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Charge symmetry breaking two-pion exchange
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Two-pion exchange (TPE) contribution to the charge symmetry breaking class IV neutron-proton in-

teraction is examined in a potential and coupled channels approach. Based on nonrelativistic ~NN and
+Nb vertices, a TPE interaction is treated in two ways, as a potential or as a part calculable by the cou-
pled channels method plus a residual potential interaction. A practical parametrization of the TPE po-
tentials is given, which can also be used in the case of class III charge symmetry breaking (CSB) forces as
well as for charge symmetric interactions. The results show that below 300 MeV the TPE contribution
to CSB in elastic np scattering is insignificant, whereas at higher energies it should not be neglected.

PACS number(s): 13.75.Cs, 21.30.+y, 11.30.Er

I. INTRODUCTION

One of the most widely used and successful symmetries
in nuclear physics is charge independence or isospin sym-
metry of nuclear forces. It is obviously broken in elec-
tromagnetic interactions but is known to be broken even
in the strong interaction due to electromagnetic effects
within hadrons and differences of quark masses. This
breaking of the isospin symmetry in the nuclear force has
been studied for a long time. However, earlier research
has mostly concentrated on looking for differences in the
pp vs np system or in the pp vs nn interaction. In the ter-
minology of Henley and Miller [1] these differences arise
from isospin asymmetric forces of class II (isotensor) and
III (proportional to the total isospin vector r,o+~zo).
The latter is a charge symmetry breaking (CSB) force and
it distinguishes between isospin mirror systems. For nu-
cleons CSB means simply a way to tell the neutron from
the proton in an experiment. CSB interactions of class
III have been typically studied in nuclear mirror systems
or comparing pp and nn low-energy scattering parame-
ters. Both of these approaches are hampered by
difficulties with nuclear structure treatment, extraction of
the Coulomb interaction from the pp system, or the
three-body nature of experiments with neutron targets.

Not until very recently has the class IV CSB force,
which acts only in the np system and actually changes the
isospin, become experimentally tractable. In the presence
of this interaction the analyzing power (or polarization)
of the proton is different from that of the neutron in np
scattering. At present there are two data points for the
difference of the proton and neutron analyzing powers
6 A = A„—A in elastic np scattering. The TRIUMF ex-
periment [2] at 477 MeV gave b, A (72')
=0.0047+0.0022+0.0008 and the preliminary angle
averaged Indiana University Cyclotron Facility (IUCF)
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result at 183 MeV is [3] b A (82' —116')=0 003 31
+0.000 59+0.000 43. Unfortunately it appears impossi-
ble to extend these already difficult experiments outside
the neighborhood of the angle where A„or A crosses
through zero and obtain a full angular distribution of
6A, although the IUCF experiment can give some
features of it. Measurements are possible at this particu-
lar angle, since many systematic error sources cancel off
there. For example, the TRIUMF experiment measured
directly the difference in the zero crossing angles of A

and A„rather than A's themselves, so that the

knowledge of the absolute normalization of the polariza-
tion was not so crucial. Knowing the slope of the analyz-

ing power A(8) one can then deduce hA at this angle

with first-order uncertainties in the beam and target po-
larization vanishing. The IUCF measurement, on the

other hand, is based on the assumptions of the constancy
of the uncertainty of A(8) around the zero crossing an-

gle, in which case the measured apparent difference is

b, A(8)=EA„„,(8)+constX A(8) .

In an average about the zero crossing angle the latter
term carrying the dominant uncertainty about the abso-
lute polarization cancels off. Another experimental pro-
posal at TRIUMF suggests to measure b A at the energy
350 MeV, intermediate between the present data [4].

There has been a considerable amount of theoretical
activity to predict or reproduce these numbers [5—10]
(for up-to-date overviews see Refs. [11] and [12]). Most
theoretical calculations are able to explain the meager
data by meson exchanges. The TRIUMF result origi-
nates nearly totally from the mundane one-pion exchange
if the neutron-proton mass difference is taken into ac-
count, because other effects are small at the zero crossing
angle at 477 MeV. The IUCF number, on the other
hand, consists of nearly equal contributions from one-
pion exchange (OPE), the magnetic interaction of the
neutron dipole moment with the proton charge and the
more interesting short-ranged pen mixing in heavy meson
exchange. The comparable significance of the last mech-
anism makes the lower-energy measurement of IUCF im-
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portant in studies of the short-range behavior of the
strong interaction. Figures 1 and 2 show the two existing
data points together with theoretical predictions of Ref.
[8]. The difference between the dashed and dash-dotted
curves is due to heavy mesons, mainly pro mixing.

The class IV CSB potential responsible for hA in np

scattering can be of two spin and isospin changing forms
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FICi. 1. The experimental data point of TRIUMF [2] at 477

MeV vs theoretical results of Ref. [8]. OPE with the np mass
difference (dashed curve), including also heavier mesons (mainly
pro meson mixing, dash-dotted), including also the interaction of
the neutron magnetic moment with the proton charge (solid).

Quite obviously the former of these interactions arises
only in exchanges of a charged particle (or effective parti-
cle). By far, the dominant contribution here is the effect
of the np mass difference in the charged pion vertex. In
contrast, the latter is due to neutral exchanges, most typi-
cally the magnetic interaction between the neutron and
proton or pro meson mixing. The two forms of CSB force
give rise to qualitatively different angular distributions of
b, A(8), the latter being rather similar to Az(8) or A„(8)
for intermediate energies and consequently small at the
zero crossing angle of these observables. A possible qual-
itative reason for this similarity may be the structural
likeness of the potential V&vb to the spin-orbit force
(which, of course, conserves the spin and isospin). Be-
cause for a given total angular momentum J the dom-
inant mixed states have both either an attractive or repul-
sive phase (i.e., the triplet and singlet are similar), also
the spin mixing transition matrix is similar in phase to
that due to the spin-orbit force in these tensor uncoupled
partial waves. The tensor coupled states have much
smaller phases and may be less important in the analyz-

ing power and polarization. The interaction V,v„ in con-
trast, has an additional state-dependent phase ( —1),
which removes the chance of any resemblance of EA (8)
to A(8). Thus the partial wave mixing paratneters for
IVb are uniformly of the same sign (for the important pep

mixing and the magnetic positive), while those for IVa
(OPE) alternate their sign with J. This qualitative
difference is clearly seen in Figs. 1 and 2, with neutral
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FIG. 2. As Fig. 1 but theory at 188 MeV, experiment at 183

MeV [3].

particle exchange contributions also changing their signs
near the zero crossing angle, whereas OPE is positive
with a principal and secondary maximum in the forward
and backward directions.

