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Rotation and wobbling motion in triaxially deformed nuclei
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A quantum mechanical method of rotation and wobbling motion in triaxially deformed nuclei is
represented within the framework of time-dependent Hartree-Fock theory. For such systems, the intrin-
sic frame is defined by imposing constraints of principal-axis frame. With aid of the canonical formula-
tion of the constrained system, the Dirac quantization of the classical system is performed. It is shown
that the commutation relations of angular momentum in the intrinsic frame then exactly satisfy the
body-fixed frame. Furthermore, a method of describing large amplitude collective motion in the con-
strained system is proposed by extending the self-consistent collective-coordinate method.

PACS number(s): 21.60.Ev

I. INTRODUCTION

Recent experimental data of the energy and y-ray
spectrum at high spin provide much detailed information
about the high-spin states deexciting toward the yrast
line. A model describing such states is the triaxial rotor
model of Bohr and Mottelson [1]. In this model, the level
above the yrast line corresponds to a new collective
motion (wobbling motion) which is the dynamical fiuc-
tuation of angular velocity vector. This, however, is a
phenomenological model. One needs a microscopic
description as a more realistic calculation. The self-
consistent cranking (SCC) plus random-phase approxima-
tion (RPA) [2,3] is useful for describing the wobbling
motion above the yrast line. However, this is restricted
to small oscillations. The purpose of this paper is to dis-
cuss general rotation and wobbling motion in triaxially
deformed nuclei.

If a many-body system displays a triaxial stable defor-
mation, it is simpler to describe it from a moving frame
(intrinsic frame) of reference. How is the intrinsic frame
microscopically defined? This is considered as follows.
In the intrinsic frame, the deformation breaks rotational
invariance or dynamical rotational symmetry. The rota-
tional invariance corresponds to the rotational SO(3)
symmetry. This is analogous to gauge theory [4]. Then
the conditions determining the intrinsic frame (intrinsic
frame conditions) correspond to the gauge-fixing condi-
tions in the gauge theory. With this meaning, we cannot
uniquely determine the intrinsic frame. In this paper, we
will choose the principal-axis (PA) frame condition as the
intrinsic frame conditions. Thus, we have to treat the
constrained systems to defined the intrinsic frame. Since
the nucleus is an isolated system whose Hamiltonian
should be manifestly rotational invariant in the space-
fixed frame, the symmetry breaking has to be restored.
The intrinsic states corresponding to di6'erent orienta-
tions should yield degenerate energies. This gives rise to
three zero-frequency modes corresponding to the com-
ponents of angular momentum. One represents rotation
(Goldstone mode) [5], and the others are spurious modes
associated with the redundancy of the choice of the in-

trinsic frame. Furthermore, there is the difficulty of the
divergent norm associated with the zero-frequency
~odes. When we go beyond the RPA to higher orders,
naive perturbation theory fails due to the presence of
these zero-frequency modes. Therefore, the perturbation
method needs to be modified in the presence of such
zero-frequency modes. To tackle this, Bes et al. [6] have
recently proposed a microscopic theory using the collec-
tive coordinate method [7] in the path-integral formula-
tion. Furthermore, they investigated a canonical forrnu-
lation [8] using the Becchi-Rouet-Stora-Tyutin (BRST)
transformation [9] in the gauge theory. On the other
hand, Kerman and Onishi [10] have studied the nuclear
rotation including precession and wobbling motion
within the semiclassical method used on the time-
dependent mean-field theory. It is, however, not clear
whether the zero-frequency modes are exactly treated in
their theory.

In this paper, we propose the quantum mechanical
treatment of the rotation and the wobbling motion in the
triaxially deformed nuclei within the framework of the
time-dependent Hartree-Fock (TDHF) theory. The ap-
proach in the present paper di8'ers from that of Bes et al.
[7,8]. This is done by the canonical formulation in the
TDHF theory with the constraints (the intrinsic frame
conditions) which determine the choice of the intrinsic
frame. The TDHF theory is considered to be a powerful
tool for describing the dynamics of nonlinear systems
such as the nucleus. With use of the canonical variables,
the TDHF equations have the same form as the canonical
equations of motion in classical mechanics [11]. In fact,
the boson expansion theory is reduced to the TDHF
theory under the replacement of the boson operators with
the classical canonical variables. With this meaning, to
obtain the spectra of the bound states it is necessary to
quantize the above-mentioned classical constrained sys-
tem. The quantization is then carried out by the Dirac
quantization.

