—12.4
—15.75

—16.0+1.0

Matter
properties

p (fm )

0.185

0.174

0.155
0.194
0.193

0. 17+0.02

E (MeV)

290

249

185
209
540

2. 10+30

Ref.

[11]
[22,23]

[1&]
[22,23]

[11]
[22,23]

[9]
[34]
[11]
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where Uz is an attractive scalar field and Uv is (the
timelike/fourth component ofl a repulsive vector field.
They are determined self-consistently from the realistic
NN interaction used in the Dirac-Brueckner calculation.

In the nuclear medium, a Dirac mass m is introduced

system and the nuclear matter rest frame is avoided.
Thus, the present approach can be straightforwardly ex-
tended to the case of nucleus-nucleus collisions where the
c.rn. system of the two colliding nuclei shall be used.

III. RESULTS AND DISCUSSION
m=m+Us ~ (3)

E, +Uv

The 6 matrix can be directly obtained in the nuclear
matter rest frame from the Thompson equation in the
medium [22]:

G(q', q~P, z) = V(q', q)

m

with

X ' G(k, qiP, z),
E(1/2)p+ k

(5)

Z =2E(&&2)P+q s

P is the c.m. momentum of the two colliding nucleons in
the nuclear medium. The essential difference between the
free-space Thompson equation [Eq. (1)] and the Thomp-
son equation in the medium [Eq. (5)] is the inclusion of
the Pauli operator Q(k, P) and the use of a density-
dependent effective mass m in the latter case.

From the 6 matrix the single-particle potential is ob-
tained:

—2

U; =Re g (ij ~
6 (z ) ~ ij ji ) . —

E,E

which is density dependent through the density depen-
dence of the self-consistent potential Uz. Furthermore it
is useful to define a quasienergy E by

E~=(p +m )' (4)

With this we can write

A. Nuclear matter

Nuclear matter is an infinite uniform system of nu-
cleons interacting via the strong force without elec-
tromagnetic interactions. It is supposed to approximate
conditions in the interior of a heavy nucleus. In this sub-
section we will present our results for the properties of
symmetric nuclear matter (equal number of protons and
neutrons).

1. Single-particle potentials

As in the phenomenological Walecka model, the essen-
tial quantities in the Dirac-Brueckner calculation are the
scalar potential Uz and the timelike component of the
vector potential Uv, which are determined self-
consistently from a given bare N1V interaction by an itera-
tive procedure. These potentials are often denoted as
Dirac potentials. We show in Fig. 1 the variation of the
Dirac potentials Uz and Uv with nuclear matter density.
The solid, dashed, and dotted curves correspond to the
results obtained with the Bonn A, B, and C potentials, re-
spectively. We see in the figure that both Uz and Uv are
strongly density dependent. While Uv increases almost
linearly with the density, the decrease of Uz is slower at

800

400-
Q3

This single-particle potential is related to the scalar and
vector potentials in the Dirac equation by

m
U = — Us+Uv

E;
(7)

Equation (5) is decomposed into partial waves and solved
in momentum space by means of the matrix inversion
method of Ref. [41]. The self-consistent potentials Uz
and Uv are determined from Eqs. (5)—(7) by an iterative
procedure: Starting from reasonable initial values for
U~( ' and Uv', one solves the Thompson equation with
the use of a realistic N1V interaction to get the G matrix
which leads to a new set of values for U&" and Uv ' to be
used in the next iteration. This procedure continues until
the desired accuracy for the self-consistent potential is
achieved. Since the numerical calculation is carried out
directly in the nuclear matter rest frame, a cumbersome
relativistic transformation between the two-nucleon c.m.

Q

0
0—

solid: Bonn A

dashed: Bonn B

dotted: Bonn C

0

—400-

—800
0.0

l

0.8 0.4 0.6

Density (fm ~)
O.B

FIG. 1. The variation of the Dirac potentials with density.
The solid, dashed, and dotted curves represent the results de-
rived from the Bonn A, B, and C potentials, respectively.
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800

600-

Nuclear Matter
Bonn A

higher density. This provides the mechanism by which
the Dirac-Brueckner calculations reproduce quantitative-
ly the saturation properties of nuclear matter, as shown
in Ref. [22]. We also notice that, while the vector poten-

tial U~ is almost independent of the OBE parameter sets
used, the scalar potentials Uz corresponding to different
parameter sets do show some difference, especially at
higher density. The Bonn A potential, which has the
weakest tensor component, results in the most attractive
potential. This is the reason why the Bonn A potential
leads to a larger binding energy for nuclear matter than