Since the interactions (2) change the spin and isospin,
triplet and singlet states of a given L =J are mixed. This
mixing can be expressed as an S-matrix parametrization

2i5J . . i(5J+5JJ )
cos2y Je & srn2y Je

S= .(5 (3)
i sin2yJe

2i 5JJcos2yJe

where yz is the mixing parameter analogous to ez, and

5z (5') is the two nucleon "bar" phase shift for the par-

ticular singlet (triplet) state in question. At low and in-

termediate energies the P&-'P, and Dz-'D2 mixings are
dominant. The relation of these partial wave mixing pa-
rameters to the isospin breaking angle-dependent spin
amplitude f(8) and the observable b A(8) can be found

in earlier calculations of CSB [6,8] or the compilation
[14]of spin —,'+ —,

' scattering observables.
One reason for the recent interest in isospin breaking,

especially charge symmetry breaking, is the hope that its
detailed understanding could tell something about the un-

derlying hadron structure in terms of quarks or solitons
etc. In principle, one might be able to gain information
about the strong interaction, which is complementary to
the isospin symmetric case. In particular, the meson ex-
change model of nuclear forces can be tested in a new en-
vironment where it was not originally j7tted. At the very
least new constraints on, e.g., meson-nucleon couplings
could be expected, since meson exchanges appear in
different combinations as compared with the isospin con-
serving case [8]. On the other hand, deviations from the
meson exchange picture could be signatures of a deeper
mechanism.

A particularly interesting candidate for such a "smok-
ing gun effect" of quarks in intermediate energy physics
is the spectacularly great theoretical difference between
the short-range pro mixing effect and CSB quark-gluon
calculations [13]. All meson exchange calculations give
relatively strong charge symmetry violation arising from
pro mixing, whereas the quark-gluon result is totally
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negligible. One might note the difference to the situation
in the case of isospin respecting nuclear force, where the
quark-gluon exchange mechanisms give results which are
similar to vector meson exchanges. Therefore, at the one
0. confidence level the IUCF result would appear to lend
some support to the meson exchange model of the NN in-
teraction even at short distances. However, before jump-
ing to hasty conclusions of any exotic or quark effects vs
heavy meson exchanges at intermediate energies in inter-
preting any experiments, careful calculations are needed
also at the hadron level. The aim of this paper is to fill a
void concerning relatively long-ranged two meson ex-
change effects, on which rather little work has been done
in the case of class IV forces. Because, as will be seen
later in Sec. II 8, even the charge-independent two-pion
exchange (TPE) looks partly like a vector meson ex-
change, it could well give also CSB contributions similar
to pro meson mixing. Furthermore, scalar meson ex-
change with the np mass difference included gives rise to
a CSB effect very similar to what pro mixing does [8].
Since much of TPE is often simulated by a significant o.

meson exchange in meson theoretical potentials, it is
essential to get estimates of CSB in two meson exchange.
However, it was seen in Ref. [8] that the o exchange is a
small effect, partly because of the above qualitative simi-
larity of the angular dependence to A(8}. On the other
hand, in TPE charged mesons can be exchanged resulting
in a class IVa interaction, which may be important at the
crossover angle.

Charge-dependent TPE interactions have been studied
very little earlier applying the Partovi-Lomon formalism
[15] in the case of class IV forces [6] and in the case of
classes II and III [16]. However, these works considered
only nucleonic states, no baryon internal excitations, in
particular 5, are included, except in the study of isoten-
sor forces of Ref. [17]. These are known to be very im-

portant in T=1 scattering. Perturbation approach to
isobar effects may be questionable. Although CSB itself
is weak, the CSB Nb, states (originating from T=0 initial
NN states) are coupled strongly to T= 1 NN states. The
NA components should be generated as exactly as possi-
ble from T=1 states and then be coupled by a weaker
CSB potential to T=O states. That is to say, the DWBA
starting point should be a distorted wave function includ-
ing Nh admixtures as exactly as possible. The coupled
channels technique is a very good practical method to
achieve these. Although, in principle, DWBA would
then be quite adequate to calculate CSB, it is just as easy
to consider the T=O NN state as still another coupled
channel and solve the whole system exactly.

The outline of this paper is as follows. First in Sec. II
the CSB OPE is briefly presented both with the CSB mNN

vertex (including the np mass difference) and with the
CSB DNA vertex. Then the two meson exchange contri-
bution is introduced for the isospin symmetric and CSB
case along with a practical technical division to coupled

channels plus a potential. Both NN and NA intermediate
states are considered including both box and crossed box
diagrams. The results of the numerical calculations are
given in Sec. III.

II. THEORY

A. CSB in one-pion exchange

The primary origin of charge symmetry breaking con-
sidered in this work is the neutron-proton mass difference
in the pion-nucleon coupling or the corresponding mech-
anism in the ~Nh vertex. It has been known for a long
time that the CSB structure of the ~NN coupling is in the
nonrelativistic limit

H~~g —Hp+H) +H

[(P P) «'4'+(P P)'~45
p

+ i(p '+p) o'(r X P)p5] . (4)

Here p and p
' are the initial and final nucleon momenta

and cr and ~ are the spin and isospin operators. The pion
field is P and its mass p. The small parameter of the
theory is

M„—Mn p

M„+M

H = g [Vr $(x}+5VPp(x )+5(p+p ')[r X $(x}]p]
p

(6)

The pion-nucleon coupling (4) leads to the one-pion ex-
change interaction

and only terms in the zeroth or first order have been kept
in Eq. (4). The pion-nucleon coupling constant is given

by f /4m=0. 075 [18.]. This coupling is in good accord
with the one used in the Reid potential [19],which will be
used as the basis of strong interaction distortions. Al-

though over the recent years evidence has accumulated
for the favor of this value, it is not yet completely
without controversy [41]. Also in comparisons with ear-
lier calculations it might be useful to use the older larger
coupling 0.079. The two-pion exchange CSB results
presented in this paper scale simply as f in the case of
nucleonic intermediate states and as f in the case of iso-
bar excitation. In the coordinate space the above pion-
nucleon vertex can also be presented as

f2 Pl'

V(OPE)= V.oiV oz4~ p2 r
1

[r~ rz+(T~+ Tz }p5] 25(T& X Tz)per, X crzL.
rdr r

(7)
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In practice, of course, some form factor is also included
in the vertices and the potential. It is clear from Eq. (7)
that in OPE the np mass difference effect leads into a
class III CSB force in the case of neutral pion exchange,
whereas the exchange of charged pions gives a class IVa
interaction. This potential is able to explain most of the
b A observed in the TRIUMF experiment of Ref. [2] at
the angle where A goes through zero. However, other
possible contributions should be carefully evaluated to
have a meaningful comparison with the data. Caution is
especially important for the interpretation of the IUCF
result of Ref. [3],where also other effects are significant.