As is well known, the frequency of the small fluctua-
tion around a static Hartree-Pock field is the same as that
given by the RPA. The RPA gives a way of how to
determine the collective subspace, although it is a linear
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II. TDHF METHOD IN INTRINSIC FRAME
AND CANONICAL QUANTIZATION

We first start from the Hamiltonian operator with
single-particle states of a spherical mean field:

8= g T pc cp+ ,' g V p sc —cpcsc, (2.1)
ap apy5

where the operator c (c ) denotes the fermion annihila-
tion (creation} operator in the single-particle state a. In
terms of the particle-creation operator && and the hole-
creation operator b;, the above Hamiltonian operator
(2.1) can be written as

P=gT, , +

+ —,
'

aPy5

g V;;"+g eitti„di —g b; b;
l

Vapys '. cacp scy (2.2)

approximation. The RPA is a quantal theory and leads
to the excitation energy of the first excited state. Maru-
mori et al. recently proposed a microscopic theory
beyond the RPA to highly nonlinear system including the
large amplitude collective motion within the framework
of the TDHF theory, which is called self-consistent
collective-coordinate method [12]. They gave a scheme
for choosing the collective degree of freedom. We will
extend the self-consistent collective-coordinate method to
the case of the constrained system.

In Sec. II, starting from the many-fermion system, we
present the canonical formulation of the nuclear rotation
and the wobbling motion within the framework of the
TDHF theory, and perform the canonical quantization
using Dirac bracket. Then it is shown that the angular-
momenturn algebra in the intrinsic frame obeys exactly
the minus-sign rules of the usual commutation relations
which are well known as the commutation rules with
respect to the rotating body-fixed frame. Our method in
Sec. II is applied to the triaxial rotor at high spin in Sec.
III. Choosing the PA frame conditions as the gauge-
fixing conditions, we discuss the static Hartree-
Bogoliubov (HB) approximation plus RPA (HB+RPA).
It is shown that the result obtained is identical to the
SCC+RPA equations of Marshalek. In Sec. IV, the
self-consistent collective-coordinate method is extended
to the case of the constrained system. A short summary
and some concluding remarks are given in Sec. V.

(2.7)

Here, p, means the set [i A. ] of the particle A, and the hole
i. Then the TDHF equations (2.3) are expressed by the
canonical form

ip„=[13„,H]I, , ip„'=[p„',H]p, (2.8)

where the dot denotes the time derivative. The density
matrix corresponds to the c-number version of the gen-
eralized Holstein-Primakoff representation. The H is the
classical version H= &/~8~/& of the original Hamil-
tonian operator 8. Hereafter, we put F as the expecta-
tion value & P ~P ~ P ) for arbitrary operator P. The Pois-
son bracket [F,G]t, is defined as

aF aG aG aF
ap„ ap„* ap„ ap„'

(2.9)

Now let us consider the rotating triaxial nuclei. Since the
TDHF equations (2.1) refer to the space-fixed frame, it is
convenient to go to the rotating frame from the space-
fixed frame. Then both coordinate systems are connected
by the Eulerian angles (8,, 8z, 83), which are the dynami-
cal variables depending on time. The Harniltonian in
such an arbitrary rotating frame is written as

H=H QQk Jk, —
k

(2.10}

where Jk are the classical versions of the angular-
momentum operator Jk = g, (Jk ) c c ~ with
respect to the space-fixed frame, and Qk are the angular
velocities with respect to the rotating frame. The angular
velocities Qk are expressed by the Eulerian angles 8; as
follows:

&k=& Vk;8
l

where the transformation matrix Vis given as

(2.11)

and C&; are complex variables. Let us now introduce the
new variables (P„,P„') connected by

sin CC ~, Ct sin CC
(2.6)

&CC' ' &CC'

which satisfy the relations

where:: denotes the normal ordered product with
respect to the particle and hole. The TDHF equations
are given as