800

S

400-

S
200-0

0-

solid: p=0.0 fm
dashed: p=1.35 fm

dotted: p=4.05 fm 600-

400-

S

C4
O 200

CQ

Bonn A

Nuclear Matter

solid: p=0.0 fm

dashed: p=1.35 frn

dotted: p=4.05 fm
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0.0
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300-

e 200-

aj
~ M

g 100-
Q

0
P

0-

-100-

0.2

Nuclear Matter

Bonn A

solid: p=0. 15 fxn

dashed: p=0.30 fm

dotted: p=0.45 fxn

0.4 0.6

Density (fm 3)
0.8

(b)

0—

-200
0,0

400

300-

e 200-

~ W

g 100-
Q

0

0-

0.2 0.4 0.6

Density (fm ~)

Nuclear Matter

Bonn A

solid: p=0. 15 fm

dashed: p=0.30 fm

dotted: p=0.45 fm

(b)

0.8

-200
0.0 2.01.0 3.0

Momentum (fm ~)

4.0 -100-

FIG. 2. (a) The variation of the single-particle potentials with
density. The solid, dashed, and dotted curves represent the
single-particle potential of particles with momentum 0, 1.35,
and 4.05 fxn ', respectively. (b) The variation of the single-
particle potentials with momentum. The solid, dashed, and dot-
ted curves represent three cases with nucleon density p=0. 15,
0.30, and 0.45 fm, respectively.

-200
0.0

I

1.0 3.0

Momentum (fm )

2.0 4.0

FIG. 3. (a) The same as Fig. 2(a), but for the Schrodinger-
equivalent potentials. (b) The same as Fig. 2(b), but for the
Schrodinger-equivalent potentials.
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the other two parameter sets [22].
With the self-consistently determined Dirac potentials,

we can readily calculate the single-particle potential
U, „:

m
U, =, Us+ U~,

(p+m )
(8)

where p is the momentum of the particle in the nuclear
matter rest frame. Obviously the single-particle potential
is density and momentum dependent.

A quantity of practical importance is the so-called
Schrodinger-equivalent potential Us, which is often
used in the Dirac phenomenology for nucleon-nucleus
scattering [42]. Equation (2) implies the following
energy-momentum relation:

p +(m + Us } =(e+m —Uv) (9)

Us, (e)=Us+Ut, +—U~+ (Us —Ut, ) .
m 2&i

(10)

This quantity is also momentum and density dependent.
The single-particle potential U, and the

Schrodinger-equivalent potential Us, , thus obtained, are
shown in Fig. 2(a) and Fig. 3(a) as functions of nuclear
matter density, and in Fig. 2(b) and Fig. 3(b) as functions
of particle momentum. The results have been obtained
by using the Bonn A potential. In Fig. 2(a) and Fig. 3(a)
we present three different results corresponding to parti-
cles with momentum 0 (solid curve), 1.35 fm ' (dashed
curve), and 4.05 fm ' (dotted curve), while in Fig. 2(b)
and Fig. 3(b) we show three different results correspond-
ing to nucleon matter density p=0. 15 fm (solid curve),
0.30 fm (dashed curve), and 0.45 fm (dotted curve).
The variations of U, and Us, with momentum and
density are about the same. At low momentum, the po-
tentials first decrease and then increase with density,
while at high momentum, the potentials are monotonous-
ly increasing functions of the density. The introduction
of a Schrodinger-equivalent potential in the Dirac-
Brueckner approach is of practical relevance when the
approach is used to study nucleon-nucleus scattering. It
is also usefu1 for an unambiguous definition of the nu-
cleon effective mass in a relativistic framework, as we will
discuss below.