If the CSB mNN vertex is considered to originate at the
quark level from the differences of the constituent quark
masses, it is easy to show in the nonrelativistic quark
model that also m.NE coupling has a similar isospin
dependence [20]

N~
—&O+&2

As a difference to the m.NN case, now S and T are the
transition spin and isospin operators for N~h and the
coupling constant is f ' /4m. =0.35 from the free b, width
[21]. Another difference is that the term H', analogous to
H& of Eq. (4} is missing, since the transition necessarily
needs an isospin operator. The second term is similar to
Hz of Eq. (4) and will give rise to a CSB transition poten-
tial like the last term in Eq. (7). The simple quark argu-
rnents would give for the splitting of the successive
charge states of the 6 the same 1.3 MeV as for the nu-
cleons. This agrees very well with the known mass rela-
tions [22]

~ —4++ =2.7+0.3 MeV,

—5+++ =4.6+0.2 MeV .
3

[(p' —p) ST )+i(p'+p) S(TXQ)05] .
p

(&)

Similarly to the OPE potential between nucleons one
gets a transition potential for NN~6N+NE as

V„(OPE)= '"
~

V SiV crq4a p
' r

1 d e(T]'Tg+ T]05) 25(T) X r~}OS) Xcry'L +(1~2)rdr r
(10)

The CSB term proportional to T&o arises only from CSB
in the nucleon end of the pion exchange. The first term
conserves the isospin and is nonzero only for T=1 nu-
cleon states, whereas either of the CSB terms can cause a
transition from an initial T=O state. Finally another
iteration of V„brings the system back to a T=1 NN
state, causing a net isospin breaking in the two nucleon
system.

This transition potential approach to CSB has so far
been applied by the coupled channels method to incorpo-
rate box diagrams with b's in Refs. [20,23,24]. Reference
[24] showed that below, say, 500 MeV the effect of inelas-
ticities closely related to the 6 are small but at higher en-

ergies they become non-negligible. That work was not a
totally systematic treatise of the 6 effects in that, for ex-

ample, the crossed box diagrams were not considered.
We shall now proceed to introduce CSB two meson
mechanisms in a more systematic way and then consider
a hybrid approach by treating a box part with the snore

I

exact coupled channels method and the remainder as a
two meson exchange potential.

B. Isospin conserving two-pion exchange

In deriving the box and crossed box diagram contribu-
tions as meson exchange interaction the kinematics will
be fixed as easy and symmetric as possible and is shown
in Fig. 3. In these diagrams an overall momentum q is
transferred to the particle 1 and the average relative
momentum of the nucleons is p. The momentum k is a
loop integral variable. Also the formalism is kept nonre-
lativistic (except for kinematics) with no attention to the
relativistic off-shell behavior of the 6 propagator [25].

To the extent that the angular dependence of the prop-
agators can be omitted in the integration over k, the
space-spin and isospin structure obtained from the iso-
spin symmetric vertices is

q k (2o, .o,—S») (2——', r, .r, ),1 2 2

'2

box= —(k —
q /4) + q k (2cr& o'z —S&z) (2+ —', r& rz),

p
T

crossed= —(k —
q /4)—ff* 2 z z z

p 3

where the tensor operator is defined as

Si2 3~ qe q ~ ~2 (12)

The omission of odd powers in k is justified, if the energy

I

denominators are even with respect to the direction of k.
This is true for all but the kinetic energies of the inter-
mediate baryons in the box diagrams. The pion energies
do not give odd k dependence, since all vectors k —q/2
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FIG. 3. The choice of momenta for calculating two-pion ex-

change contributions. The overall momentum transfer is q and

k is an integration variable.

appear with a corresponding lt+q/2, and in a sum over
diagrams the pair combines to an even function of cost9k .
It is easy to infer from Fig. 3 that only in the box dia-
grams does cos8kz survive unpaired in odd powers. In
the limit of static baryons this dependence vanishes as a
relativistic correction. Its effect will be studied to some
extent later. Of course, the survival of an "odd" k in the
numerator has nothing to do with parity violation, which
is a weak interaction phenomenon. The momentum k is
always combined with another vector and parity is con-
served. The pion energies can contribute via cos Okq or
higher even powers to the quadratic spin-orbit and other
terms. The "small" parameter of this expansion would
be k q cos 8k /(p +k +q /4) ( 1 and its effect to the
numerator will be omitted. However, in the following
discussions, when the propagators themselves are calcu-
lated, the angular dependence on Okq will be included.
The factor 4~ arising from the angular integration will be

included in the propagators.
The above differences between the box and crossed box

diagram contributions are, of course, due to the commu-
tation rules of the spin and isospin operators in the ex-
change of the pion absorption and creation operators on,
say, nucleon 2. They do not depend on other time order-
ings as long as the property box or crossed is 6xed. The
operator is directly symmetric in the exchange of 1~2 so
that the excitation of each nucleon will simply be an
overall multiplicative factor 2. It is interesting to note
that the second (spin-dependent) term inside the brackets
is exactly of the form obtained nonrelativistically for vec-
tor meson exchange with the meson nucleon coupling of
the form cr Xq V.

It can immediately be seen that, if the propagators for
the two classes were the same, the terms with odd num-
ber of spin or isospin operators would cancel leaving only
the terms scalar isoscalar and vector isovector. The
former of these is the basis of simulating the isobar effect
by a scalar meson o. . Of course, the simulation does not
take into account the energy dependence in any way and
even this simple OBE argument should be supplemented
by an effective p exchange, too. However, the vector-
isovector part is suppressed by a numerical factor of —,', as
compared with the scalar-isoscalar term. Furthermore,
the propagators are not the same, but as seen later one
may still argue that the vector-isoscalar or scalar-
isovector parts should be small in comparison with the
main term.

If the intermediate state is NN instead of N4, then the
corresponding contributions would be simply

4
2

2

4
——(2o, o2 —S,z)q k (3—27, rp),1

(13)

crossed=
p

4 '2

k2
4

+—(2o, o,—S»)q'k' (3+2', r, ) .