V=

—sin8z cos83 sin83 0

sin02 sin03 cos03 0 (2.12}

5( p~ (E d Idt 8)~p )=0— (2.3)
cos82 0 1

Here, 5 means variation and ~P) is a general time-
dependent Slater determinant

~P) = exp g (Ci,.&ib, —C„*,.b,.& )i~0), (2.4)

where the vacuum ~0) of particles and holes satisfies the
relation a„=0, (k =1,2, 3), (2.13)

Since the Hamiltonian is rotationally invariant, the physi-
cal results do not depend on the choice of the rotating
frame. This implies the gauge invariance corresponding
to the SO(3) symmetry. Thus, we need the gauge-fixing
conditions that determine the intrinsic frame. We impose
the constraints:

a, io) =b, io) =o, (2.5) satisfying the conditions
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Det( [Jk, a( ]P )%0,

[&k &()P=0.

(2.14)

(2.15)

I&, R]D ~p + g [Pp ~k)PC'k( [Jl P*]p

+ g [P Jk)p+k( [(x( P ]p (2.24a)
Since the Poisson bracket must be worked out before we
make use of the constraint equations, we use a different
equality sign = from the usual =. With this meaning,
we call Eqs. (2.13) weak equations. We cannot uniquely
determine the ak satisfying the conditions (2.14) and
(2.15). The consistency conditions for arbitrary time then
are

[~, ~.)D= X N„~k)p~'k('[JI P.)p
kl

+ g [0 Jk )p+k( [~i».)p
kl

The Dirac brackets of the angular momentum are

(2.24b)

iak=[ak, H]P=[ak, H)P g&([&k J(lp=0
l

From these conditions, the angular velocities Qk are

&k= —X [H &(lp@(k'
I

(2.16)

(2.17)

[Jk i Jl ]D ( g ~klm Jm

The TDHF equations in the intrinsic frame are

i13„=[P„,H]D, iP„*=[P„*,H]D .

(2.25)

(2.26)

g [~k»()p@lk' ~kk
I

(2.18)

Inserting (2.11) into (2.17), we obtain the relationship

X I'k ~ = X [»&()p~'(k'. (2.19}

where 4(k' are the inverse matrix elements of [ak J(]p
given by

Let us next perform the canonical quantization with
constraints. Following the procedure of the Dirac quant-
ization [13], the quantization is carried out by the re-
placement

(2.27a)

(2.27b}

Xk =~k —~k (2.20b)

where Ik is the collective version of the angular momen-

tum referred to the intrinsic frame, and walk are the in-

verse matrix elements of [Jk, a( ]p given by

These differential equations give the connection between
the Eulerian angles 8; and the mean-field variables

(P„,P„'). Upon solving the differential equations (2.19),
one finds the Eulerian angles 0,- are expressed by the
mean-field variables (P&,P„"). The Hamiltonian H of Eq.
(2.10) then satisfies the consistency conditions. However,
Eq. (2.16) admits solutions for which ak%0. Such solu-
tions involve the admixture of spurious mode. In order
to eliminate the spurious mode, for an arbitrary physical
quantity Fwe define F as follows:

F=F+ g [F,a( ]PC(k'gk+ g [F,y( )P%'(k'ak, (2.20a)
kl kl

Then Eqs. (2.23)—(2.26) become

[»&]=IJ', ~)p+ g [»~k) @ I'[Jl &]
kl

+ X [»Jk lp+k('[&( & ]p
kl

+ y N„ c(k ]P@k('[J( P ]P
kl

+ X [&„»k)p'Pk('[&(». ]P
kl

[P„,P.)= g [&„&k)pc'kl [Jl ~ )P
kl

+ y [~ Jk )p+kl [+I ~ )P
kl

[Jk Jl]=—(2&k( J

(2.28)

(2.29a)

(2.29b)

(2.30)

g [Jk &()P@lk ~kk
I

and F is the invariant part satisfying the relationship

(2.21)

F,ak]p=o. (2.22)

[F,G]D=[F G]p+ g [F,ak]PCk( [J(,G]p
kl

+ g [F Jk ]P+kl [+I G ]P
kl

(2.23)

Then the Dirac brackets of the mean-field variables

(P„,P„*)become

Putting F=ak, ak satisfy ak =0 as the strong equality.

