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Results are presented for (inclusive) parity-violating quasielastic electron scattering of polarized elec-
trons from deuterium. The sensitivity of the asymmetry to interference effects, to the presence or ab-
sence of final-state interactions, to the choice of NN interaction, and to specifics of nucleon form factors
is investigated within the framework of the standard model for the electroweak interaction. The calcula-
tions span a range of momentum transfers from low values, where a nonrelativistic treatment including a
realistic NN interaction is appropriate, to beyond 1 GeV/c, where a relativistic plane-wave impulse ap-
proximation is employed. We find favorable kinematical regions for experiments at medium-energy
(MIT—Bates, Mainz) and higher-energy (CEBAF) electron accelerators where issues relating to the
nucleon's axial-vector and strangeness form factors can be addressed.
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I. INTRODUCTION
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FIG. 1. The elementary electron-nucleon interaction process-
es occurring via (a) photon exchange (electromagnetic current)
and (b) Z exchange (weak neutral current).

In this work we take as given the standard model [1]of
the electroweak interaction at tree level, and focus our at-
tention on the roles played by nucleon structure and XN
dynamics in the determination of the parity-violating
(PV) asymmetry in polarized quasielastic (QE) electron
scattering from deuterium. We study the parity-violating
helicity asymmetry resulting from the interference be-
tween the electromagnetic one-photon exchange process
in Fig. 1(a) and the weak one-boson exchange process in
Fig. 1(b). We shall not repeat much of the basic formal-
ism required in PV studies [2—7], since this has been
presented at length in previous work. In particular,
many of the features developed here specifically for the
deuteron have recently been explored in a more general
context for PV QE scattering from nuclei using the Fermi
gas model [8]. In focusing on the processes shown in Fig.
1, contributions to the asymmetry due to the effects of
PV NN interactions in the initial (bound H) and final
(continuum np) states themselves are neglected. Previous

studies [9] of admixing odd-parity states into the deute-
ron ground state via such interactions have shown these
PV effect to be small for the case of photodisintegration,
suggesting that neglecting them should be a good approx-
imation for electrodisintegration near the QE peak.
However, further work in this kinematic region should be
undertaken in order to confirm that the effects are indeed
negligible.

Our ultimate objectives will be to map out the parity-
violating asymmetry in polarized e-d scattering over a
fairly wide kinematical range from about 10 MeV/c to
1 —2 GeV/c in momentum transfer q and from electrodi-
sintegration threshold up to where pion production be-
comes important, and to study the interplay of the dy-
namics of the A =2 system with the single-nucleon form
factor content. Of special interest here are the roles
played by the nucleon's axial-vector and strangeness form
factors. The main focus of the present work is on the QE
peak where the electroweak excitation process is
presumed to be well represented as "quasifree, " although
some results are also given for kinematics away from the
peak. In future work we shall return to detail the nature
of the PV asymmetry in "non-quasi-free" kinematics.

Since we must have extremely high confidence in our
ability to model the nuclear physics aspects of the prob-
lem if we are to have any hope of shedding light on the
nature of the single-nucleon form factors (for instance, on
the strangeness content of the nucleon), one of our con-
cerns is to examine the validity of the various approxima-
tions which are at some level inevitable, even when deal-
ing with a system as simple as the deuteron. For momen-
tum transfer of less than a few hundred MeV/e, we ex-
pect to rely for theoretical predictions on a model in
which the np system is described by nonrelativistic wave
functions for the initial (bound) and final (scattering)
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states, namely, as solutions of the Schrodinger equation.
Such an approach incorporates the effects of final-state
interactions (FSI) including orthogonality. One of our
goals here is to examine the sensitivity of the PV asym-
metry to the choice of NN interaction.

To delve somewhat further into how the nature of the
final state enters into the inclusive cross section and PV
asymmetry, we also present results in which the FSI have
been "turned off." In particular, the plane-wave Born ap-
proximation (PWBA) [10] is obtained from the FSI model
by replacing the final interacting np state by a plane-wave
state. In addition to lacking FSI, this model suffers from
lack of orthogonality in the S&+ D, channel between
the initial and final states, a defect which is expected to
be more pronounced at lower energies where the lower
partial waves in the final state are dominant. The ampli-
tudes which enter into the coincidence reactions,
H(e, e'p)n or H(e, e'n)p, are shown schematically in

Fig. 2. For the former the photon (or Z ) may interact
with a proton that is then detected, as indicated in Fig.
2(a); alternatively, the photon may interact with a neu-
tron and the other particle in the final state (the proton) is
then detected, as indicated in Fig. 2(b). For the
H(e, e'n)p reaction protons and neutrons are inter-

changed in the two parts of the figure. The cross sections
are obtained by squaring the sum of all amplitudes that
have the same experimentally fixed conditions, in particu-
lar, an outgoing proton (neutron) with a specific momen-
tum for H(e, e'p)n [ H(e, e'n)p]. As long as the final-

state conditions are the same, the two diagrams can inter-
fere; thus the cross section involves terms which arise
from the squares of all allowed amplitudes (we call these
'direct" contributions, 2)) and terms which arise from all
interferences between amplitudes where the photon or Z
connects to a proton and where it connects to a neutron
(called "exchange" contributions, 8). Finally, to obtain
the inclusive cross section we perform the sum/integral
over all kinematically allowed final states. Even at the
level of inclusive scattering there remain both 2) and 6'

contributions to the cross section and PV asymmetry. Of
course, terms of both types are automatically included in
the FSI model. The merit of the PWBA is that it will al-
low us to see how much the asymmetry is sensitive to the
interference contributions (which are frequently neglect-

H
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FIG. 2. Electrodisintegration of the deuteron in the absence
of final-state interactions (FSI). In PWIA, processes (a) and (b)
having the proton as the struck nucleon contribute incoherently
with equivalent ones where the neutron is the struck nucleon,
yielding the direct term 2). In PWBA, the two sets of processes
contribute coherently (i.e., an np interference contribution, the
exchange term 6, is included).

ed in other treatments such as the PWIA discussed
below, especially for nuclei having A )2) and how much
it is sensitive to orthogonality and the additional distor-
tion effects of the FSI. Both the mode1 with FSI and the
usual PWBA, however, involve nonrelativistic expansions
of the electroweak currents to order (q/M), where M is
the nucleon mass, and so become suspect when results at
high q are required.

In extending our discussions of PV electron scattering
to high-momentum transfer, we are led to consider a
more covariant approach, that of the factorized relativis-
tic plane-wave impulse approximation (PWIA) [10—12],
which has often been employed in interpreting parity-
conserving (PC) quasielastic data in similar situations
when relativistic effects become important. Here the
cross section is factored into two terms, (1) the spectral
function which represents the probability that a nucleon
in the deuteron will be found with a given momentum
and energy, and (2) the half-off-shell single-nucleon cross
section. A model that is frequently invoked for the latter
involves the parametrization cc1 of de Forest [12]; in the
present work, we present an extension of that model to
incorporate weak neutral currents, including axial-vector
as well as vector contributions. Since the fully relativistic
electroweak single-nucleon cross sections are employed
[i.e., without requiring expansions in (q/M) ], there is
some hope that the PV asymmetry can be modeled suc-
cessfully at rather large values of momentum transfer q
and energy transfer co. Of course, the PWIA has its own
limitations, the primary ones being that FSI and the in-
terference effects are both neglected (i.e., in the latter
case, the 2) contributions are retained whereas the 6
terms are set to zero). One of our aims in the present
work is to show that the interference effects (as contained
in the PWBA) or effects of FSI (which occur when realis-
tic NN potentials are employed) are negligible under cer-
tain circumstances at high q and co, so that the PWIA
may be valid. Accordingly, we will conclude that, at
least within the context of the models we employ, it is
possible to control the nuclear model uncertainties in the
PV asymmetry at the 1 —2% level by using the approach
best suited to the kinematics of interest —nonrelativistic
models with FSI at low-to-medium values of q and the
relativistic PWIA model at high q.

Our final objective in this work is to determine how the
asymmetry depends on the various vector and axial-
vector form factors of the nucleon, including the possibil-
ity of form factors which arise from nonzero strange-
quark-antiquark (ss) configurations in the nucleon. We
shall see that the deuteron appears to provide a rather
special testing ground for such form factor studies, since
our results suggest that nuclear model uncertainties in
QE scattering are small enough to permit the interpreta-
tion of the PV asymmetry to be undertaken at the few %%uo

level. For comparison, while there is also reason to be
optimistic in the cases of heavier nuclei, the simplicity
and calculability of the A =2 system make it particularly
well suited to such investigations. What emerges from
our work is motivation for undertaking experimental
studies both of the deuteron and of the nucleon itself: the
two cases have rather different dependences on some of
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the nucleon form factors and, consequently, these depen-
dences can be separated in such complementary work,
whereas they could not be extracted in one case alone.