The iterated OPE (box) is particularly strong in the iso-

spin zero states and is, in fact, an important part in the
deuteron binding.

Of course, the NN box contribution is included for the
most part in the solution of Schrodinger equation by
iteration of OPE. Even the NA box can be obtained in

this way by the coupled channels approach. Now, since
the numerator and denominator (propagator) is different
for the box and crossed diagrams, one could make a sepa-
ration

same as could be obtained by a coupled channels calcula-

tion. Keeping only the box diagram propagators would

not give this simple result but rather a transition potential
with a modified range [26]. The energy denominators D
will be discussed in detail later. For strong interactions

the initial state can be so distorted by the intermediate

N~Dg+NCDC =N~(D~+Dc) (N~ Nc)DC—. —(14)

The numerator Nz contains the spin-isospin structure of
the box diagrams shown in the above equations, i.e., the
iterated transition potential, and Nc the structure of the
crossed ones. The erst term on the right-hand side in-

cludes also the sum of all propagators of different time
orderings (Fig. 4), which turns out to be just the propaga-
tor expected from iterating the normal OPE transition
potential with an intermediate two baryon state, i.e., the

FIG. 4. Different possible time orderings of two-pion ex-

change.
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N~+Nc
NKVD& +NcDc =

2 (Da +Dc )

Na —Nc+ (Da Dc)— (15)

isobar configurations that a simple iteration in second or-
der may not be reliable but an actual coupled channels
calculation would be necessary, which removes some
probability from the NN state into the hN components.
Also the relatively strong energy dependence of the box
contribution especially in the Nh threshold region is nat-
urally treated by coupled channels. The second term on
the right-hand side of Eq. (14) is then a correction that
can hopefully be treated perturbatively or as an energy
independent potential in the NN channel with sufficient
accuracy. With ~Dc~(~D~+Dc~ this expectation may
well be justified, but needs a numerical verification.

The above separation —keeping the box structure
explicit —is suited for a separation into a coupled chan-
nels calculation plus a perturbation. A more symmetric
choice for potential approaches would be

Diagram

5(a)

5(b)

5(c)

5(d)

5(e)

5(fl

5(g)

5(h)

6(a)

6(b)

6(c)

6(d)

6(e)

6(fl

6(g)

6(}1)

Operator

32Q+3 l T1Q3(T1XT2)0
—2—l T20 —l Tlp+ —( T1 X T2 )p

3lT20+ —,lT10+ 3(T1 XT2)0
4 2 1

3
l 7 2p 3

l T1p 3 ( T1 X T2 )p
2 4 1

3
l 7 2p 3

l T1p —( T1 X T2 )p

3172p+ 3
l 7 1p+ 3 (T1 X T2)p

4. 2 ~ 1

3
l T20 3

l T1p+ 3 ( T1 X T2)p

20+ 3
l T10 3 ( T1 X T2)0

3
l 7 2p 3

l 7 1p + 3 ( T1 X T2 )p
2 4 1

20 3 lT10 3 (T1 X T2)0
2 4 1

3
l %20+ 3

l T1p 3 ( T1 X T2 )p
4 2 1

3
l 7 2p+ 3

l 7 1p 3 ( T1 X T2 )0
2 ~ 4 1

3
1 7 2p+ 3

l 7 1p + —( T1 X T2 )p

20+ 3
l T10 3 ( T1 X T2 )0

20 3 lT10 3 (T1 X T2)0
4 2 1

3
l T20 3

l 7 1p+ 3 ( T1 X T2 )p

& IO~Op ~OO)

4 ~—l
3

—l
4.
3

3l
4.

4 ~—l
3

8l
3—4i
3

8—l
3
4 e—l
3

—l
3
8—l
3

4 l.
3

81
3

TABLE I. The isospin factors r&.or, .AT& P(Tz Xp)0 etc. for
the type Hz or H'z of Eqs. (4) and (8) CSB vertex in two-pion ex-

change.

The second term should be small as a difference of the
propagators, whereas the first term consists only of an
effective scalar-isoscalar exchange potential supplement-
ed by a weaker vector-isovector exchange. This form
justifies the expectation above that, overall, the odd spin-
isospin operator terms give only a minor contribution.

mix with the initial T=O state without isospin breaking.
If the initial and final states are reversed, the zeros would
appear for diagrams 5(a)—5(d). At this stage it may be
useful to remind that the basic isospin matrix elements
are

C. Isospin breaking two-pion exchange

The above ideas presented for the isospin symmetric
interaction can also be applied in the isospin breaking
case. The two meson exchange mechanism will be
separated into a part that can be treated by coupled chan-
nels plus a correction. One can have a numerical con-
sistency check on the method by calculating the first term
both as a potential and using coupled channels.

1. Hz and H& vertex

& IO~r„~OO& =1=&OO~r„~ 1O&,

& IO(r„[OO& = —I= &OO(r„(IO&,

&»l(r&X~, )olOO&= —2i= —&OOI(rgXrz)olIO& .

(16)

The space spin structure is somewhat lengthier but also
straightforward to obtain. Considering only numerators
arising from the vertices of Eqs. (4) and (8) and omitting
odd powers of the intermediate momentum k, as dis-
cussed in the previous subsection, we get the results given
in Table II for the CSB vertices H2 and H2. In Table II a
shorthand notation

Table I shows the isospin factors for each diagram in
Figs. 5 and 6. The result is given both as an operator and
as the matrix element for the transition from the T=O
state to T=1. One may note some symmetries such as
exchanging the particles 1 and 2 (change of sign) or
changing the position of the CSB vertex [here only of the
type of Hz or Hz given in Eqs. (4) and (8)] in the other-
wise similar diagrams. The change from the box to the
crossed one is now much less trivial than in the isospin
symmetry obeying case Sec. II B. It should be noted that
the operators corresponding to individual diagrams are
not time reversal invariant, although their sum is. The
value of the matrix element is zero for the last four dia-
grams 5(e)—5(h) as it should, since the AN state cannot

A*=—', (k —
q /4)(k +q /4+q p),

8 =(i /3)(k q /4), —

C =—'ik

D= —'k
9

has been used.
Combining Tables I and II and adding the strength

coefficients of Eqs. (4) and (8) one obtains for the total
box contribution of the type H2 and H2 CSB vertices as
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FIG. S. CSB pion-nucleon coupling (circle) in the TPE box
diagrams. Each diagram gives a different contribution to the
spin-isospin structure of the numerators.