ak and yk are second class. It is now convenient to in-

troduce the Dirac bracket defined as

(p„=[p„,N], (j„=[p„8], (2.31)

where [P,C ]p means the operator that is obtained by the
replacement (2.27) after working out the Poisson bracket.
From Eqs. (2.29a) and (2.29b), it is clear that P„and P„
are not bosons. The commutation relations (2.29a) and
(2.29b) contain the deviations from the boson rules. Put-
ting P=p„and 0 =uk in Eq. (2.28), it is easily found
that [p„,ak ]=0. This means that the ak play the role of
constants of motion due to the constraints (2.13). The
angular-momentum algebra (2.30) obeys exactly the
minus-sign rules of the usual commutation relations
which are well known as the commutation rules with
respect to the rotating body-fixed frame. This is due to
the nonbosonic commutation relations (2.29a) and
(2.29b).
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III. WOBBLING MOTION AT HIGH SPIN

In this section, we will apply our method in the previ-
ous section to triaxial rotor at high spin. The powerful
tool for describing the yrast states of axially symmetric
rotor is the self-consistent cranking method. In the triax-
ial rotor, the levels above the yrast states are described by
quantized wobbling modes. We now give the general for-
mulation of the wobbling motion at high spin. Let us
first consider the pairing plus quadrupole-quadrupole
Hamiltonian operator

,'GP—P—,'a. g——Q Q, (3.1a)
M

g(A;A .+8;8 )=5,",
g(A;8 +8;A )=0,

g(A;A„;+8;B„,)=5 „,
g ( A;8„;+8;A„; )=0,

and the inverse relations

c = g (A;8;+8;&; ),
ct = g (A;d; +8;it;) .

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.7a)

(3.7b)

~ ~s p EmCmCm ) (3.1b)

P=gs c c s =( —1)i (3.1c)

g~M= g &mlr'YpMlm'&c'c
mm'

(3.1d}

s&n~P ~n&=0,

ni„xA—'
. —

(3.2a)

(3.2b)

The Lagrange multipliers 0 and A, are self-consistently
determined by

& nl J.In) =v'I(I+1), (3.3a)

(3.3b)

where I and N are the spin of the rotor and the total par-
ticle number, respectively. Here, 0 is interpreted as the
angular velocity about the x-axis, A, is the chemical po-
tential, and ~n) is the quasiparticle vacuum of the angu-
lar velocity 0 defined by

where 8, is a spherially symmetric single-particle
Hamiltonian, P is the J=o pair operator, G is the
strength of the pairing interaction, Q2M are components
of the mass quadrupole tensor, and K is the strength of
the quadrupole-quadrupole interaction. To obtain the
SCC basis, we must vary the expectation value of the
Hamiltonian operator (3.1a) with the subsidiary condi-
tions that the angular-momentum operator J„and the to-
tal number operator 8'= g c c have certain expecta-
tions. This gives the equation of the variational principle

E,(I)=&&,, &
—

—,'G&P'& &P&

K 2M 2M
M

(3.9)

where E; are the quasiparticle energies, and:: denotes
the normal ordered product with respect to the quasipar-
ticle. Here, the expectation values & ) are with respect
to the vacuum state

~
n ) . We must choose the

coeScients Ac, and 8; in such a way that Eq. (3.2a) is
minimized; it is equivalent to the procedure of making
the dangerous terms vanish:

E, A', =(~ —x) A. +0. y r
m'

While the interaction —nJ„ in the Hamiltonian (3.2b)
violates time-reversal symmetry, the symmetry and an-
tisymmetric linear combinations of time-reversal conju-
gate states are the eigenstates of J,. It is then convenient
to introduce two "signature" classes. In this paper, how-
ever, we do not distinguish such states for simplicity.
Then the Hamiltonian operator 8 is expressed in terms
of the quasiparticle operators (a;,I; ):

8=Ec(I)+ g E;8;8; ,'G:PtP:——

—l& X:gzMgzM:+nJx (3.8)
M

where the "dangerous terms" 8,. & and 8 I; are eliminat-
ed. Here, Eo(I} is the yrast-state energy (SCC energy)
which is evaluated using the Hartree-Bogolyubov factori-
zation:

e, in) =o. (3 4) —ng(J„) A ., bs 80—(3.10a)