We summarize the essential features of the formalism
employed in this work in Sec. II, beginning with a review
of the basic observables needed in treating PV electron
scattering (Sec. II A). This is followed by a brief section
(II B) where the various single-nucleon form factors are
introduced. In Sec. II C we discuss the models employed
for PV (and PC) inclusive QE electron scattering. We be-
gin in Sec. II C 1 with the simplest model, viz. , the "stat-
ic" approximation where the nucleus is represented as an
incoherent set of noninteracting nucleons at rest. This
provides a starting point in estimating the size of the
asymmetry and so the feasibility of potential measure-
ments in the QE region. We then proceed to discuss
three more sophisticated nuclear models for deuteron
electrodisintegration: the nonrelativistic model with FSI
(Sec. II C 2), the factorized relativistic PWIA (Sec. II C 3),
and the PWBA (Sec. II C 4). Our results are presented in
Sec. III, beginning in Sec. III A with a discussion of the
nuclear model dependences that emerge. Here the basic
models listed above are used to predict the PV asym-
metry as reliably as we can at present and, additionally,
to gain insight into what effects (NN interaction, 6'/2) in-
terference, orthogonality, relativity) play the dominant
roles in specifying the remaining nuclear physics uncer-
tainties in the asymmetry. Finally, we end the present
discussions in Sec. IV with a few concluding remarks.

where L and T refer to the deuteron response functions
for the longitudinal and transverse projections of the nu-
clear electromagnetic current with respect to q, and g.~
is the Mott cross section

2a cos(8/2)
2@2 sin (8/2)

(3)

The PV asymmetry can be cast in a form similar to
these electromagnetic results. On the one hand, the cross
section in Eq. (2), for unpolarized electron scattering, is
the average of two cross sections for polarized electrons
with helicity h =+1:

EMdg. 1 dg. dg.+
dQ de2 2 dQ de2 dQ dE'2

On the other hand, the difference between the two cross
sections is a measure of parity violation [2—8] which
arises from interference between the processes in Figs.
1(a) and 1(b).

d20-

dQ de2

PV d2g+ d2g

2 dQde2 dQdt-'2
PV=AocrM 8'

with a the fine-structure constant. The lepton kinematics
are included in the factors

2
1

2
'2

0+tan' —.L 2 & T 2 2
q q 2

II. FORMALISM

~ 20
I
g'I =q' —~'=4m, E, sin' —,

where q = Iql and co are the three-momentum and energy
transfer, and 0 is the electron scattering angle. In the
laboratory frame, the electromagnetic —parity
conserving —cross section for inclusive scattering of un-
polarized electrons has the general form [13,14]

g2

=o~[vLR (q, co)+vrR (q, co)]L T
dQ de2

~EMM 7 (2)

A. Basic parity-violating electron scattering formalism

Let us begin with a brief summary of the forms taken
by the electromagnetic (EM) cross section and PV asym-
metry for inclusive quasielastic electron scattering. In
particular, for later use, we shall need to display the way
that the five basic nuclear response functions enter into
these quantities. The kinematics for electron scattering
with a single photon or Z exchange are shown in Figs.
1(a) and 1(b). Here an electron with momentum k, and
energy e& scatters to a final state with k2 and e2. We shall
invoke the extreme relativistic limit ( Ik, I =e,
))m„lk2I =@2))m„where m, is the electron mass),
since generally the electron energies will range from hun-
dreds of MeV to several GeV. The magnitude of the
four-momentum transfer is then given by

=ULR g v+ vTR g y +vT R y
PV L T T'

(8)

where the extra lepton kinematical factor is given by
1/2

v = tan — +tan—9 Q q8
2 2

q 2

The subscript A V (and VA) in the PV response functions
indicates the interference of leptonic axial X hadronic
vector currents (and the reverse). Finally, the parity-
violating asymmetry A is defined by

d g

dQ de2

PV
2 EM
0'

dQ de2

d2g + —d2g

d2g ++d2g
~PV

0 EMW

The response functions in the above equations arise
from contractions of the matrix elements of the leptonic

where the coefficient Ao is

Glal'
2&2ma

and G is the Fermi constant. In terms of parity-violating
response functions R„v, R~~, and R~~, the quantity
8' is given by
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j =iu '(k2)[a~r„+uArsr„lu, (ki) (12)

In the standard model [1—3], the leptonic couplings are
given by

and hadronic currents. The EM (vector) leptonic current
is given by the familiar form,

j„=iu,.(kz)r„u, (k, ),
where s and s' label the electron helicities. Analogously,
as discussed in detail in Refs. [2,3], the leptonic weak
neutral current (WNC) matrix elements are composed of
a vector ( V) and an axial-vector ( A ) part Gpp En =(gy G~p Fn+13"AGE„Ep )

—
—,
' G~',

GMp, Mn O'GMp, Mn +~VGMn, Mp ) 2 M

Ap, An (+A Ap, An +~A GAn, Ap ) 2 GA

(17)

J „"=iu~(p')(GA r„rs»~(p» (16)

where 6„ is the weak neutral current axial form factor of
the nucleon (proton or neutron). The WNC form factors
of the proton and neutron can be written in the following
way [6—8]:

av= —(1—4sin 8n )-=—0.092,

aA= —1,
(13)

where the hadronic weak neutral current couplings are
given in the standard model at tree level by [2—8]

g =
—,'(1—4sin 8n )=—0.046,

where we adopt the value sin L9~=0.227 in the present
work [15—17]. General hadronic (nuclear) current matrix
elements, (Jf; )„and (Jf; )„, must then be contracted
with their leptonic counterparts to yield cross sections
and asymmetries involving contractions of leptonic with
hadronic tensors g„and W"", respectively. The steps
leading to such expressions, where results are written in
terms of the five different response functions entering in
inclusive PC and PV electron scattering, are given in de-
tail in Refs. [2-8].

B. Single-nucleon form factors

Since one of our prime motivations in the present work
is to study the hadronic structure of the nucleon itself as
a constituent in the two-body system, in this section we
list the various form factors which enter in PV electron
scattering. The single-nucleon current matrix elements of
the electromagnetic and weak neutral currents can be ex-
pressed in the following forms:

J„=iu„(p') F,r„+ Fzcr„~" u~(p), (14)

where A (A') label the nucleon spins, p„' —p„=q„ is the
four-momentum transfer, and where p„,p„' are defined in
Fig. 1 to be the initial and final nucleon momenta, respec-
tively. F, 2 are the Dirac and Pauli form factors of the
nucleon (different for proton and neutron) and they are
functions of the four-momentum transfer Q =q„q".
They can be re-expressed in terms of Sachs [18] form fac-
tors (GzM) in the usual way; in the present work we
choose to use the Sachs form factors throughout. The
weak neutral current for the single nucleon has a similar
structure. First, it has both vector and axial-vector con-
tributions:

JWNC J V+J A
iM S C

(15)

where the tilde indicates that this is the weak neutral
current. The vector J„has the same form as the (vector)
EM current given in Eq. (14), but with form factors (F 's,
or the corresponding G's) now indicated with tildes (see
below). Of course, there is also an axial-vector current to
be considered:

n
p'

&A
= —&"A =-,' ~

(18)

The form factors here include the familiar electromagnet-
ic ones GEp pn and G~p Mn the axial-vector cases,
GA"=6' —GA„, which also occurs in beta decay, to-
gether with its isoscalar partner 6„' '=G„p+GA„, which
does not enter in the present situation due to the last
identity in Eqs. (18); and form factors, GE'M „,which
enter when the nucleon has nonzero ss strangeness com-
ponents. In the discussions to follow it will prove useful
to have all of the form factors expressed in terms of iso-
scalar (T=O) and isovector (T=l) contributions,
Qz''=Qz +Ox and Qx"=Ox —Qx, where Q=G or G

P n p n

and X =E,M or A. Note that all of the strangeness con-
tent is isoscalar. In Refs. [6—8] convenient parametriza-
tions are given for the form factors, which we have em-
ployed in the present work as well. We shall also need
the isoscalar and isovector weak neutral current hadronic
couplings [similar combinations of the proton and neu-
tron couplings in Eqs. (18)]: P'P'= —2sin28~-=—0.454,
p& =1—2sin 8 —=0.546, pA =0, and@A = l.