FIG. 6. CSB pion-nucleon coupling (circle) in the crossed

pion diagrams.

box=
2

z [ [20(C B)ir,o—+ 16(C—B )ir20]q X p o,i6
p

+ [16(C B)irn)—+20(C B)iw2—O]qXp &z+4D(qxp) (O', Xo)(~', X~, ) ]

ff" 5 k' q'
iqXp (o, +o2)(rlo+'r20)

p

(18)

+2 k
+3 3

and for the crossed diagrams
2

8
iqXp (o, —oz}(rto 'r2o}+ k (iqXp) (o, Xo2)(~& X~2)o

9

cI'oss =
p

2

I4(A + A+)(ir, o+ir2o)+[20(C —B)i~,o —16(C B)i r2]oqX—p o,

+ [
—16(C—B)ir,o+20(C —B)irzo]qXp o 2+4D(qXp) (o, Xcr2)(w, Xr2}0]

(16k q }(r,o+r20)+ iqXp'(o, +cr~)(r, o+v20)

(19)

k q 8+6 — iqXp (o'i —o'2)(&io &zo)+ k (iqX p) ~ (o
&
Xoz)(v& Xw2)o

3 4 9

In these equations only the numerators depicting the spin-isospin structure are expressed. The energy denominators

TABLE II. The space-spin structures of different diagrams for vertices H2 and H2. The coefficients
A +—

, B, C, and D are as defined in Eq. (17).

S(a)
6(a)
5(b)
6(b)
5(c)
6(c)
5(d)
6(d)
5(e)
6(e)
5(f)
6(f)
5(g)
6(g)
5(h)
6(h)

w+
w+

w+
w+
w+
w+
w+

+2CqXp cr&
—2CqXp o

&

+2Bq X p.o. ,

+2Bq Xp.o,
—Bq X p-cr
—Bq X p-o. ,—Cq X p.o. ,

+CqXp o,—2Cq X p.o. ,
+2Cq X p.o. ,—2Bq X p-o,
—2Bq X p-o.

1

+Bq X p.cr,
+BqX p o.

1

+ Cq X p-o.
1—Cq X p-o.
1

—Bq Xp.o.
2—BqXp o2

—CqXp oz
+CqXp cr,
+2Cq Xp.o.,—2Cq Xp.a2
+2Bq X p-o. ,
+2Bq X p-o,
+BqX p o.

2

+BqXp o-,
+ Cq X p-o. ,—Cq X p-o. 2—2CqXp o.,
+2CqXp-~,
—2Bq X p-o-,
—2Bq X p-o-,

—D(qXo &).(pXo2)
+D(qXo. &)

~ (p Xcr2)
—D(p Xo., ) ~ (qXo2)
+D(pXo1) (qXo2)—D(pXo, ) ~ (qXo )

+D( p X o.1) (q X o 2)—D(q Xo &)-(p Xo 2)

+D(q X o.1).(p X o z)—D(q X o. , ) ~ (p Xo.2)

+D(q X o. , ) ~ (p X o.2)—D(p Xo.&).(qXo 2)

+D(p Xo.&)
~ (qXo2)

—D(p X o.1).(q X o 2)

+D(pXo, ) ~ (qXo2)
—D(q X cr, ) ~ (p Xoz)
+D(q Xo, ).(p Xo2)
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(nonrelativistic propagators) will be discussed later in Sec. II D.
As shown previously in Eq. (14) the box contribution can be treated by coupled channels leaving as the residual in-

teraction

V-.= —(&a —&c»c

——(16k —
q )(r,p+r~o) — — iq Xp (cr t+ tran)(rio+r2o)

16 k q+ — iq Xp (cr t
—o z)(rtp r2p) Dc . (20)

The first two terms are of class III and of no immediate interest in the present work, whereas the last term is of class IV
contributing to hA in np scattering. It is interesting to note that the charge exchange CSB force can be completely
treated by coupled channels leaving a vanishing residual.

For nucleonic intermediate states the CSB TPE is

4

box= — 5 4 — iqXp (rrt cr2)( 10 ~20)+ (iqXp) ~ (rr, Xrr2)(riXr2)of k q

p 3 4 3
(21)

crossed= — 5 —8 k — (r +r )+4f k

p
10 20 3 4

iqXp (o'i+rr2)(rio+rzo)

4k+ (iqXp) (o t Xrr2)(r, X~p)p
3

(22)

Of course, the boxes are normally obtained automatically
by solving the Schrodinger equation. However, the
stretched box diagrams similar to 4(e) and 4(fl with two
simultaneous pions are not included in this way and
should be added separately. Since there are many more
crossed diagrams than stretched boxes with the same
numbers of simultaneous pions, the crossed contribution
may be expected to be larger and class IVa to dominate
over IVb. This conclusion agrees with Ref. [6], though
numerically the present result will become larger.

2. Vertex H&

Similarly, Table III gives the operators and the corre-
sponding matrix elements for the CSB ~NN vertex of the
type H, in Eq. (4) as shown in Fig. 7. There are fewer di-

agrams, since this vertex can only appear in the nucleon
end of pion exchange. Again the zeros for the matrix ele-
ments of the box diagrams are obvious. The zeros of the
crossed diagrams are not so immediately obvious but still
understandable. Since this CSB vertex does not change
the baryon isospin state (no r operator), from the point of
view of the initial state the crossed graphs 7(a) and 7(b)

effectively look like a CS transition potential into an Nh
or hN intermediate state, and this is nonzero only for a
T= 1 state because of isospin conservation. On the other
hand, the space-spin part for the 0& generated CSB po-
tential is the same as for the isospin respecting interac-
tion. The terms in Eq. (11) are totally symmetric in the
exchange of the N and the h. Obviously then the sum of
all the diagrams in Fig. 7 would give only an isospin con-
serving class III force and would not mix the isospin,
once the isospin factors of Table III are taken into ac-
count.

However, also this type of vertex (due to either the np
mass difference or rim mixing) was found to contribute
significantly to the effective class IV interaction and hA
in the coupled channels calculations of Ref. [24]. Quali-
tatively one could understand this, because in individual
partial waves the spin changing matrix elements do not
vanish. Due to different distortions then their cancella-
tion is not complete. On a more quantitative basis the ex-
planation is that, in fact, there is an additional term in
the spin-space numerator of the box diagrams, which is
not symmetric in the exchange of the nucleon and the 5:

TABLE III. The isospin factors r, .PP Tz OQTz P etc. for the CSB vertex of the type H, of Eq. (4).