The quasiparticle operators 8,. are defined by the general-
ized Bogolyubov transformation

d,. = g (A;c +8;c }, (3.5a)

m'

E;8;= (E —
A,
—)B;—g 1 .8

m'

+n g (J„) 8;+hs A
m'

(3.10b)

8,. = g (A,.c +8;c~), (3.5b} r,= —g ( —)"D2 „&m
~ Q2„~m'), (3.11a)

where 3; and B,- are the coefficients of the particle
part and the hole part, respectively. The matrices A
and 8 are real values, and satisfy the following relations
expressing the unitary property:

b, =G g s 8;A
im &0

D2 =x. g &m ~r Y2„~m')8;8

(3.11b)

(3.11c)
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where I ., 6, and D2„are the Hartree-Fock potential,
the pairing potential, and the quadrupole deformation,
respectively. The time-dependent Hartree-Bogoliubov
(TDHB) equations in the uniformly rotating frame are
given as

[&, 13. D X[P ak]P@kl [Jl P ]P
kl

+ X [8„,J ] 'P. '[a,8.], ,
kl

(3.16b)

&&(t&nl(i d/dt —8 QJ )lan&=0 . (3.12) I ]D l y ~klm Jm (3.16c)

A time-dependent Slater determinant l&t)n) with respect
to the quasiparticles is defined by

and the TDHB equations in the intrinsic frame

l&II&n&
= exp g (cl t)t; ttl elf—tl'ttk) Ifl) &

(3.13)
iP„=[P„,H]D, iP„"=[P„',H]D . (3.17)

Here, p means the set [ij ] of the quasiparticle states i
and j. The Hamiltonian H is expressed by

where C," are complex variables. Introducing the new
variables (P„,P„') defined by H = &(()„lA'ly„&

sin+CC
C

—, Ct sin+CC
V'CC' '

&CC'

which satisfy the relations

(3.14)
=E()(I)+g 8g„'P„,'GP—tP—

—
—,'k g Qzl)rgzM+ftJ (3.18a)

0 — 0 2 P

(4n —. &&n)=
—

lt&,

(3.15)

P=&knlPlkn&, Q2M=&ynlgzMI(()n&, (3.»b)

where 8„=E;+E is the en. ergy of a quasiparticle pair.
As gauge-Sxing conditions which determine the intrinsic
frame, we choose conditions in the PA frame as follows:

and following the same procedure as the previous section,
we get

[P„8."]D ~p + Q [13@ ak]PC'kl [Jl»" ]p
kl

a.=Q» —Qz-z =o

ay=Q2)+Qz-) =o

a, =Q2) —Qz-) =o .

(3.19a)

(3.19b)

(3.19c)

+ X [&, Jk]Pq'kl'[ l».']P
k1

(3.16a)
We call these conditions the PA frame conditions. Then
the Poisson brackets [Jk, al ]p and [ak, al ]p are

IJk al]p=

I:ak al]P

2g(+)

a,
—ia

a,
g(+ ) +/3/2Q (+ )

—I', a
a„

lg(+ ) + l +3/2Q(+ )

(3.20a)

(3.20b)

where Q(zz
' and Q(z0

' are defined by

g 22 Q22 +Q2 —2 & Q20 2Q20
(+)— (+) (3.21)

et([Jk&al]p)= 2t(Izz '(Qzz '++3/2gzo ')

Under the PA frame conditions (3.19a)—(3.19c), [Jk, al ]p
becomes diagonal and the determinant is written as

are given as

Jy =i g JP„(P„'—P„), J,= g J'„(P„'+P„), (3.23a)
P P

a, =l y g„")(+)(p„*+i3„),
(3.23b}

a, =i g Q„"'(—)(P„*—P„) .
P

X(g(+) Q3/2Q(+) ) (3.22}
The linearized equations of motion for the complex vari-

ables P„and P„' are

Thus, the PA frame conditions satisfy the conditions
(2.14) and (2.15).