C. Models of the He(e, e')np reaction

As discussed in the Introduction, a main concern in
this work is in the range of validity of the various approx-
imations that must be made in describing the interacting
np system and in treating the electroweak interaction
with it. The reliability of these approximations in
different kinematical regions is reflected in our ability to
extract information about single-nucleon form factors in
studies of the asymmetry in PV electron scattering from
deuterium. Here we have employed four different mod-
els: (1) the static approximation, which is used as a sim-
ple guide to the nature of the PV asymmetry; (2) the non-
relativistic model with final state interactions, which in-
corporates aspects of the nuclear dynamics that are
essential at low-momentum transfer (where FSI effects
are important); (3) the plane-wave impulse approxima-
tion, which allows us to address some of the questions in-
volving relativistic effects at high q; and (4) the plane-
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wave Born approximation, which serves as a bridge be-
tween the previous two models. Models (1) and (4) are
presented for the purpose of gaining an appreciation for
the refinements incorporated in the other two models; the
latter are the ones used in presenting our final results,
specifically (see Sec. III), model (2) for momentum
transfers below some characteristic value and model (3)
for high q.

1. The static approximation

The present study of PV in the reaction H(e, e')np is
focused on the kinematic region around the quasielastic
peak where, in the "static" approximation (which is the
simplest of the models used in the present work) the nu-
clear matrix elements involve incoherent sums of matrix
elements of the single-nucleon at rest [4,6—8]:

u&[(q /21Q I )(ZG~ G& +NG+„GE„)]+vT[r(ZGM&GM& +NGM„GM„)]
0 p p

+av vT. [ r(1+r)(ZGM G„+NGM„Gq„)] uI [(q /2IQ )(ZGz +NGz„)]+uT[r(ZGM„+NGM )]

(19)

where Z and N are the proton and neutron numbers of a
general nucleus, respectively, and where r= IQ I/4M is
the dimensionless four-momentum transfer. Note that
elastic scattering from the proton can be recovered sim-

ply by setting Z =1 and N =0. The static approximation
can be derived using as a starting point either the Fermi
gas model [8] or the PWIA [10—12] (see also Sec. II C 3).
It provides a simple expression which can be used in es-
timating the feasibility of PV experiments in the QE re-
gion. As we shall see in Sec. III, it is quite successful
when applied at the QE peak, but not when other kine-
matics are required.

tron energy and scattering angle, is given by

e~ 5(Ef MD+—co)
d p T g W"",

(20)

where the integration is over the momentum of the out-
going nucleon. The invariant product of the leptonic and
hadronic tensors, g„W", can be evaluated in either the
laboratory or the center-of-mass frame of the np system.
We choose the latter and find

2. Nonrelativistic calculations
with final state interacti-ons (FSI)

We now proceed to more sophisticated models than the
static approximation discussed briefly above. In our
treatment of the np system in terms of nonrelativistic
solutions of the Schrodinger equation with realistic NN
potentials, we follow the usual approach and expand the
single-nucleon current matrix elements above in powers
of (1/M). Specifically, in the transverse projections of
the current we take only the lowest nontrivial order,
whereas in the charge projections of the vector current
we include terms of order (q/M) (Darwin-Foldy and
spin-orbit terms [13]). Converting from momentum
space to coordinate space, we obtain the familiar opera-
tors generally used in electromagnetic studies, together
with their neutral current extensions, and the lowest-
order forms of the axial-vector currents (the neutral
current analogs of those used in discussions of charge-
changing weak interaction processes such as beta decay).
The same strategy is employed in the PWBA treatment
which differs from the full FSI calculations in that plane
waves are used for the np final state (see also Sec. II C 4).

Let us begin with the electromagnetic case. There the
inclusive cross section, differential in the outgoing elec-

d o. oM Pp~»

de, dQ, (2~)' y(E +g' )

X I dgE~(y)(uLg k +vTW )

—o'M(vLR +vrR )

Wcm (21)

where g=q /q results from the Lorentz transformation
from c.m. to laboratory coordinates. The subscripts p
and n refer to the proton and the neutron, and quantities
marked with a caret are to be evaluated in the c.m. frame
of the np system. The c.m. nucleon momenta p = —p„
and energies E „are uniquely determined by the electron
scattering variables (q, co) in the laboratory system. The
laboratory nucleon momenta and energies may then be
expressed in terms of the c.m. quantities; for example,
one finds that E (y)=y(X'~+pp„y), where p=q/(MD
+co) and y= 1/+1 —P arise from the Lorentz transfor-
mation between c.m. and laboratory systems, and where
g=cosO~, with 0~ being the angle between the outgoing
proton and the three-momentum transfer in the c.m. sys-
tem. The structure functions R and R are proportion-
al to the integrals defined in Eq. (21), which can be shown
to be given by
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4 2

d+E g $V =
2 2P YJ J L + YJ—1 3k f'

4 2I' dXE~(X)A =
z 2yE~ 2 X X &IX& z, L, z, l +IXJ,z, zl

A.=12J J L

(22)

Here k is the relative np momentum in the c.m. frame and the quantities Y" and X"are reduced matrix elements of
the nuclear charge density and nuclear current, respectively, taken between the deuteron ground state and the np triplet
(t) and singlet (s) final state expanded in partial waves. The EM operators are those obtained as discussed above. In the
present calculation we have included partial waves up to Jf =17, with J and L assuming the values Jf —1, Jf Jf+1,
where J is the rank of the electromagnetic operator and L is the orbital angular momentum in the final state. In the
model with FSI, the first seven of these partial waves are solutions of the Schrodinger equation with the NN interaction,
and the rest are plane-wave solutions. In the PWBA the calculation is just as outlined here, except that all partial
waves are plane-wave solutions (see also the discussions to follow in Sec. II C 4).

Turning now to the parity-violating response functions, the numerator of the PV asymmetry which involves W [see
Eqs. (8) and (10)] is calculated using the same procedures as those discussed above for the electromagnetic case. In par-
ticular, R~z, R~z, and Rv„are obtained in the same way as the electromagnetic response functions R and R by re-
placing

I Yl and IXI in Eqs. (22) with the following: R„i, is obtained from R by the replaceinent

X I Yz,J,L I
+

I YJ,JI ~aA X Yj,z, L Y J,J,L+ Yj,z Ys,z
L L

(23a)

R „z from R by the replacement

g XJf,J,L, z I
+ IXJf,J,A, I A g Xjf,l, L,zX Jf,J,L,zL+ Jf,J,zX Jf,J, A.

L L
(23b)

and R && from R by the replacement

XIXJf,J,L, A
I'+ IXJf,J,kl av QXJf, J,L, AXJf, J,L,2+X. Jf,J,AX. Jf,J,z,

L L
(23c)

The quantities X ",Y" are obtained in the same way as
X",Y", except now using the (vector) weak neutral
current form factors GE ~, instead of the electromagnetic

t, s
ones Gz M, as required in Eqs. (22). The quantities X
involve the axial-vector current matrix elements intro-
duced above. By comparing the nonrelativistic limits of
the matrix elements of icr„~"/2M [see Eq. (14)] with
those of y„y5 [see Eq. (16}],it is straightforward to see
that these quantities are obtained from X"by retaining
only the parts which contain the Pauli form factors F2
and Fz„ in Eqs. (22) and replacing (q/2M)Fzz „by GA~ „
to account for the different single-nucleon form factors
and factor q/2M which occur in the two cases. This sim-
ple relationship between the spin matrix elements (vector
and axial vector) only pertains in the leading nonrelativis-
tic limit. Note also for future reference that the strange-
ness content has now been built into the matrix elements
Y ",X ", and X ", through the use of the weak neutral
current form factors Gz st A given in Eqs. (17).

3. Factorized relativistic plane-wave
impulse approximation (PWIA)

For the PWIA approach [10—12] a different procedure
is followed: since the problem factorizes by construction,
we need single-nucleon cross sections and must multiply
these by the probability that the struck nucleon has
specified values of energy and momentum, viz. , by the

I

nuclear spectral function. The spectral function required
in studying the reaction H(e, e')np simply involves the
deuteron momentum distribution p(p). Inclusive electron
scattering is then obtained by performing the average-
over-initial and sum-over-final states (see Ref. [19] for de-
tails). Following the usual practice in electromagnetic
studies, we use some prescription for the half-shell
single-nucleon cross section such as o.„1,the ccl form of
de Forest [12]. In the present work we shall also employ
this form together with a generalization, O.„„for use in
the relativistic PWIA description of PV electron scatter-
ing. We have investigated the on-shell limit of cc1 and
found the off-shell effects to be negligible. It may prove
interesting to explore other off-shell parametrizations, al-
though our expectation is that the effects are much less
important than the ones addressed in the present work.