Diagram
Operator

Box
& Ioiopioo& Operator

Crossed
& Io(op loo)

7(a)

7(b)

7(c)
7(d)

10+ 3 Tl T2)p

3 2Q 3 (TI X T2)p
—Tl p

—( T1 X T2 )p
2

3 T2p +
3 ( T1 X T2 )p

4
3

4
3

lp
—(Tl X T2)0

3 2Q 3 1 2 0
—Tlp+ —( Tl X T2 )0

3T203(T1XT2)p

4
3

4
3
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EN~(odd) =
p

b,N, (odd) =
p

2

5 —k — (2qXk cr, —qXk oz)
l 2 q

2

6 —k —
( —

q X k tr, +2q X k rr 2)
l 2 q

(23)

where the subscripts refer to the particle that goes through the b, intermediate state. [b,N2 corresponds to Figs. 7(a)
and 7(c), bN, to 7(b) and 7(d).] This is odd in the integration variable k and has been omitted previously. It was al-
ready mentioned that for box diagrams there is also an odd contribution in the energy denominators due to the inter-
mediate baryon energies. In principle, then these two odd terms can be combined to give a total nonzero effect, which
does not actually vanish in the angular integration over the intermediate momentum but could be small in the above
case of vertex Hz in a comparison with the dominant isotropic background. Now, since the background gives a zero
contribution, it is necessary to calculate this higher-order term from the angular dependence.

Simply combining the space-spin parts of Eqs. (11) and (23) with the isospin factors of Table III and performing the
angular integration over k, one gets the isospin nonsymmetric result for the sum of diagrams 7(a)—7(d) as

2 '2

bo= ff 5 ~ 42
2 9 4

k2q k q+ 2rr, crt S,2
—+e k — iqxp (rr, +02) (&1++2)0

4

2k q+e k' — iq X p (rr, —o, )(r, —r, )o (24)

crossed=
p

'2

5 —2 k—4, q'
9 4

k q
9

(2rr 1'tr2 S12) (rl+T2)0 ' (25)

The parameter e(k,p ) is in fact connected rather to the
propagator of the particular time ordering, but is symbol-
ically included here with the numerator to remind which
terms require this special treatment of the angular depen-
dence. It will be presented explicitly later, when the
propagators are discussed.

A class IV force due to H
&

arises only in the box dia-

grams. Since in the crossed diagrams all k dependence of
the propagators combines to form an even function, no
class IV interaction survives there in the integration over
intermediate momenta. Since the angular dependence of
the propagators of the box can cause a nonzero result in

spite of the pure numerator of the form involving only a
"class III" vertex (i.e., H„not "class IV" H2 or H2),
then the nonzero result for isospin mixing from the cou-
pled channels can now be understood. The energy
denominators correspond to the Hamiltonians of the XA
channels in the coupled Schrodinger equation. Since

different partial waves have different centrifugal barriers,
on partial wave basis the contributions from difterent in-
termediate isobar states cannot exactly cancel as they
would, if the propagators were the same for all. Also the
correlations generated by the strong interactions would
be somewhat different in different channels. It is essential
to realize that in partial waves the spin-isospin factors of
isospin breaking NN+-+Nh transitions do not vanish for
individual channels. Finally, it should be noted that class
IV forces do not arise from any kind of boxes involving
the vertex H, and only nucleons. The direct box is mere-

ly an iteration of the isospin conserving class III interac-
tion and the crossed diagrams do not contribute either.

In all the above results also the CSB interactions of
class III are shown for later reference, although they will
not be elaborated more in the present work which con-
centrates on np scattering. Since the vertex H, is similar
to the isospin symmetric vertex Ho in its spatial structure
and since class III interactions are similar to isoscalar in-

teractions, one can see that in second order of also nor-
mal charge-independent pion exchange one should get an
induced effective spin-orbit force from box diagrams, al-
though this is in no way apparent in the basic interac-
tions. This has been demonstrated elsewhere, for exam-

ple, in the spectacularly large polarization in pp scatter-
ing due to the very strong tensor force of the T=O XX
interaction [27].

D. Propagators

FIG. 7. Possible contributions of the CSB vertex H, [see Eq.
(4)] to TPE involving the Nh intermediate state. CSB can take
place only in the nucleonic vertices.

Now we turn to the nonrelativistic propagators. In the
static limit for the baryons it is very straightf'orward to
see that the sum of all propagators in Fig. 4 reduces to
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E E—
), =(E Ep+q—)+(E—Ep g) (26)

is valid, where 2E is the total incident c.m. energy, E
the intermediate nucleon energy, and E the 5 energy. As

the form —(co&cozhM ) ', where bM is the mass
difference between the 6 and the electron. With the nor-
malization factors of the pion fields this gives a result
which is exactly as if a normal OPE (with range p ') had
been iterated with an intermediate state of the excitation
energy E,- —E=6M. In fact, even the static limit is un-

necessarily restrictive and can be extended to an accuracy
to which the approximation

compared with the mass difference of the nucleon and the
b, ( = the first term} the last term can often reasonably be
ignored in an integration over k. Due to this property of
the propagators it is convenient to perform the division
(14) into a term which can be calculated by iterating the
transition potential plus a potential term. Of these, the
first one can be expected to have a strong energy depen-
dence around the 6 threshold and is treated exactly by
coupled channels. The second one depends on the energy
more smoothly and is developed as a two meson ex-
change potential at the NN threshold.

The propagators can be explicitly written as sums of
the energy denominators of different time orderings

Dg= 1 + 1

(E E) —coq}—(2E E, E—
( )(E—E, c—o()— (E E( —c—oq)(2E E( E—, )(E—E) c—o—))

+ 1 + 1

(E E i
—co—~)(2E E, E—

) )(E—E i co—i ) —(E E, —co—~)(2E E, E—, )(E—Ei co—
i
)—

(E E, —coq—)( co, coq—)(E—E, coi—)—
1 1

(E E) —coq—)( —co, —a)q)(E —E) co)) —4~)~p
(27)

Dc
1 + 1

(E E, —co~)—(2E E, Eq —co, —co~—)(E —E( co—, ) —(E E, —co~)—(2E E) Eq ——c0) ——coq)(E —E~ —a)q)

+ 1 + 1

(E Eq —a)) }—(2E E( Eq —
co) —co—q)(E —E) c0)) —(E—Eq —co) }(2—E E) Eq ——

co) co~)(E——E~ coq)——

1 + 1 1

(E E, —co~)( co)
—co—~}(E E—

~ coq) —(E—E) —co))( —co) coq)—(E —E) —co)) —4(~p

if each nucleon is assumed to carry the energy E in the
external states (i.e., the elastic situation). Here the nu-
cleon and meson intermediate energies are

E, =+M +(p —lc), co&=+p +(lc—q/2)

Ez ='t/M +(p+lc), co@='t/p +(lc+q/2)
(2g)

(29)

Partial potentials are calculated similarly using the same
conventions.