Let us next apply the random-phase approximation of
the TDHB equations (3.17) in the intrinsic frame. The
angular momentum (J,J, ) and (a,a, ) in the RPA order

iP =( P + J» gg(„"(+)( (P„*—P„)P P p 2 P

, J„' g Q'"( —)(g*.+P,),
2y2 P

(3.24a)
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ip„=—6p„,+ J» g Q'„"(+)C,(p,' —p„)
2Y+ v

(3.24b)

where y+ and y are the deformation parameters
defined by

(3.25b}

p=Ae'' p*=Ae
c (3.26)

%'e now assume that the time dependence of the complex
variables (P„,P„') are written as

=—"(&g,',+' &+v'3/2& g,',+' &),
2

(3.258)

Substituting the above equations into the RPA equations
(3.24a) —(3.24b), the frequencies are given by solutions of
the following equations:

[8„d"»(c0—) co Q —'S(co)][d"„P,(co)—co Q '—S(co)]

[8»(co)+QS(co)][8,(a) )+QS(co) ]
(3.27a}

cF (co)=2+
g2 2

P P

J~J'
8, (co)=2 g " ", S(co)=2 g

co
& 8& co

(3.27b)

(3.27c)

PitpA =ED(I)+ g co 0 0 (3.28)

This is just same result as that derived by Marshalek [2].
Then the RPA Hamiltonian of the wobbling motion is ex-
pressed as

several authors, and further applied to realistic nuclei. In
the self-consistent collective-coordinate method, the basic
equations on the collective submanifold are written in
terms of the collective canonical variables

[g, , ri,'; i = 1,2, . . . ,M ] as follows:

where O„and O„are the normal modes of the RPA
equations. (4.1a)

IV. SELF-CONSISTENT COLLECTIVE-COORDINATE
METHOD WITH CONSTRAINTS

In the rotating triaxially deformed systems, the body-
fixed frame was defined by imposing some constraints.
These constraints were nothing but the gauge-fixing con-
ditions, and it was possible to choose conditions (2.13).
As such a possible choice, we imposed the PA frame con-
ditions (3.19a)—(3.19c) and (2.20b). Then, uk and yk
were second class. In the previous section, we examined
the wobbling motion at high spin in the framework of the
TDHB method with the second-class constraints. In the
TDHB theory, the frequency of the small fluctuation
around a static Hartree-Bogoliubov field (SCC) is the
same as that given by the RPA theory. As is weB known,
the RPA is a method for the collective motion in many-
ferrnion systems, and is based on the linearization of
equations of motion for the quasiparticle pairs. It was
then shown that the SCC+RPA equations of Marshalek
[2] can be derived.

For the description of the system in which the non-
linear effect becomes very important, Marumori et al.
[11]recently have proposed the self-consistent collective-
coordinate method. This method was investigated by

[P„H]p =[P„H]p"'" '

[P„',H]», =[P„',H]p'"'" ',
(4.1b)

(4.1c)

where [F,G)z is given by Eq. (2.9) and [F,G]z"'" ' is
defined as

[F G](g, g )—
8'g ~

(4.2)

with constraints

(4.3b)

where A, l are the Lagrange multipliers with respect to the

In this section, we will give the extension of the self-
consistent collective-coordinate method to the case of the
constrained system.

The TDHF equations with the second-class constraints
are given as

(4.3a)
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constraints (4.3b). Let us now assume that the collective
submanifold is specified by only a few collective canonical
variables [q;,g,*; i =1,2, . . .,M]. This means that it
may be possible to separate the full TDHF 21V degrees of
freedom into two types of degrees of freedom, which are
collective variables [g;, r/,

*.
; i =1,2, . . . ,M] and noncol-

lective variables [g, g*; a = 1,2, . . . , (N —M) ]:

Then, Eq. (4.3a) is written as

(4.4)

5 i g; +g,*.
a . g a

'
an

' an*
+i g g +g'

ag:
—u —y~, e, y)=o.