The PWIA has at least two characteristic aspects: it
involves the use of plane-wave final states and, moreover,
takes into account only the incoherent sum over the
squares of the amplitudes of the process depicted in Figs.
2(a} and 2(b) for the case of the deuteron. This provides
what was called the direct (2)) contribution above, to be
contrasted with the exchange (8) term which arises from
the interference between the two amplitudes. The latter
is ignored in the PWIA, but is included in the PWBA (see
below) or in the full results with FSI discussed above.
The PWIA inclusive response functions that enter in Eqs.
(2) and (8) can be shown to have the following forms [19]:
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R (T=0, 1)=™f dppp(p) —W (T=0, 1),
Ivl E

(24a)

M
R (T =0, 1)= f dp pp(p) —W (T=0, 1),

Ivl E

r= IQ 'l/4M . The momentum distribution p(p) is given
by

p(p)= f dES(p, E)= [u (p)+w (p)], (25a)
0 2

where

(24b) u (p) =f dr rj 0(pr)u (r), (25b)

where the limits of integration are specific functions of q
and (o; at reasonably high q and small ~y~ the upper limit

can be extended to infinity, Y~~ (see Refs. [19,20]).
The responses are labeled by isospin, T=0 (T= 1) for
isoscalar (isovector) contributions, and by an index K
having the values L and T for PC scattering and L, T, T '

for PV scattering [here we use tildes to indicate the PV
responses and suppress the labels A V and VA in Eq. (8)].
For an isoscalar target like the deuteron, the total
response of each ty e is the sum of T=O and T=1
contributions. E= M +p denotes the energy that the
struck nucleon, whose momentum is p, would have if it
were on shell. Following de Forest [12], we also define
o)=E' E, whe—re E'=+M +p' is the energy and
p' =q+p is the momentum of the detected (on-shell) nu-

cleon, and use the notation Q =(o —
q and

f, dpp'p(p)=
4

(26)

For the off-shell, single-nucleon responses, W~(T =0, 1)
and W (T=0, 1), we employ generalizations of the ccl
off-shell recipe introduced by de Forest [12] and special-
ized for use in inclusive scattering [19]:

w(p)= f "dr rjz(pr)w(r) .

Here S (p, E) is the deuteron spectral function and u ( r ),
w(r) are, respectively, the S) and D) ground-state radi-
al wave functions of the deuteron [with u(p) and w(p)
the corresponding Bessel transforms given in Eqs. (25b)
and (25c)]. The momentum distribution normalization
condition is

W (T=0, 1)= E+E'
2M

2

(G' '+b, g' ')—
2

G(r) (27a)

2
'2

Wr(T (), )
lQ l

+ (1+ ) (G(»+gg(»)+2 G(»
q

2 (27b)

W (T=0, 1)= E+E'
2M

2

[g (»+gg ( )]—

2

2

G (T) (27c)

(T=0, 1)= IQ I
E+E'

q2 2M
( g ( T) + tI), G ( T)

) +2—g (»
7

(27d)

W (T=o, l)=2—(E+E')G' 'G' ' (27e)

The functions here involving G s are combinations of the Sachs form factors introduced in Eqs. (17):

G' ' =7-G(~' G (~]=7-G('r'G (~]
1 + M ~ 1

+ M M

1+v.

gg(» (G(» G(T))2 gg (T) (G(T) G(T))(g (T) g (T))
(1+r) (1+r)

(28)

where T =0, 1. One can check that in the case of a single
stationary (on-shell) nucleon these expressions reduce to
the one given in Ref. [4] or in Eq. (19) when Z =1 and
N =0. Note that all of the strangeness form factors are
isoscalar [see Eqs. (17)]; furthermore, in the standard
model at tree level, the entire isoscalar axial-vector con-
tribution comes from G~ .

4. Plane tvave Born appro-ximation (P WBA)

Other than the difference arising from including the
fully relativistic current in PWIA versus expanding to or-
der (q/M) as in PWBA, a crucial distinction between
the two approximations arises from the fact that only the
direct scattering process is taken into account in PWIA;
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ca&„q=')IM +q +ED —M, (31)

where ED=2M —MD is the deuteron binding energy.
The characteristic momentum where this ratio becomes —,

'

is about 110 MeV/c-2pz, where pF-55 MeV/c is the
effective Fermi momentum in the deuteron. We see that
the ratio drops dramatically with increasing momentum
transfer and thus we should expect that the exchange
contributions become unimportant beyond, say, 400—500
MeV/c and accordingly that the PWIA will become
justified at suSciently high q. These expectations are

on the other hand, PWBA (along with the full calculation
which includes FSI) also incorporates the exchange pro-
cess where interferences occur between the amplitudes
shown schematically in Fig. 2 (see the discussion above).
In the present subsection we discuss the nature of these
direct/exchange effects using a simplified PWBA model
which has only a S& contribution for the deuteron
ground state and which takes into account only the non-
relativistic, on-shell reduction of the cross sections. Our
purpose here is to gain a better understanding for the role
that the interference contributions play in the PV asym-
metry as q and co are varied. Of course, in presenting
most results in the next section, we include both S& and
D, components in the deuteron ground state and expand

the electroweak operators to order (q/M), as discussed
above. By comparing the PWIA and the PWBA results
we shall be able to establish the kinematic regions where
the former becomes a reliable approximation, i.e., where
the exchange effects become negligible. This will have
important consequences, since then we can employ the
PWIA which is presumed to incorporate relativistic as-
pects of the electroweak single-nucleon currents better
than the nonrelativistic expansions, especially at high-
mornentum transfers.

In this simplified PWBA model we find that the EM
response functions have the following dependences:

R (T=O) —G~~
' (2)+8),

R (T=l)—GE" (2)—8),
(29)

R (T=0)—Gsr' (2)+C/3),

R (T= 1)—Gsr" (2)—8/3),
where

S:—J dpp u (p),
I) I (30)

|o—:I dp p u (p)u (p'),
lyl

where p' is related to p through +M +p
++M +p' =MD+co, with similar expressions for the
PV responses. As in the PWIA at high q and small ~y~ it
is safe to take Y~ao. The S terms correspond to the
nonrelativistic, on-shell, S& -state-only version of the
PWIA, viz , using p(p)=. (1/2n. )u (p). The ratio C/S,
which sets the naive scale for the relative importance of
the exchange terms, is shown in Fig. 3 for kinematics cor-
responding to the impulse approximation position of the
QE peak,

I I I I I I I

0.6

0.4

0.2

0.0
I I I I I I I I I I I I I I I I I I I I I I I I I I

0 100 200 300 400 500
q (Mev/c)

FIG. 3. The ratio of (6 /2)) as a function of three-momentum
transfer q on the quasielastic ridge, i.e., for co=co~„k given by
Eq. (31). These are results in PWBA with an S-state deuteron.

borne out in detail when we examine the results presented
in the next section.

To see why this happens, let us recall that the y-scaling
variable (see, for example, Ref. [19])is obtained as a solu-
tion to the equation

MD+co=E+E'=(IM +(q+y) +'(IM +y (32)

Examining the direct term [Xl in Eqs. (30)) we see that the
integral has its maximum when y =0 and thus co Np
namely, at the QE peak. For fixed y =0 the answer is in-
dependent of q, since the only other q dependence in this
simplified model is contained in Y and becomes negligible
when q and Y~ao. On the other hand, the exchange
term [8 in Eqs. (30)] involves an overlap between u(p)
and u(p'). At y =0 we have E+E'=)IM +q2+M,
and therefore, as q becomes large so does the sum of
E= t/p +M and E'= (Ip' +M . Hence, not both ofp
and p' can be small at the same time. Since the function
u (p) is localized to very small values ofp (i.e., most of the
momentum distribution lies at p &pz-55 MeV/c), this
immediately implies that the ratio 8/S must fall with in-
creasing q. Similar conclusions do not hold in general for
kinematics away from the QE peak. For example, at
threshold we have y = —q/2 and consequently the lowest
allowable values of the momenta in Eqs. (30) are
p;„=p';„=q/2. Since at all but the lowest values of q
the maximum in both of the integrands in Eqs. (30) will
occur when p and p' are at their smallest values [where
u (p) and u(p') are maximized], we then deduce that the
ratio 8/2)~1 at threshold; under these conditions, the
PWBA and PWIA results can be quite different. In fu-
ture work we shall return to examine non-QE kinematics
in more detail. In the present context, we reiterate the
basic result here: at sufficiently high values of q the
( 6'/2)) interference effects should in general diminish and
the relativistic PWIA should become applicable.