2. Equation of state

The energy per nucleon as a function of the density of
the system is often referred to as the nuclear equation of
state. Note that this differs from the more common
definition of an equation of state which is the variation of
the system pressure with its density. In the Dirac-

where we use c =c+m with c. the single-particle energy.
Equation (9}can be written in the following Schrodinger-
type form [43]:

2 2
P +U„=,+ '
2m ' 2m

with the Schrodinger-equivalent potential, Us, , defined
as

1+ g (ij iG(z)~ij ji )——m, (11)
2A ij (k EEj

where

z=E, +E
The present result for the microscopic nuclear equation

of state, obtained in the Dirac-Brueckner approach with
the OBE potentials, are shown in Figs. 4(a) and 4(b). In
addition we list in Table II the energy per nucleon, 6 l &,
of nuclear matter and neutron matter as function of den-
sity, as obtained in the Dirac-Brueckner calculation with
the Bonn A potential. In Fig. 4(a) the solid, dashed, and
dotted curves represent our results corresponding to
Bonn A, B, and C, respectively. The shaded area indi-
cates the empirical saturation region of normal nuclear
matter. The two solid curves marked with squares and
circles correspond to Skyrme parametrizations for the
nuclear equation of state which is frequently used in the
theoretical description of intermediate-energy heavy-ion
reactions [26—30]. The one with circles is the so-called
soft equation of state with an incompressibility (at the
saturation point) X =200 MeV, while the one with
squares represents the so-called stiff equation of state
with the incompressibility (at the saturation point)
K =380 MeV. In Fig. 4(b) the equation of state corre-
sponding to the Bonn A potential (solid curve) is com-
pared with the predictions by the Walecka model (dashed
curve) [34] and by the most sophisticated nonrelativistic

TABLE II. Energy per nucleon in nuclear and neutron
matter as a function of density for the Bonn A potential as ob-
tained in a Dirac-Brueckner calculation.

p (fm )

0.10
0.13
0.15
0.16
0.17
0.18
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

8/A (Mev)
Nuclear matter

—12.54
—14.07
—14.07
—15.20
—15.40
—15.54
—15.51
—13.81
—9.68
—3.31

5.61
16.44
29.68
44.62
61.77
80.94
99.61

119.93

Bra (MeV)
Neutron matter

10.15
12.62
14.55
15.54
16.63
17.81
20.47
28.48
39.23
52.91
69.26
86.89

106.34
126.24
147.31
170.14
196.57

230.13

Brueckner approach, the energy per nucleon, 4/A, is ob-
tained from the G matrix of Eq. (5):

rnm +p;
E;
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160

Nuclear Matter

120— solid:
dashed
dotted
square
circle:

400
~ M

U'

0-

—40
0.0 0.2

l

0.4 0.6

160

Nuclear Matter

80-Q

a5

CG

0

solid: D

dashed:
dotted:

Density (frn )

0.8

(b)

calculation (dotted curve} [9]. In the latter calculation,
the Argonne V14 two-nucleon potential together with the
Urbana VII three-nucleon force is used in a variational
method.

From these figures, three observations can be made: (1)
Of the three potentials, Bonn A, which has the weakest
tensor force, gives the best fit of the empirical saturation
properties of normal nuclear matter. Bonn B and C un-
derestimate the binding energy by about 10%. Further
results concerning the properties of nuclear matter and
neutron matter will, therefore, be given for the Bonn A
potential only. (2) Our equation of state is softer than
that of the Walecka model, but stiffer than the prediction
of the nonrelativistic approach, even though in the latter
approach a three-nucleon potential is taken into account.
This "intermediate" position of our result in Fig. 4(b)
qualifies our prediction as very reasonable. The nonrela-
tivistic calculation of Ref. [9] saturates nuclear matter at
too high a density (cf. Table I). Thus, this model still
lacks density-dependent repulsion. The %alecka model,
on the other hand, does saturate nuclear matter correctly,
however, at the expense of far too high a compressibility
of about 540 MeV (cf. Table I}. Our model (DB with
Bonn A) predicts nuclear matter saturation correctly and
the compressibility reasonably close to empirical infor-
mation. The unrealistic stiffness of the %alecka model
can be attributed to the neglect of two-nucleon correla-
tions [14,33]. (3) Around the saturation point, the micro-
scopic equation of state derived from the Bonn A poten-
tial agrees with the phenomenological equations of state
of the Skyrme parametrization. At high density, large
differences occur between the microscopic and phenome-
nological equations of state. However, it is remarkable
that the microscopic one lies in between the phenomeno-
logical soft and hard equations of state. It will be of
practical interest to apply the microscopic equation of
state based on the realistic NN interaction in the theoreti-
cal description of heavy-ion reactions, which constitutes
one of the ultimate goals of the present study.