To calculate the angular dependence correction to the
box diagrams, the intermediate energies E; and E; are ex-
panded in powers of k-p keeping only two lowest orders.

The analogous b, energy is denoted by E; (i =1,2) and
has the 5 mass instead of the nucleon mass. In spite of
the nonrelativistic perturbation theory, the energies can
be taken as relativistic. Except for the purpose of deriv-
ing the form of one part of the interaction in terms of
iqXp in Sec. II C, the external kinetic energy E is omit-
ted in the calculation of the propagators. (Note also that
in this limit p~q/2 and iq Xp~0, as it should, because
it represents the orbital angular momentum. ) The total
potential in the momentum presentation is then obtained
by calculating the integral

The correction to each factor of a given time ordering
term is —k p times this factor multiplied with the sum of
the inverses of the appropriate energies included in this
factor. So, for example, the first term in the box propaga-
tor becomes in this way

1 1
D~I~D~) 1 —k p E) E E) co

+ +1 1 1

E& E E& E]

1 1

E E—E —co1 1 1

(30)

Angular integration with the numerator (23) gives then
the result (24) and (25) for the effective CSB potential.
The above additional correction term in the square
brackets is what was symbolically denoted by e and is ac-
tually part of the propagator resulting also in different ra-
dial dependence.

When the energy dependence is essential, especially
near the NA threshold, the coupled channels approach
can be used. This amounts to coupled Schrodinger equa-
tions of the type
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( V—/M+ Viv~ E—)%'~~= —V

( V—/2M„d + VNa+ b, M—E—)%~~= —V„%'~~,

(31)

where M„d =Md, /(M+6, ) is the Nb reduced mass. The
transition potential V„contains in addition to pion ex-
change also p meson exchange. Apparently the energy
dependence of the Nh propagator is closely related to the
energy vs the mass difference 6—M in the second equa-
tion. Pionic inelasticities can be handily incorporated by
inclusion of the 5 width making its mass complex [28].
In partial waves the centrifugal barrier can be different
for different Nb states coupled to the same NN initial
state, causing, e.g., isospin breaking also for the type H,
CSB vertex as was found earlier in Ref. [24]. As noted
above, the total sum of all the propagators would corre-
spond to a second-order iteration of the OPE transition
potential V„at least in the static baryon limit. However,
since the numerators are not the same for the crossed and
box diagrams, a modification is necessary as shown in Eq.
(14). In principle, the effective potential could be com-
puted for finite energies. However, the use of such an
energy-dependent potential would be cumbersome, since
it should be computed for each energy as a three-

dimensional integral. Clearly the coupled channels
method is preferable as a way of introducing energy
dependence. In the low-energy limit the two methods
were shown to give numerically similar results. As a
bonus the coupled channels give the explicit Nh wave
function for use in reactions etc. , when there is an exter-
nal probe on the details of the baryon wave functions.

Finally, it may be noted that since the charge is con-
served, in the quark model the overall mass of the inter-
mediate state M&+M& remains independent of the indi-
vidual charges of the b, or the nucleon (i.e., the number of
u and d quarks is constant). This means that the total
mass difference between the NN and Nh states is charge
independent and does not cause isospin breaking. It is
the charge dependence of the individual baryon mass at
the meson-baryon vertex considered above that breaks
the isospin symmetry. Further, in the case of neutron-
proton scattering one of the baryons is always neutral, so
there is no long-range Coulomb interaction adding to the
propagators. Therefore, the propagators themselves do
not break charge symmetry. Also any isospin breaking
interaction in the Nh intermediate state can be neglected,
because the only isospin change could be from T= 1 to
T=2 states, which would require another isospin violat-
ing interaction to connect to a two nucleon state. So it
can be concluded that it is sufficient to consider only the
CSB mechanisms introduced to the numerator in the pre-
vious subsections.

eluding the intermediate state baryon energies but still
neglecting all external energies. Figure 8 shows the iso-
bar contributions to the class IV CSB interactions in the
static model. Both the part treatable by coupled channels
and V„, are calculated at the initial zero energy. The
solid curves are the result of numerical integration and
the overlapping dotted lines are fits with functions of the
type

B2
V(q)= A

2 +q
2 C2 + 2

n

(n=0, 1,2) . (32)

p2 2

F(q) =
A +q

(33)

is included in each pion-baryon vertex. [However, to
avoid superficial normalization factors in the results of
Table IV the normalization with A in the numerator,
i.e., F(0)=1, is used. ] The value of the cutoff mass A is
taken to be 1000 MeV. This is a reasonable compromise

E
—5)

—15)

Since the fit is so good that it cannot be distinguished
from the exact results, apparently the two-pion exchange
potential (TPEP) can be well approximated in the coordi-
nate space by a single Yukawa function modified by a
monopole or dipole form factor. This is a significant
simplification in numerica1 calculations, when TPEP is
used. The irreducible TPE with nucleonic intermediate
states can be parametrized similarly.

Table IV gives the results of this fitting for different
potential components with the notation
V;(j)= f [d k/(2~) ]O'D/ (The c.oupling constants and
other coefficients are not included in these fitting parame-
ters. ) The potentials Vo(j) (and V2 for the angular
correction), which in the present context appear with an
additiona1 factor q, were fitted with this as a weight
function. The values of the masses B from unweighted
fits are generally 5% lower and the form-factor masses C
5 —7% higher, so the results are not excessively depen-
dent on the fitting procedure. Also V4 is given for com-
pleteness, since these ingredients can be used to build a
class III or isospin symmetric TPEP. Furthermore, it
should be added that in this calculation also a monopole
form factor

III. RESULTS

The two-pion exchange potentials described in Sec. II
are calculated in the momentum space in the static ap-
proximation, where all baryon energies are neglected.
Also some results are given to show the possible influence
of nonstatic effects, by calculating the TPE potential in-

—35 I I

2 3
q (fm ')

FIG. 8. Contributions from different isobar effect parts to the
class IVa and IVb CSB potentials in the momentum space.
Here "box" means the first term of Eq. {14),which can be ob-
tained by iterating normal pionic transition potential.
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TABLE IV. Parametrizations for potentials V;(j) as described in the text. Here in the form factor n =2 for Vp and n =1 for Vz,
whereas V4 has no form factor. All A's are given in the units of MeVfm ' and B's and C's in fm '. These need the appropriate
coupling constants and other numerical factors shown in Eqs. (18)—(26) to make the actual physical potentials.