However, some caution should be exercised even when
studying only the region near the QE peak, since the
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significance of the ratio @/2) may be quite different for
the various response functions and, ultimately, for the
parity-conserving cross section and parity-violating
asymmetry, depending on the choice of kinematics. Con-
sider first the longitudinal EM response: for small
momentum transfers, Gz '-—Gz", since Gz„ is very small,
and therefore R (T=O)+R (T=1) is basically the
same whether the PWBA or PWIA is used [see Eqs. (29)].
When Gz„becomes appreciable, 8 /23 has already
dropped dramatically, and thus the conclusion still holds.
On the other hand, a different argument is found for the
transverse EM terms, where G~' and G~' are rather
different (equivalently, G~ and G~„are both large and
different). As we can see from Eqs. (29), there the scale is
given by 6'/32), which suppresses the exchange effects,
and hence we see that the PWBA and PWIA results
should not be much different as long as 6/S is not too
large. Similar conclusions hold for the transverse PV
responses which are also spin-Aip dominated. On the
other hand, the results obtained for R and accordingly
for the asymmetry at forward angles can be quite sensi-
tive to 6/2) effects. The reason is that the inclusion of
the weak neutral current couplings p'v "changes the
scale from 6 /Xl, occurring in longitudinal EM studies, to

p(0) p(i)
33

p(0) +p())

which is about —116'/2) in the standard model (see Sec.
IIB). For this reason, the parity-violating longitudinal
response can be extremely different in the PWIA and
PWBA, even leading to opposite signs for the asymmetry
obtained near threshold using the two models, as dis-
cussed in the next section.

III. RESULTS

In this section we present results using the models dis-
cussed in the previous sections. For the single-nucleon
form factors we use the parametrizations of Refs. [6—8],
including the Galster [21] form for Gz„. Alternative pa-
rametrizations for the electromagnetic form factors [22]
were also explored, although no significant differences be-
tween the results obtained with the two sets were found;
our expectation is that more information will be available
to help in minimizing uncertainties from electromagnetic
form factors in the near future from work at medium-
energy facilities (MIT —Bates, Mainz, NIKHEF) and in
the longer term from higher-energy facilities (CEBAF).
Less is known about the isovector axial-vector form fac-
tor of the nucleon and for that we use the parametriza-
tion of Refs. [6—8]. One of our goals is to investigate
whether PV QE scattering can serve as a means to deter-
mine the neutra1 current version of this form factor. In
Sec. III A, where the nuclear model dependences are dis-
cussed, we take all strangeness form factors to be zero
and then return in Sec. III B to study what happens when
ss components are allowed to occur in the nucleon.

We employ two models for the NN interaction which
are quite different in their short and medium range be-
haviors, but are basically phase-shift equivalent, namely,

the OBE supersoft core Sprung —de Tourreil inodel (SdT)
[23] and an old-fashion semiphenomenological hard-core
Yale model (Y) [24]. These represent extremes in that the
former is quite "soft" while the latter is quite "hard. "
Most state-of-the-art potentials will yield results which
fall somewhere between what we find using these ex-
tremes. When results are presented for the PWIA and
PWBA we use the Bessel transforms of the deuteron
ground-state wave functions obtained with the SdT po-
tential.

For a general orientation let us begin by presenting re-
sults for the PV asymmetry with specific choices for the
kinematics. Following this we return to examine the
model dependences in more detail in the next subsection.
In Fig. 4 we show the asymmetry at two angles, a typical
forward angle (35') and an extreme backward angle (170',
to emphasize the transverse contributions). The results
are shown as functions of co for a broad range of momen-
tum transfers, q =150, 300, 500, 1000, and 1500 MeV/c.
In each case the position of the QE peak is indicated by a
vertical line. Naturally, in an actual experiment it will be
necessary to integrate over some range in energy loss. In
fact, the highest statistical precision in a given measure-
ment of the asymmetry will be obtained by maximizing
the figure of merit

~EM~ (34)

that is, by integrating over the largest region of co (and
solid angle) that is feasible. The QE region, in particular,
is the focus of the present work. There we believe that
the process is sufficiently "quasifree" to permit the ex-
traction of information about the single-nucleon form
factors while minimizing the impact of nuclear model
dependences in calculating the asymmetry. This region is
defined by the peak position as indicated in Fig. 4 and by
the width of the peak, where the latter (full width at half
maximum) is given quite well by the relativistic Fermi gas
expression [8,20],

b,co=&2qpF/'(/M +q (35)

and results in the values 12, 24, 36, 57, and 66 MeV for
q= 150, 300, 500, 1000, and 1500 MeV/c, respectively,
when p~ is taken to be 55 MeV/c. Clearly the QE peak
in deuterium is rather well localized and most of the in-

tegra1 will come from contributions close to the peak. If
we integrate over the entire QE region, then the figure of
merit can be shown (see Ref. [8] where these issues are
addressed in more detail) to increase rapidly with q,
reaching a maximum in the vicinity of 500 MeV/c, and
then slowly to decrease at higher values of momentum
transfer. Consequently, the best figure of merit (and so
the smallest fractional uncertainty in the asymmetry,
6A/A) will occur at intermediate values of q and less
precision can be expected at low momentum transfer.
From the experimental considerations discussed in Ref.
[8] we expect that the PV asymmetry could be deter-
mined to about 1 —2% using facilities that will exist in

the near future for q —500 MeV/c, and only to about
5 —10%%uo for q —150 MeV/c. We shall return shortly to
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FIG. 4. (a) The magnitude of the parity-violating asymmetry A as a function of energy transfer co, at q =150 MeV/c for two
h ld.values of the electron scattering angle 8. The low-co cutoffs in the curves correspond to inclusive electrodisintegration at thres o

results obtained with different models are shown: FSI with the SdT potential (solid line), FSI with the Yale potential (dashed),
PWBA (dots), and PWIA (dot-dashed). The (+) and ( —) signs indicate positive and negative values of the asymmetry. The vertical
lines indicate the position of the quasielastic peak at co= co~„k and the arrows at the right-hand edge of the figure indicate the value of
~A ~

at the QE peak in the static approximation. The width of the QE peak for these kinematics is about 12 MeV. (b) The magnitude
of the PV asymmetry A. at q =300 MeV/c and 0=35 and 170'. The lines are as indicated in (a). The width of the QE peak for these
kinematics is about 24 MeV. (c) The magnitude of the PV asymmetry A at q =500 MeV/c and 0=35 and 170'. The lines are as in-
dicated in (a). The width of the QE peak for these kinematics is about 36 MeV. (d) The negative of the PV asymmetry, —A, is
shown at q =1 GeV/c and 0=35' and 170'. The lines are as indicated in (a). The width of the QE peak for these kinematics is about
57 MeV. (e) The negative of the PV asymmetry, —A, is shown at q =1.5 GeV/c and 0=35' and 170'. The lines are as indicated in

(a), except that only the FSI(SdT) results are shown, since they are indistinguishable from the FSI(Y) results for both angles, and in
the 0=170' case from the PWIIA ones too. The width of the QE peak for these kinematics is about 66 MeV.
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A =AL+A T+AT, (36)

(x10 )
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discuss the level of confidence we have in the model re-
sults presented here.