1

(4.5)

To get the canonical formulation, let us impose the following conditions:

(4.6a)

( ba a
(4.6b)

With the use of these conditions, Eq. (4.5) can be written as

5 —g (g;r/, ' r/,"r/; )+——g (( g' g'g )
—H Q—Ai@—i =0,

a 1

(4.7)

where the classical Harniltonian H is defined as

H=(y 8~y& . (4.8)

Here, the Dirac brackets [F,G]ni'i'" ' and [F,G)g'» ' are
defined as

Therefore, the variational principle of Eq. (4.7) leads to
the Hamilton equations of motion

aH i , aHB4 ac
/E

a g I
a g & i /i [F,G]S' '=[F,GN' '

(4.14a)

[F G]i'nt'Ii i= [F G]i'9 '9

y [F @ ]i'/7J i( A
—1) [(y G ](7),YJ

1m

aH a@i, aH
X ia( &4a

ag X

(4.9a) —Z [F,~i]P'(A -')i.[~., G]P'*',
(4.14b)

where the Poisson bracket [F,G]'j» ' is given by

(4.9b)

When the constraints (4.3b) are assumed to be of second
class, they should satisfy the following consistency condi-
tions:

i@i= 4/ H+ gA, 4 =0.
m P

(4.10)

Then, the Lagrange multipliers A. 1 are obtained as

A. , = —
( A '), [C&,H]p, (4.11)

[F G]D = [F G]p g [F 4 i ]p( A )i~ [4 G]p

(4.12)
Then, the Dirac bracket is separated into two types of the
Dirac bracket, which are the collective and noncollective
parts:

[F,G]D=[F,G)~~ ~ '+[F,G]$'» ' . (4.13)

where (A )i is the inverse matrix of [4i,@ ]p It is
now convenient to introduce the Dirac bracket defined as

[F,G]iP'i= Z ag'
aG aF
ag. ag

(4.15)

ir/; =[ /;, Hr]'"'" ', ir/,'=[7/,',H']'" i ',
i.=lk. H)'8'» ' C.'=[4 H]D'» '.

(4.16a)

(4.16b}

On the other hand, the equations of motion of the origi-
nal variables (P„,P„") are expressed as

ip„=[p„,H)D=[p„,H)Di" '+[p„,H)$» ', (4.17a)

i p„*= [p„* H]D = [p„' H)'d"'" '+ [p„* H]'D' ' (4.17b}

where the Dirac bracket [F,G]n is defined by Eq. (4.12).
Following the same procedure as Yamamura and Kuriya-
ma [14], let us now investigate how the collective sub-
manifold can be specified in the case of the constrained
system. The noncollective degrees of freedom should be

The Hamilton equations of motion (4.9a) and (4.9b) can
be given in terms of the collective and noncollective equa-
tions of motion
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II+(n; n,"4g)II=F(n; n,"4=04=0) . (4.19)

Conditions (4.18) are the so-called equations of the collec-
tive submanifold. On the collective submanifold, using
the relations (4.18), we can rewrite Eqs. (4.17a) and
(4.17b) in the following form:

III~„II=II[&»] II=II[&, ~h"'" 'll

)IIV„II
= II[K, ~]D II

= II[V, ~]~8'" 'll .

(4.20a)

(4.20b)

Therefore, instead of Eq. (4.18) we can obtain the equa-
tions of the collective submanifold as follows:

frozen on the collective submanifold; g =g'=0. From
Eq. (4.16b), this leads us to the following relations:

II[4.,0]$~'II=0, IIN:,Hk «*'II=0, (4.18)

where the notation tl)I'(rI, , rI,*;g,f')~) denotes the value
on the collective submanifold

ll~„' H]DII = II[&;»]'"'" 'll . (4.23c)

(4.24a)

(4.24b)

These are the equations which are replaced the Poisson
bracket in Eqs. (4.1b) and (4.1c) with the Dirac bracket.
The basic equations (4.23a) —(4.23c) are solved by an
iterative method with the collective variables (rl;, 71; ) ex-
pansion. The collective Hamiltonian H(rl;, rl, )ob. tained
in such a way must be quantized in order to calculate the
excitation spectra. As is well known, there is the ambi-
guity of operator ordering. Here, we adopt the quantiza-
tion procedure of Matsuo and Matsuyanagi [15]. The
collective coordinates (rI;, rl, ) in the collective Hamiltoni-
an and the Dirac bracket [, ]D are replaced by the col-
lective operators (rI, rI ) and the commutation relation
[, ], respectively, and the normal ordering is taken:

II[0„,H]DII ll[P ~]D

II@„' H]D II
= II[&; I]'"'" 'll .