0-

—40
0.0

I

0.4
I

0.2 0.6

Density (fm ~)
0.8

FIG. 4. (a) The equation of state, the energy per nucleon, of
nuclear matter. The solid, dashed, and dotted curves are the
present results corresponding to Bonn A, 8, and C potentials,
respectively. The solid curves with circles and squares
represent the soft and stiff equations of state of the Skyrme pa-
rametrization. The solid square indicates the empirical satura-
tion region of normal nuclear matter. (b) The equation of state
obtained in Dirac-Brueckner calculation with Bonn A potential
(solid curve) is compared with that of the Walecka model [34]
(dashed curve) and that of a nonrelativistic calculation (dotted
curve) [9]. The solid square indicates the empirical saturation
region of normal nuclear matter.

(12)

The empirical value for the effective mass in nuclear
matter derived from the analysis of experimental data in
the framework of nonrelativistic shell or optical models is
[43,44]

=0.7-0.8 . (13)

3. Effective masses

The introduction of the nucleon effective mass is a con-
venient way to describe the motion of nucleons in the nu-
clear medium. It rejects the inhuence of the mean field
(optical potential) on the nucleon motion. In the nonrela-
tivistic theory, the microscopic mean field (optical poten-
tial) V, is in general nonlocal and energy dependent. The
effective mass is defined in such a way that it character-
izes the energy dependence of a local potential V, which
is equivalent to the nonlocal microscopic potential V,
[43]:
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In the relativistic treatment of nuclear problems, the can-
cept of "effective mass" is also frequently adopted. How-
ever, in this case the term usually denotes different quan-
tities under different circumstance. In Ref. [43] a
clarification of the relativistic definition of the effective
mass is given. A quantity that is often referred to as
"effective mass" in the relativistic approach is the tilded
mass m which we introduced in Eq. (3). In Refs. [43,45]
this mass is called "Dirac mass, " a term we adopt in this
paper. Since its definition has no apparent relation to the
nonrelativistic definition of the effective mass, Eq. (12),
the Dirac mass should not be compared to the empirical
value of Eq. (13) and this wrong comparison should not
be considered as a judgement for the relativistic theory it-
self, or for the underlying bare NN interaction used in the
theory.

The introduction of the Schrodinger-equivalent poten-
tial Us, in the relativistic approach makes it possible to
define an effective mass which is analogous to Eq. (12):

d=1— U (e)=1-s.e.
Uv

(14)

It is this quantity that should be compared with the
empirical value of Eq. (13).

Another quantity, sometimes also known as "effective
mass, " is the Landau mass mI* which gives a measure of
the density of states in the vicinity of the Fermi level. It
can be defined with the help of the dispersion relation,
Eq. (9) [43,46,47]:

~L kF dp (kF++
m m d6' kF m

(15)

mL* plays the role of the "effective mass" of the nonrela-
tivistic Landau theory. However it should not be
identified with the effective mass defined in Eq. (14).

The comparison of these "effective masses" is present-
ed in Fig. 5, where m, m*, and mL' are plotted as func-
tions of the density of nuclear matter. Solid, long-dashed,
and short-dashed curves correspond to Dirac mass m,
effective mass m*, and Landau mass mI*, respectively.
The Bonn A potential is used in this calculation. The
dotted curve in the figure represents the Dirac mass of
the Walecka model [34]. The dagger in the figure indi-
cates the empirical values for the effective mass which are
obtained in the analyses of experimental data in the non-
relativistic shell or optical model [Eq. (13)]. It is a great
success of our Dirac-Br ueckner approach that the
effective mass (the long-dashed curve) obtained in the
present calculation is very close to the empirical value of
Eq. (13). Thus the Bonn A potential reproduces not only
the saturation density and the binding energy, but also
the nucleon effective mass. Earlier conjectures that the
Dirac-Brueckner approach underestimates the nucleon
effective mass were obviously wrong and due solely to a
misidentification of the relativistic and nonrelativistic
definitions for the effective mass. Clear difference is seen
between the Dirac mass in the present approach and that
of the Walecka model. The Dirac mass in the latter case
decreases much faster with increasing density.

The variations of the three "effective masses" with den-

1.0

0.8—

solid: Dirac mass
long —dashed: effective mass
short —dashed: Landau mass

a model.

(D

4' 0 4-
Q)

0.2—
Bonn A

Nuclear Matter

0.0
0.0 0.80.2 0.4

Density (fm ~)

FIG. 5. The variation of "effective masses" (in unit of m)
with density. The solid, long-dashed, and short-dashed curves
correspond to the Dirac mass, effective mass, and Landau mass,
respectively. The dotted curve is the Dirac mass in the Walecka
model. The dagger denotes the empirical value of the effective
mass [43,44].