Since our focus is on the results in the vicinity of the
QE peak, we show the q dependence of the asymmetry in
Fig. 5 and the 8 dependence for co=copezk in Figs. 6. The
former displays the general increase of the asymmetry
with increasing momentum transfer, principally due to
the explicit factor ~Q ~

in the asymmetry [see Eq. (7)].
The EM cross section, on the other hand, falls with in-
creasing momentum transfer at constant scattering angle
and so yields the characteristic behavior of 7 alluded to
above. The 8 dependence shown in Fig. 6 indicates why
measurements at both forward and backward angles are
important. Here the asymmetry is written in the form

where the three terms correspond to the three contribu-
tions in Eq. (8). The figure shows the ratios AL /A and
A T /A; clearly the former is emphasized in the forward
direction and the latter in the backward direction. For
instance, when we are interested in effects which stem
from the axial-vector currents, we must choose 0 to be
large enough to bring out the T' contribution. Under
these conditions at q-500 MeV/c, for example, the
axial-vector term contributes about 18% to the total
asymmetry. If the latter could be measured to 1%, then
this term would be known to about 5% and, consequent-
ly, would yield interesting information about the
nucleon's axial-vector form factor. For comparison, at
q —150 MeV/c the fractional effect of the T' is larger
(-37% at backward angles in Fig. 6), however, since it
may be difficult to determine A to better than -5—10%
(see above), this would only constitute a 14—27% mea-
surement of the axial-vector currents, which is less in-
teresting. Such considerations lead us to favor intermedi-
ate values of q. Similar arguments hold for the longitudi-
nal term, AL. Note that this contribution changes sign
in going between q = 150 and 500 MeV/c. At
intermediate-to-high values of momentum transfer AL is
typically only about 10% of the total asymmetry, and
therefore rather high precision is called for if new infor-
mation is to be forthcoming. As discussed in Ref. [8], the
PV longitudinal response is suppressed for two different
reasons: either (1) an explicit factor 1 —4 sin 9s, =0.092
occurs multiplying the usual "unsuppressed" form factor
Gz~, or (2) a "suppressed" form factor such as GE„
enters. An exception to these observations might occur,
however: namely, the strangeness form factor GE' may
not be small at large momentum transfer, as it must at
low ~Q ~, since it must vanish at Q =0. In this cir-
cumstance, measurements at sufficiently high-momentum
transfer might help in shedding light on such strangeness
contributions, as discussed in more detail in Sec. IIIB.
At low q the fraction of the asymmetry coming from R z v
can be quite large [-70% in Fig. 6(b)], and, consequent-
ly, ifA could be determined to the level of about 5 —10%
discussed above for low-momentum transfer, then AL
would be known to about 7 —14%. As we shall see in
Sec. III B, this is not small enough to permit especially
sensitive determinations of the nucleon form factor con-
tent to be attempted and once again we are led to higher
values of q if this is to be the reason for studying QE PV
scattering from deuterium.

10—1

200 400 600
q (Mev/c)

000 1000

FIG. 5. The magnitude of the asymmetry A as a function of
three-momentum trasnfer q on the quasielastic ridge (co=cop k)
for two electron scattering angles. These results are obtained
with different models: FSI(SdT) (solid line), PWBA (dots), and
PWIA (dot-dashed).

A. Nuclear model dependences

Having discussed the general features of the QE PV
asymmetry, we now present an evaluation of the model
dependences found when the various approximations are
employed. The first observation is that above some
characteristic momentum transfer the model dependence
is rather weak. Referring again to Fig. 5, we see that at
the QE peak for q beyond about 200 MeV/c the curves
for 0=170 have all coalesced at the level of a few per-
cent into a common asymmetry. We shall return to ex-
amine the precise level of agreement more carefully in the
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FIG. 6. (a) The relative strength of the PWIA longitudinal (vector) and transverse (axial-vector) current contributions, A L /A and
Az-/A, respectively [see Eqs. (8), (10), and (36)], vs the electron scattering angle 8 at co=co~„„. The three lines show results for

q =150 MeV/c (dot-dashed), 500 MeV/c (solid line), and 1 GeV/c (dots). Note that the AL /A results go to zero at 8=180' and that
the AT/A results go to zero as 8 approaches 0'. (b) Same as in (a), but these results are with the FSI(SdT) model. Note the
difference in scale between (a) and (b).

discussion a little later. For 8=35' the degree of conver-
gence is somewhat slower and only beyond about q =400
MeV/c do the results fall within the narrow band. We
conclude from this that the FSI results should be em-

ployed at low-to-medium momentum transfers when high
precision predictions are required, for only then is the np
final state adequately modeled and, especially in the for-
ward direction, the plane-wave approximations will lead
to significant errors in the calculated asymmetry. For
large scattering angles the latter are somewhat more reli-
able, reflecting the fact that the dominant currents in-
volve matrix elements of cr~, the spin-isospin-flip opera-
tor, which become common factors in the ratio that con-
stitutes the asymmetry and so essentially cancel, produc-
ing results which are in better agreement with those using
FSI.

Continuing with the behavior on the QE peak, in Fig. 4
we again see significant model dependences at low-
momentum transfers which largely disappear at
suSciently high q. In fact, even the static approximation
(indicated by arrows at the right-hand edges of the
figures) is reasonably successfully at intermediate-to-high
values of q, as long as only the peak values of the asym-
metry (i.e., where the vertical lines occur in the figures)
are compared.

However, when predictions are examined away from
the QE peak, the model difFerences become more ap-
parent. In particular, for values of co below the peak the

models can yield dramatically different results for the
asymmetry, even the opposite sign in extreme situations
such as for 8=35' at all but the highest q. For instance,
looking at the results for q =500 MeV/c [Fig. 4(c)], we
see that the asymmetry for 8=170' is quite similar in all
models for ro above about 100 MeV/c (which includes
most of the QE response region), but shows considerable
model dependence as one approaches threshold. While
the spread of the results is somewhat greater for 8=35'
at q =500 MeV/c, the qualitative behavior is basically
the same. The PWIA results at low co deviate from those
of the FSI and PWBA models, which yield similar re-
sults, indicating that the direct/exchange interference
effects are playing an important role, whereas the distort-
ing effect of the FSI is not the dominant effect. For
higher values of q this threshold behavior goes away [see
Fig. 4(e)] and all models, except for the static approxima-
tion, yield similar results over a wide range of energies.
At lower values of q the near-threshold region is especial-
ly model dependent, a fact which is not unexpected, since
only a few partial wave are important under these cir-
cumstances and the process is no longer "quasifree. " The
distorting effect of the FSI and the enforcement of ortho-
gonality between initial and final-state wave functions
which occurs when they are proper solutions of the
Schrodinger equation with a given NN potential may lead
to rather difFerent asymmetries in the FSI cases than in
the PWBA or PWIA cases. In particular, for 8=170' at
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q =150 and 300 MeV/c we see the prominent peaking
which occurs as threshold is approached that is due to
the (transverse, spin-flip) S

&
+ D

&
~ 'So transition (see

also Ref. [25]). Such effects are, of course, only included
in the FSI model. As q increases, more partial waves
play a role and the relative importance of such strong FSI
effects diminishes, so that the process becomes more
"quasifree. " At 0=35' and low q results in the different
models can be dramatically different, to the extent that at
q =150 MeV/c the PWBA has the wrong sign, very like-
ly reAecting the lack of orthogonality in that approxima-
tion. Curiously, the PWIA does somewhat better.

As discussed above, to extract new information about
the single-nucleon form factors which enter into the PV
asymmetry we will require fractional precision in the
measurements of about 5A /A —1 —2 %. Consequently,
we must look even more carefully into the model depen-
dences in the problem, for, if they are not also rather
small, then there will be little hope of understanding the
experiments, no matter how well they are performed. In
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FIG. 7. (a) The sensitivity of the PV asymmetry to various
effects is illustrated in the form of asymmetry ratios as a func-
tion of three-momentum trasnsfer q, at co=co~„„and 0=170'.
The lines marked "NN effect, " "E/D effect, " and "relativistic
effect" are explained in the text. The FSI results are for the SdT
model, except for the curve marked "NN effect." (b) Same as in
(a), but at 0=35'.

Fig. 7 we show various ratios of asymmetries on expand-
ed scales to show more clearly the nature of the model
dependences. Since the reaction is most "quasifree" on
the QE peak, and therefore has the least model depen-
dence for values of co in the vicinity of the peak, we have
limited our attention to that region in the figures.
Specifically, the ratios of the FSI asymmetry to the
PWBA or PWIA asymmetries is displayed. We see that
at backward angles for q above about 400 MeV/c these
ratios lie within 1% of unity and only deviate from one at
lower q (where clearly the FSI model must be employed
for high precision predictions). At forward angles the be-
havior is somewhat different: there the FSI/PWBA ratio
drops to unity with increasing q, indicating that the
plane-wave approximation is rather good for high enough
momentum transfers. However, the FSI/PWIA ratio
stays above about 1.05 and so requires some understand-
ing before a choice can be made about which model to
believe in a given kinematic region (see below).