(4.2 la)

(4.2 lb)
V. CONCLUSION

(4.22)

Finally, we can obtain the basic equations which specify
the collective submanifold:

(4.23a)

II[&, Hh)II=II[&, ~]D'" 'll (4.23b)

Conditions (4.6a) and (4.6b) guarantee the collective and
noncollective variables to be canonical, and specify the
type of canonical variables. As emphasized by Yamamu-
ra and Kuriyama [14], the Hamilton equations of motion
are invariant under arbitrary canonical transformation.
In this case, we fix the canonical coordinate system
within conditions (4.6a) and (4.6b). On the collective sub-
manifold, conditions (4.6a) then become

A quantum mechanical method for the general rota-
tion and wobbling motion has been derived from the
viewpoint of the gauge theory within the framework of
the mean-field theory. The conditions determining the
intrinsic frame correspond to the gauge-fixing conditions
in the gauge theory. It is feasible to describe the general
rotation and wobbling motion beyond the leading order.
The intrinsic frame was determined by imposing con-
straints which correspond to the gauge-fixing conditions
in the gauge theory. In this paper, we chose the PA
frame conditions as such constraints. There are other
kinds of constraints. In fact, we have discussed spin-
orientation frame conditions in a previous paper [16].

Furthermore, we have extended the self-consistent
collective-coordinate method to the case of the con-
strained system. The basic equations of the self-
consistent collective-coordinate method with the con-
straints are just the equations obtained by replacing the
Poisson bracket in the conventional equations (4.1b) and
(4.1c) with the Dirac bracket, and can be solved con-
sistently by the iterative procedure. The microscopic tri-
axial rotor has been discussed in this paper. It is interest-
ing to study particle-rotor model microscopically. This
may be done by applying the extended TDHF theory [14]
to our method. This investigation is now in progress.

[1]A. Bohr and B. R. Mottelsou, NucIear Structure (Benja-
min, New York, 1975), Vol. II, p. 190.

[2] E. R. Marshalek, Nucl. Phys. A266, 317 (1976); A275, 416
(1977);A331, 492 (1979).

[3] D. Janssen and I. N. Mikhailov, Nucl. Phys. A318, 390
(1979);J. L. Egido, H. J. Mang, and P. Ring, ibid. A339,
390 (1980);A341, 229 (1980)~

[4] E. S. Abers aud B.W. Lee, Phys. Rep. 9, 1 (1973).
[5] E. R. Marshalek and J. Weneser, Ann. Phys. 53, 569

(1969).
[6] V. Alessandrini, D. R. Bes, and B. Machet, Nucl. Phys.

B142, 489 (1978);D. R. Bes, O. Civitaese, and H. M. Sofia,

ibid. A370, 99 (1981).
[7] J. L. Cxervais, A. Jevicki, and B. Sakita, Phys. Rep. 23, 281

(1976).
[8] J. Kurchan, D. R. Bes, and S. Cruz Barrios, Phys. Rev. D

38, 3309 (1988); D. R. Bes, S. Cruz Barrios, and J. Kur-
chan, Ann. Phys. (NY) 194, 227 (1989);J. Kurchan, D. R.
Bes, and S. Cruz Barrios, Nucl. Phys. A509, 306 (1990).

[9] C. Becchi, A. Rouet, and S. Stora, Phys. Lett. B52, 344
(1974); Ann. Phys. (NY) 98, 278 (1976).

[10]A. Kerman and N. Onishi, Nucl. Phys. A361, 179 (1981);
N. Onishi, ibid. A456, 390 (1986).

[11]T. Marumori, T. Maskawa, F. Sakata, and A. Kuriyama,



2762 KAZUNARI KANEKO 45

Prog. Theor. Phys. 64, 1294 (1980).
[12]E. R. Marshalek and G. Holzwarth, Nucl. Phys. A191,

438 (1972).
[13]P. A. Dirac, Can. J.Math. 2, 120 (1950).
[14] M. Yamamura and A. Kuriyama, Prog. Theor. Phys.

Suppl. 93, 1 (1987).
[15]M. Matsuo and K. Matsuyanagi, Frog. Theor. Phys. 74,

1227 (1985);76, 93 (1986);78, 591 (1987).
[16]K. Kaneko, Phys. Lett. B 255, 169 (1991).