4. Landau parameters

Landau theory provides a practical way of describing
an interacting fermion system, since there is a one-to-one
correspondence between the single-particle states of the
noninteracting system and the quasiparticle states of the
interacting system. The quasiparticle-quasihole interac-
tion f (p, p') is defined to be the second derivative of the
energy functional with respect to the occupation function
[46,47]. It can be expanded according to its spin-isospin
content:

f(p, p') =F(p, p')+F'(p, p')r r'

+G(p, p')o"cr'+6'(p, p')cr cr'r r' . (16)

If one restricts the consideration to single-particle states
in the vicinity of the Fermi level, then the interaction de-

pends only on the angle 0 between p and p'. This sug-
gests an expansion in terms of Legendre polynomials,
e.g.,

F(p, p')= QFiPi(cos0) .
I

sity are not the same. At low density, the effective mass
m * has the largest value, it decreases almost linearly with
density, since the vector potential Uv increases with den-

sity linearly (Fig. 1). The Dirac mass m also decreases
with density. But at higher density it decreases slower,
since the scalar potential U& decreases slower at higher
density. On the other hand, the Landau mass mL' first
decreases with density and then at high density it in-
creases with the density. mL' is composed of two parts
which have opposite behavior as functions of density: the
Fermi momentum kF increases with density while the
Dirac mass m decreases. At extremely high density, mL*

approaches kF.
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The constants F& are called Landau parameters. More
frequently one introduces the dimensionless Landau pa-
rameter f& by defining

where C is the inverse density of states at the Fermi sur-
face [47].

~P 2k

kF

In the relativistic case, the explicit form of the inverse
density of state is given by [12,47]

so
4- lo

( k 2 +ni 2
)
1/2

F F
772

(17)

It is instructive to relate these Landau parameters, which
are important for the phenomenological description of
nuclear properties, to the underlying realistic NN interac-
tion. The Landau parameters for l =0 fp f0 gp and

go, are easily obtained in our self-consistent Dirac-
Brueckner calculation. In Ref. [22], a nonrelativistic ex-
pression for the inverse density of states, mkFle, was
used. In order to be more consistent, the results present-
ed in this paper have been obtained with the relativistic
inverse density of states, Eq. (17).

Another important Landau parameter, fi, can be easi-

ly obtained from the Landau mass mL' [43]:

mL'=[(k~+rn )
~ +Ui ](I+3fi) . (18)

Some Landau parameters can be related to the bulk
(macroscopic) properties of nuclear matter. Two impor-
tant examples are the incompressibility EC and the sym-
metry energy P, which are related to the Landau parame-
ters fo and fo, respectively [12,47]:

(19)

kF'
(1+ 0) .

6 (k'+m )' ' (20)

We show in Fig. 6 the five Landau parameters obtained
in the Dirac-Brueckner calculation with the Bonn A po-
tential. The solid, long-dashed, medium-dashed, short-
dashed, and dotted curves correspond to fo, fo, go, go,
and f, , respectively. The dotted curve with squares
represents the results for f, based on the Walecka model
[48]. It is clearly observed that, while fo and f, depend
strongly on the density of the system, the other three
Landau parameters are almost density independent.

The macroscopic properties of the nuclear system,
such as the incompressibility K and the symmetry energy
P, impose some constraints on the values of the Landau
parameters, and further on the bare NN interaction used
in the Dirac-Brueckner calculation. It is seen in Eqs. (19)
and (20) that, for K and P to be positive, we should have

fo & —1 and f0 ) —l. As we notice in the figure, the
value of fo is larger than zero, which leads always to a
positive symmetry energy. On the other hand, it can be

Bonn A

Nuclear Matter

-e

—4
0.0

I

0.2
I

0.4
I

0.6 O.B

Density (frn )

FIG. 6. The variation of the Landau parameters with densi-

ty. The solid, long-dashed, medium-dashed, short-dashed, and
dotted curves correspond to fo, fo, go, go, and f„respectively.
The dotted curve with squares is the result for f, from the
Walecka model [34].