Let us examine several of the model dependences one
at a time to aid in choosing which model to employ. We
begin with the curves marked "NN effect" in Fig. 7 which
show the ratio of the asymmetry obtained with the Yale
potential to that obtained with the Sprung —de Tourreil
potential. For the 170' case we see that this ratio is
within about 1% of unity for q &400 MeV/c, while for
35' it is a little larger, dropping to about 2% from unity
at high q. To the extent that these potentials provide ex-
tremes in modeling the NN interaction, we should expect
that the NN model dependence is actually less than this
and so satisfies the criterion of 1 —2% model uncertainty,
as long as the momentum transfer is kept above, say,
400—500 MeV/c. At low q, however, the NN model
dependence is larger; we may ultimately be able to turn
the problem around in that kinematic region and learn
something about the potentials themselves.

The curves marked "E/D effect" in Fig. 7 show what
happens when we form the ratio of the PWBA asym-
metry with the exchange terms set to zero over the corn-
plete PWBA asymmetry (i.e., with both direct and ex-
change terms present). The former is the derelativized,
on-shell PWIA (see Sec. II C 4), and so this ratio serves to
tell us where the interference effects become unimportant.
At 0=170' we see deviations from unity at the 1% level
only below q-300 MeV/c and only below about 400
MeV/c for 35'. Thus we might hope that the PWIA is
valid as a model for the PV asymmetry at the 1 —2% lev-
el as long as the momentum transfer lies above about 400
Me V/c.

The curves marked "Relativistic effect" show the ratio
of the asymmetry at the QE peak when the currents are
derelativized in the same way as in the FSI and PWBA
calculations and used in the PWIA compared with the
relativistic PWIA where no expansions in powers of
(q/M) are required. This provides a measure of how im-

portant the truncation of the currents to terms of
O((q/M) ) is in obtaining the asymmetry. We see that
the effect grows with increasing momentum transfer,
reaching about l%%uo (6%) at q = I GeV/c for 0=170
(35'). The fact that the effect is larger in the forward
direction is not unexpected, since we know that there are
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important relativistic corrections of order (q/M) in the
longitudinal responses (Darwin-Foldy and spin-orbit con-
tributions [13]). We observe that the source of the
differences between the FSI and PWIA approaches at
high q is entirely this relativistic effect; in particular, we
can see from the results presented in Fig. 7 (in the curves
labeled "E/D effect" and "FSI/PWBA") that neither the
exchange terms nor the distorting effect of the NN in-

teraction in the final state are important at high q. Since
only the PWIA contains terms of all orders in (q/M), we
are thus led to expect that the latter model has more va-

lidity at high-momentum transfers (say, above roughly
500 MeV/c).

From all of these considerations of the PV asymmetry
at the QE peak we see that for backward scattering an-
gles the FSI model should be employed for q below about
400 MeV/c and that the PWIA can be used for momen-
tum transfers above this value. Very little error would be
incurred, however, if the FSI model were to be used for
the entire range of momentum transfer studied at large
scattering angles. On the other hand, the forward-angle
regime is somewhat different. Again, at low q the FSI
model must be employed. Specifically, the relativistic
effects fall below 1% if q is less than about 300 MeV/c
and so the FSI model should be adequate. For q above
about 500 MeV/c the FSI/PWBA ratio and the 8/S
effect both fall to within about 1% of unity and so the
PWIA can be used reliably for this value of momentum
transfer or higher, as it must, since the relativistic effects
become increasingly important there. In between
(q-300—550 MeV/c) there is no model which can be
used with confidence at the 1% level, although from Fig.
7(b) it is not unreasonable that the uncertainty lies
perhaps at or below the 3% level.

In actual experiments energy integrations over some
region in the vicinity of the QE peak will likely have to be
performed to obtain the high statistical precision re-
quired. As discussed above the width of the QE response
region is quite small, since the deuteron is so weakly
bound and hence has a very small effective Fermi
momentum. The situation in Fig. 4(c) is typical: there
the width of the QE response is only about 36 MeV and
consequently most of the results (as measured by the
figure of merit, see above) comes from energies between
about 109 and 145 MeV. In that narrow region the NN
model dependence is quite regular. The two FSI curves
cross near the QE peak and clearly any symmetrical in-
tegration over this limited region will yield model depen-
dences which are about the same as those at the peak
alone. In contrast, if any asymmetrical integration is per-
formed, say, by restricting one's attention to the y-
scattering region (y & O, co & co&„z), then the model depen-
dences can grow significantly beyond the 1% level.

Another comment is relevant at this point: when the
momentum transfer becomes very large, it becomes more
difficult to avoid the region of ~ production. For in-
stance, in Fig. 4(e) the threshold for m production is at
about 633 MeV. Since the PV asymmetry now has a
different component (which is not treated in the present
work), it will require further study before the level of
model uncertainty can be quantified. In this case, if one

wishes to minimize these effects, then it will be necessary
to restrict one's attention to the y-scaling region and ac-
cordingly to perform an asymmetric energy integration.
Fortunately, as seen in Fig. 4(e), the model dependence
even off the QE peak is rather weak.

ZGMp+NGM

ZGMp
—NGM~

1 for the proton,

Pp+Pn
(37)

=0.187 for the deuteron,
Pp Pn

so that the effects due to GM and G„"are suppressed in

QE scattering (see also Ref. [8]). Furthermore, the
strangeness axial-vector contributions are multiplied by
ai instead of a&, as can be seen in Eq. (19), which further

suppress the effect of these terms in the asymmetry.
Henceforth, we ignore G„" and focus on the remaining
form factors. These simple arguments suggest the follow-
ing strategy: by studying elastic PV scattering from the
proton and QE scattering from the deuteron at backward
angles, it should be possible to separate the effects due to
G~' from those due to Gz", whereas measurements on
the proton along cannot yield such a separation.

To obtain quantitative predictions for the different
dependences we use the following parametrizations [6—8]
for the relevant form factors:

G„"'=g„"'/(1+3 53 )

GM =p, /(I+4 97r).
GE' =p, r/(1+4 97r).

where the last is discussed more below. At the tree level
in the standard model we have g&~"=1.26 from P decay
and from current modeling of the ss content in the nu-
cleon (see, e.g., Refs. [26,27]) we expect the strangeness
parameters to lie in the ranges —1 &P, & 0 and—3 &p, &0. We then express the PV asymmetry in the
following form:

A =A, (1+bqg„' '+bMp, +bEp, ), (39)

B. Determination of single-nucleon form
factors using PV QE electron scattering

Finally, we discuss the sensitivity found in the PV
asymmetry to specific models for the single-nucleon form
factors. We take the electromagnetic form factors to be
fixed (see Sec. IIB) and concentrate on the axial-vector
and strangeness form factors. In particular, we wish to
highlight the different behavior found in PV elastic
scattering from the proton (discussed in detail in Refs.
[4,6]) and the present case of QE scattering from deuteri-
um. To obtain a feeling for the general dependences
found in these two cases, let us begin with the static ap-
proximation in Eq. (19): at large scattering angles where
the transverse contributions are dominant the form fac-
tors GM' and Gz' are multiplied by the combination
ZG~ +NG~„, whereas the isovector axial-vector form

factor, G~" is multiplied by the combination

ZGMp
—NG~„. Thus the relative weighting of the former

two compared to the latter is



2680 E. HADJIMICHAEL, G. I. POULIS, AND T. W. DONNELLY 45

where the numbers (A&, bz, bM, bz) reflect the way the
asymmetry depends on these three particular form fac-
tors. From the considerations presented in the first part
of this section let us compare the asymmetries obtained
in elastic proton scattering and for QE scattering from

the deuteron at the peak for a momentum transfer of 500
MeV/c and a scattering angle of 150, which is typical for
a large solid angle detector. The corresponding incident
electron energy for these kinematics is eI =321 MeV. We
obtain

(A &, b „,b~, b F ) = ( —l. 54 X 10;0. 197, —0.461, —0.005 ) proton elastic

=( —2.07X10;0.166, —0.070, —0.003) deuteron QE-FSI(SdT)

=( —2.07 X 10;0.166, —0.068, —0.003) deuteron QE-FSI(Y)

=( —2.06X 10;0.168, —0.073, —0.002) deuteron QE-PWIA . (40)

Clearly the effects due to GE' are very small at backward
angles, as expected. All of the models for deuterium used
here give answers which are very similar and show again
the rather weak-model dependence for these (favorable)
kinematics. However, the above expectations concerning
the differences between the proton and deuteron cases are
borne out in detail. Importantly, the relative dependence
on the magnetic strangeness form factor (embodied in the
parameter p, ) is more than six times stronger in the pro-
ton case than for the deuteron. Clearly the latter case is
relatively more sensitive to the isovector axial-vector
form factor (represented by the parameter g„'"). A high
enough precision measurement of the QE PV asymmetry
in deuterium should help in defining Gz" and so, used in
concert with elastic PV scattering from the proton, per-
mit GM' to be determined with better precision than is
possible with the proton along (see also Ref. [6]).