5. Speed ofsound

The principle of causality puts constraints on the nu-
clear equation of state, or the underlying NN interac-
tions. Especially in Refs. [50—52] it was shown that the
widely used empirical Skyrme force violates causality in

anticipated from the variation of fo with density that the
value of fo obtained in the present calculation with the
OBE potential could be less than —1, if the density of the
system is extremely low. Defining the density at which

f0
= —1 as critical density, p„we find that

p, =0.07—0.08 fm . The appearance of fo ( —1 at low
density should, however, not be considered as a
shortcoming of the Dirac-Brueckner approach or the
OBE potential used in the calculation. It could actually
be identified with the instability of the nuclear system at
low density that has recently been observed in heavy-ion
reactions [49]. At low density, the system enters the so-
called "spinodial region" where its incompressibility is
negative and the system becomes unstable. Experimen-
tally it is found that the critical density at which the sys-
tem enters the spinodial region is about half to two-thirds
of the normal density, which is in agreement with our
prediction. Physically this instability is due to strong
correlations between nucleons when the density is low.
Correlated nucleons form clusters which repel each other
and make the systexn fragment.
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extremely dense nuclear matter, when a nonrelativistic
treatment for the speed of sound is adopted. This
phenomenon of causal violation is also known as super-
luminosity.

The speed of sound in a nuclear medium, u „in units of
the velocity of light is given by [48]

QO
QO

t QOQnmnQ4'40000
~ VO

OChQQOQorqMmQO
Ch 0 0 0

Q)= aP
BE

(21)

where P is the pressure of the system.
In the relativistic treatment, u, is directly proportional

to the incompressibility of nuclear matter. Its explicit ex-
pression is [48]

k~

3(k&+2)1/2[U+(k2+-&)]1/2 (22)

1.0 .

0.8-
cf

0.6-
M

0

Nuclear Matter

0.2—

We show in Fig. 7 the density dependence of the speed
of sound in nuclear matter. The solid curve is our result
obtained in the Dirac-Brueckner calculation with the
Bonn A potential, the dashed curve represents the result
of Ref. [48] which is obtained in the mean field theory of
the Walecka model, and the dotted curve is the result of
Ref. [50] which is derived from the Skyrme force SIII.
While in all three cases the speed of sound increases with
density, the two phenomenological approaches show a
much stronger density dependence. The strong density
dependence of the speed of sound with the Walecka mod-
el is related to its unrealistically large incompressibility at
the saturation point (K =540 MeV). Unlike the Walecka
model and the Dirac-Brueckner approach which satisfy
causality up to the density considered in the present
work, the Skyrme force SIII in the nonrelativistic treat-
ment leads to superluminosity already at a density about
four times the saturation density.

In Table III we have summarized some important
quantities of dense nuclear matter at density p=0. 20,
0.40, and 0.60 fm as predicted in the Dirac-Brueckner
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FIG. 7. The variation of the speed of sound (in units of c) in
nuclear matter with density. The solid curve is our result; the
dashed and dotted curves are the results of Refs. [34] and [36],
respectively.
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calculations with Bonn A, B, and C potentials. They in-
clude Dirac potentials Uz and Uv, single-particle poten-
tial U, (p=0), effective mass m, Dirac mass m, Lan-
dau mass ml', energy per nucleon, 6'/A, and the Landau
parameters.

B. Neutron matter

Neutron matter is also a hypothetical system. It can be
regarded as extremely asymmetric nuclear matter with an
asymmetry parameter (N —Z) /A = 1. The most
significant difference between nuclear matter and neutron
matter is the fact that while in the former one quantum
state can accommodate four nucleons, in the latter only
two neutrons can be accommodated. At the same densi-
ty, the Fermi momentum of neutron matter is larger than
that of nuclear matter. We will present in this subsection
our results for properties of neutron matter, in a way
parallel to Sec. III A.

1. Single-particle potentials

First we show the density dependence of the Dirac po-
tentials Uz and Uz (Fig. 8). We present three kinds of re-
sults corresponding to three different OBE potentials.
However, the difference among the three kinds of results
is too small to be noticeable on the scale of the figure.
This is reasonable since the main difference between the
three OBE potentials is in their tensor force strength in
the (T=0) S, D& state t-hat does not contribute to the
(T = 1) neutron-neutron state.

Furthermore in Figs. 9(a) and 9(b) we show the single-
particle potential U, as function of the density and as a
function of momentum, respectively. In Fig. 9(a) the

500

Bonn A

Neutron Matter

(a)

~ pq

0
0

C4

300-

P

solid: p=0.0 fm

dashed: p=1.35 fm —1
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solid, dashed, and dotted curves correspond to the poten-
tials of neutrons with momentum 0, 1.35, and 4.05 fm
respectively, while in Fig. 9(b) the solid, dashed, and dot-
ted curves represent three cases with neutron density
p=0. 15, 0.30, and 0.45 fm, respectively. The varia-
tions of these potentials with momentum and density are
similar to their counterparts in nuclear matter. The be-
havior of the Schrodinger-equivalent potential in neutron
matter should also be similar to that in nuclear matter.
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400

300-
Nuclear Matter

Bonn A

a5
~ ~

Q

0
C4

400-

0— dashed: Bonn B

e 200-

g$
~ W

g 100-

solid: p=0. 15 fm

dashed: p=0.30 fm

dotted: p=0.45 frn

O

A -400-

0-

-100-

—800
0.0

I

0.2 0.4 0.6

Density (frn ~)
0.8

-200
0.0

I

2.01.0 3.0

Momentum (fm )

4.0

FIG. 8. The same as Fig. 1, but for neutron matter.
FIG. 9. (a) The same as Fig. 2(a), but for neutron matter. {b)

The same as Fig. 2(b), but for neutron matter.
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2. Equation ofstate 1.0

The theoretical equation of state of neutron matter is
often used in the study of the properties of neutron stars
[35,36]. The microscopic equation of state (solid curve)
of neutron matter obtained in the present work with the
Bonn A potentials is plotted in Fig. 10. Also shown in
the figure are the equation of state for neutron matter
given in Ref. [35] (dashed curve) which is derived from an
improved Walecka model and the equation of state from
Ref. [9] (dotted curve) which is obtained in a nonrelativis-
tic variational calculation. There are sizable differences
between our microscopic equation of state based on the
Dirac-Brueckner approach and the equation of state
based on the Walecka model or on the nonrelativistic ap-
proach. As in the case of nuclear matter [Fig. 4(b)], our
equation of state is stiffer than that of nonrelativistic ap-
proach but softer than that of the Walecka model. In
further work, we intend to apply our microscopic equa-
tion of state to the properties of neutron stars. To do so,
the present model should be extended, since there is a
difference between pure neutron matter and the actual
neutron star matter where many other particles exist.

3. Effective mass

We introduce also three different "effective masses" in
neutron matter. The Dirac mass m, the effective mass
m*, and the Landau mass mL* are presented in Fig. 11
with solid, long-dashed, and short-dashed curves, respec-
tively. Their variation with density is similar to the vari-

300

0.8—

0.6—
(0

~ M

(D
0.4-

solid: Dirac mass

long —dashed: effective mass
0.2-

short —dashed: Landau mass
dotted: Dirac mass of Walecka model

0.0
0.0 0.2 0.4

Density (fm 3)
0.6 0.8

FIG. 11. The same as Fig. 5, but for neutron matter.

4. Landau parameters

One can also introduce the Landau parameters for neu-
tron matter. The only difference is the expression for the

ations of their counterparts in nuclear matter. The Lan-
dau mass in neutron matter is considerably larger than
the one in nuclear matter. mI* is proportional to the Fer-
mi momentum which is larger in neutron matter than in
nuclear matter, if the densities are the same. Again we
notice that the Dirac mass of the Walecka model (dotted
curve) [34] decreases much faster with the increasing den-
sity.

Neutron Matter

solid: DB—Bonn A
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FIG. 10. The same as Fig. 4(b), but for neutron matter. The
solid curve represents the present result with the Bonn A poten-
tial, while the dashed and dotted curves correspond to the re-
sults of the Walecka model [35] and the nonrelativistic calcula-
tion [9].

Density (fm 3)
FIG. 12. The Landau parameters fo (solid curve) and f,

(dashed curve) as obtained with the Bonn A potential. Curves
with squares and circles correspond to results obtained from the
Walecka model [47].
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1.0
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FIG. 13. The same as Fig. 7, but for neutron matter.

inverse density of state. In the neutron matter,

( k 2 +ni 2
)
i /2

C1= F F
8-2

(23)

5. Speed of sound

The speed of sound in neutron matter can be obtained
with the help of Eq. (21). The result of our calculation is
presented in Fig. 13 together with the speed of sound tak-
en from Ref. [48]; they are shown in the figure by solid
and dashed curves, respectively. We see a considerable
difference between the two results, especially at high den-
sity. The difference can again be traced back to the
difference in the predictions of the two models for the in-
compressibility of neutron matter. The incompressibility
obtained in the Walecka model is much larger than the
one obtained in the present work with Bonn potentials.