At forward scattering angles the situation is somewhat
different. Referring again to the static approximation in
Eq. (19) for guidance, we see that the terms containing
the strangeness electric form factor may now play a role.

There, GE' is multiplied by the combination

ZGzp +1VGzp in the general case for this simple model.
However, since Gz„ is so small relative to Gzp, the
weighting factor is only weakly dependent on the target
nucleus. To obtain a quantitative measure of the form
factor sensitivities we present results for a specific for-
ward scattering angle, 0=12.5', which is in fact the
smallest possible for the hall A spectrometers at CEBAF.
We again intercompare results for elastic scattering from
the proton and scattering at the QE peak for deuterium.
Two momentum transfers are considered, q =150 and
1000 MeV/c (with corresponding incident electron ener-
gies e, =693 and 4362 MeV, respectively). In the former
the value of r is quite small (0.006) and so the electric
strangeness effects are rather weak; however, at the high-

q value we have ~=0.23 and consequently they can be
strong if Gz" is not suppressed [recall from Eq. (38) the
electric strangeness form factor is proportional to ~ at
low-momentum transfer]. We obtain the following for
the asymmetries at q =150 MeV/c:

(~ ~', bq, b~, bE ) =( —2.29 X 10;0.039, —0. 152, —0.053) proton elastic

=( —7.84&&10;0.028, —0.012, —0.011) deuteron QE-FSI(SdT)
= ( —8.57 X 10;0.026, —0.010, —0.010) deuteron QE-FSI(Y), (41)

where only the FSI results are given for the deuteron in light of the discussions in the previous subsection. At such a
low-momentum transfer the NN model dependence is not negligible (the overall asymmetry coefficient A, differs by
about 9%%uo for the two FSI models). The effects due to the three form factors under study here only enter at the few per-
cent level and consequently these kinematics are not too favorable for extracting them. The proton case could be used
if both G~" and G~ can be determined well enough using backward-angle scattering from both the proton and the
deuteron (see above). The q =1000 MeV/c results are the following:

(A, ;b„,b~, bF ) =(—3.43 X 10;0.035, —0.495, —0. 172) proton elastic

=( —5.25 X 10;0.028, —0.080, —0.085) deuteron QE-FSI(SdT)

= (
—5.40 X 10;0.027, —0.073, —0.078) deuteron QE-FSI(Y)

= ( —4. 87 X 10;0.032, —0.082, —0. 108 ) deuteron QE-PWIA . (42)
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In this case the two FSI models differ in A, by less than
3% and yet the relative effect of GF' could be as large as
16—17%%uo in the FSI models (or 22% in the PWIA) if
p, = —2 as in the model of Ref. [26]. As discussed in the
previous subsection most of the difference between the
FSI and PWIA results are due to the nonrelativistic ex-
pansion procedure used in the former; for the purpose of
predicting the asymmetry at high-momentum transfer the
PWIA should be more reliable. Comparing the proton
and deuteron results, we again see rather striking
differences. In elastic scattering from the proton at for-
ward scattering angles the effects from G~ are quite im-
portant and any significant uncertainty in this form fac-
tor from backward-angle determinations will propagate
into connected uncertainty in GE', no matter how pre-
cisely the small angle proton asymmetry is measured.
However, taken again together with the QE PV asym-
metry on the deuteron where the magnetic strangeness
dependence is much weaker, it should be possible to
refine our knowledge about all of these various contribu-
tions.

IV. CONCLUSIONS

In the present work we have studied the behavior of
the parity-violating electron scattering asymmetry for the
inclusive reaction H(e, e')np in the region of the quasi-
elastic peak. We have considered a wide range of
momentum transfers, q = 150—1500 MeV/c, and investi-
gated the nature of the PV asymmetry at large and small
values of the electron scattering angle 8. Several models
for the electromagnetic and weak neutral currents in-
volved in the electrodisintegration of deuterium have
been employed in our work and we find that the asym-
metry in the vicinity of the QE peak is very stable except
at low-momentum transfers (i.e., the model dependences
are seen to be rather weak for such "quasifree" kinemat-
ics). We conclude that by using two specific models we
are able to provide predictions for the asymmetry span-
ning this wide range of momentum transfers which are
uncertain only at the 1 —2% level. Specifically, for q less
than about 500 MeV/c, where direct-exchange and FSI
effects are important, we find that only a model which
treats these aspects of the problem [such as the FSI(SdT)
and FSI(Y) models discussed in the present work] should
be employed. On the other hand, these effects are seen to
be absent at high q; since there relativistic effects become
increasingly important, we conclude that only a model
such as PWIA which incorporates relativistic effects in
the electroweak operators to all orders in (q/M) can be
taken to high-momentum transfer.

Our modeling has shown uncertainties in the PV asym-
metry to be at the 1 —2% level. While such claims would
be difficult to accept for the individual response func-
tions, it should be re-emphasized that the asymmetry is a
ratio of responses and so contains much less sensitivity to
the detailed nature of the reaction mechanism involved.
For example, at large scattering angles, where the asym-
metry is dominated by transverse contributions, it is
straightforward to understand why such a ratio should be
rather stable: it is made up of response functions in both

its numerator and denominator that are driven by essen-
tially the same currents. Specifically they are all propor-
tional to matrix elements of the spin-isospin-flip operator
(whether vector or axial vector in character) and these
common matrix elements cancel in forming the ratio.
Only when isoscalar or relativistic effects (both of which
are suppressed) are incorporated do we see any model
dependence in the present analysis. Before we can be
completely certain about the reliability of the modeling
there are a number of issues which should be addressed,
specifically, the roles played by meson-exchange currents
and isobar configurations, by NN interactions which in-
clude parity-violating pieces and by relativistic dynamics.
All such effects are thought to be small along the QE
ridge for the range of kinematics under study. Some of
these issues will be addressed in the future as natural ex-
tensions of our current work.

We have focused on the region around the QE peak,
for there we expect the models to be most applicable. Of
course, any actual experiment will have to integrate over
some finite range of energy. To achieve the highest statis-
tics the optimal region might be reasonably broad, span-
ning perhaps 30—50 MeV or more. Consequently, it is
important to have some idea about how the model depen-
dences will behave in non-QE kinematics. Fortunately,
since the deuteron has a very small effective Fermi
momentum (-55 MeV/c), the figure of merit for per-
forming QE PV measurements is sharply peaked in the
QE region. Nevertheless, we have presented results for a
wide range of energy away from the QE peak: for kine-
matics below the peak (y (0) and especially near thresh-
old, we may find significant model dependence, notably at
low q. Clearly, if the goal is to minimize the nuclear
model dependence in order to learn something about the
nucleon's form factors, then this region would appear to
be less favorable than the QE region. At energies above
the QE peak (y &0) a different consideration becomes a
factor: there, at high-momentum transfer, pion produc-
tion may become important in the QE region. If one is to
explore the asymmetry in this case, then it will be neces-
sary to provide a model for PV m production, including
both nonresonant terms and contributions that proceed
through the h. In a future work we shall return to exam-
ine the PV asymmetry for non-QE kinematics in more de-
tail. In the present context where the focus has been the
region near the QE peak, we have found that the theoreti-
cal and experimental aspects of the problem are com-
mensurate, viz. , both imply that the relevant level of pre-
cision in such studies is about 1 —2%%uo.

Given uncertainties as small as these, we have proceed-
ed to explore the possibility of using PV QE scattering
from deuterium to learn something about the form fac-
tors of the nucleon. We find that measurements at back-
ward angles and momentum transfers around 500 MeV/c
appear to be very well suited to determining the isovector
axial-vector form factor Gz". PV QE scattering is much
less sensitive to the magnetic strangeness form factor G~'
than is elastic PV scattering from the proton and there-
fore we conclude that the combination of H QE and 'H
elastic PV studies could permit the separation of the two
form factors. In contrast to this, using only the proton
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there will continue to be an inseparable uncertainty
which stems from G„"' incurred in attempting to extract
GM', no matter how precisely such a measurement could
be undertaken. Finally, at high-momentum transfers, 1

GeV/c or more, our results for forward-angle scattering
suggests that the electric strangeness form factor GE'
could also be studied by combining PV electron scatter-
ing measurements using the deuteron and the proton.
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