IV. SUMMARY AND OUTLOOK

Based on the realistic and relativistic NlV interaction of
the Bonn group, we performed Dirac-Brueckner calcula-
tions which yield an effective XN interaction, the so-
called G matrix, in the nuclear medium. Based on this
e8ective m0craction we ha~estudicd 0M progxm4ies of
dense nuclear matter and neutron matter. The important
conclusions are the following.

We show in Fig. 12 two Landau parameters as func-
tions of the density of neutron matter. The solid and
dashed curves correspond to the present results for fo
and f, , respectively, while the curves with squares and
circles represent the corresponding Landau parameters
obtained from the Walecka model [48]. It is observed
that f, obtained in the microscopic Dirac-Brueckner cal-
culation is in agreement with that obtained in the phe-
nomenological Walecka model (see also Fig. 6). There is,
however, a considerable difference between the values of
fo obtained in the two approaches. The Walecka model
predicts in a larger fo, since it has a larger incompressi-
bility.

(1) The Bonn A potential, with a weak tensor force
strength corresponding to a D-state probability

PD =4.5%, reproduces quantitatively the empirical satu-

ration properties of nuclear matter. It also leads to a
reasonable nucleon effective mass as compared to the
empirical value obtained in the nonrelativistic shell or op-
tical model.

(2) The microscopic equations of state of nuclear
matter and neutron matter show different behaviors when

compared to the widely used equations of state of Skyrme
parametrization, the Walecka model, or the nonrelativis-
tic approach. Of particular importance is the fact that
our equation of state is softer than that of the Walecka
model [34,35] but stiffer than that of the most recent and
most sophisticated nonrelativistic calculation [9]. It
would now be interesting to apply these microscopic
equations of state in the domains of heavy-ion physics
and astrophysics. These applications are also connected
with the long-pursued goal of understanding nuclear
structure and nuclear reactions in terms of the underlying
"bare" NÃ interaction.

(3}The speed of sound obtained in the present calcula-
tions increases with density, but at a rate much smaller
than the speed of sound obtained from the Walecka mod-
el. It can be anticipated that the Bonn potential, when
used in the Dirac-Brueckner framework, satisfies causali-
ty.

In this paper we have been concerned with symmetric
nuclear matter (i.e., equal proton and neutron densities}
and pure neutron matter. The properties of asymmetrical
nuclear matter (with different proton and neutron densi-
ties) are also of interest, especially in the formation of su-

pernovae and black holes. According to the model of
prompt explosion [53], an electron-capture process drives
the presupernova to an equilibrium state where the pro-
ton concentration is Z/A = 1/3, or asymmetrical param-
eter (N —Z)/Z= 1/3, which, depending on the stiffness
of this asymmetric nuclear matter, might lead to a super-
nova or black hole. The extension of the Dirac-
Brueckner calculation to the case of asymmetric nuclear
matter is straightforward, and the investigation is in pro-
gress.

The success of the Dirac-Brueckner calculation for nu-
clear rnatter makes it promising to pursue a self-
consistent approach for the description of nuclear struc-
ture and nuclear reactions in terms of the bare NX in-
teraction. There have been first investigations in which
the Dirac-Brueckner approach is applied to nucleon-
nucleus scattering using the Bonn potential in the local
density approximation [54]. Besides the OBE model used
in the present work, we also have a more comprehensive
multi-boson-exchange model for the NN interaction
which takes into account isobaric degree of freedom ex-
plicitly [11,20]. With this model it is possible for us to
perform a systematic study of nucleon-nucleus scattering
up to incident energies of about 1 GeV.

The development of a self-consistent approach for
nucleus-nucleus collisions is also a recent focus [55,56].
Smcc m our cakcnka0ien, 0hz C matrix is oblate@ directly
in the nuclear matter rest frame, the present approach
can be easily extended to the case of nucleus-nucleus col-
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lisions where the c.m. system of the two colliding nuclei
shall be used. The main modification on Eq. (5) is the
Pauli operator which should represent the Pauli blocking
due to two overlapping and time-dependent Fermi
spheres [57]. Once we obtain the G matrix, the mean
field and the in-medium NN cross section, which are used
in the Boltzmann-Uehling-Uhlenbeck equation [26] or

quantum molecular dynamics [27], can be evaluated in a
standard way [58].
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NSF-Physics program under Grant No. 8911040, and the
San Diego Supercomputer Center.
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