A=1000 MeV
NA cross
Nh box
NN cross
NN "long"
Angle

Ap

—1.426
—3.021
—3.905
—1.310

Bp

1.973
2.267
1.689
1.604

Cp

6.411
7.577
6.005
5.313

A2

—2.368
—7.200
—4.861
—1.624
—2.715

B2

3.200
3.745
2.830
2.603
3.788

C2

8.635
9.468
9.228
6.707
8.184

—14.60
—66.80
—23.51
—8.007

—22.56

B4

4.786
5.384
4.720
3.715
5.257

A=790 MeV
Nh cross
Nh box
NN cross
NN "long"
Angle

—1.280
—2.635
—3.579
—1.195

1.909
2.113
1.660
1.605

4.997
5.828
4.680
4.201

—1.722
—4.773
—3.729
—1.244
—1.884

2.837
3.222
2.515
2.399
3.276

6.079
6.831
6.250
4.721
5.905

—7.682
—30.28
—13.25
—4.506

—10.65

3.774
4.260
3.664
2.969
4.131

Nonstatic
A=790 MeV
N Across
N4 box
NN cross
NN "long"
Angle

—1.113
—2.052
—2.970
—1.056

1.866
1.901
1.594
1.525

4.039
4.479
3.493
3.726

—1.290
—2.620
—2.549
—0.961
—0.832

2.842
2.642
2.372
2.213
2.230

3.870
5.210
3.533
4.056
5.034

—4.852
—10.13
—7.261
—2.949
—2.112

2.909
3.283
2.550
2.610
3.085

between soft [29] and hard [30] form factors of 700—800
and 1200-1300 MeV, respectively, and will be given fur-
ther justification as giving the correct NN~NA transi-
tion potential strength in pion production. From the
table it is immediately seen that the range of the TPEP is
somewhat longer than that of vector mesons, making it
potentially important if the effective couplings are strong
enough.

The solid curves in Fig. 9 show the contributions of the
Nh mechanism to the CSB TPE interaction in the coor-
dinate presentation. Since class IVa and IVb potentials
become comparable outside 1 fm, at low energy y& should
become negligible because of cancellation, whereas y2
remains large. In addition to the isobar effects, Fig. 9
presents also the irreducible CSB TPE potential arising
from the nucleonic time orderings which are not obtained
simply by iterating the OPE (dashed curves). The
effective charged exchange is nearly as important as with
6's. A specific note may be in place about the sign
change of the two IVb potentials. Formally one would
expect the terms proportional to k and q in Eqs.
(18)—(22) to add constructively, because operating on a
Yukawa function q should give just a factor —Bo.
However, the dipole form factor in the potential Vo is so
strong that it dominates this term inside the OPE range,
causing strong cancellation of the two terms and chang-
ing the sign of the class IVb potentials at 0.8 frn. The
strong effect of the form factor may be the reason why
the nucleonic contribution here is significantly larger
than that obtained in Ref. [6], where the two class IV in-
teractions nearly cancelled each other at the crossover
angle. The corresponding term in the potential derived
from the angular correction [Eq. (24)] has only a mono-
pole form factor of shorter range and is also proportion-

ally smaller, so that this class IVb potential remains
significant at intermediate ranges. For comparison also
the OPE contribution is shown (dotted curve). Inside
about 1 fm radius the TPE potentials become significant
and should be given serious consideration at medium and
high energies.

Table IV shows also the potentials using the nonstatic
model results and for a softer form factor with A=790
MeV. It can be seen that, although the general features
are the same, the intermediate baryon energies may play

100

)
0

—50
0.4 0.6

I

0.8
r (fm)

1.0

FIG. 9. The TPE contributions to the class IVa and IVb CSB
potentials in the coordinate representation. Solid lines: the iso-
bar contributions as in Fig. 8. B refers to "box" and R to "re-
sidual. " Dashed lines: the nucleon intermediate states not ob-
tained by iterating OPE. Chain line: the contribution from the
isobar box angular correction as discussed in Sec. II C2. Also
shown is the class IV OPE CSB potential of Eq. (7) (dotted line).
All class IVa potentials remain positive, while those of class IVb
become negative at short distances.
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a significant role. Especially in the cases where a power
of k is involved in the phase space integral, the nonstatic
result differs from the static one, since high momenta are
weighted and baryon energies cannot be neglected. One
feature of these results is that the range in the present
nonstatic model is longer than in the static model (the
mass parameters 8 are smaller). This is somewhat unex-
pected since with the intermediate baryon energies the in-
termediate states should be further off mass shell. How-
ever, the longer range arises from the faster decrease of
the propagators in this case, while the larger energy
denominator is rejected in the smaller overall strength.
Since the inclusion of baryon energies opens many new
questions (e.g., nonstatic eff'ects in exchanges of one
meson) and difFerent possible approximation schemes
(this model of omitting all external energies in both the
initial and the final state being just one), in the present
calculations the static model is conservatively used, with
this nonstatic result given only as a precaution and for
completeness.

The isobar TPE contributions of the "box" type to the
mixing parameters y, and yz are shown in Fig. 10. The
solid curve is the part of the static model potential due to
the isobar intermediate states that can be calculated by
iterating the NN~NA OPE transition potential of nor-
mal range [the first term in Eq. (14)]. Its behavior for
partia1 waves with its sign alternating with J is similar to
one-pion exchange, but an order of magnitude smaller.
In all these TPE potential calculations the Reid soft core
potential [19] is used to generate the two nucleon correla-
tions.

In the following calculations the energy dependence
will arise naturally in the coupled channels treatment of
the dominant part of the TPE interaction, but would be
clumsy to introduce into a potential. Since only crossed
propagators appear in the residual interaction, its energy
dependence is presumably much weaker than that of the
box diagrams and is neglected. As a numerical test of the
possible equivalence of the iterative boxlike potential of
Eq. (14) and coupled channels, Fig. 10 shows a compar-
ison of this contribution to the mixing parameters y &

and

yz calculated also by way of coupled channels in addition

to the approximation by a TPE potential Ns(Ds+Dc)
computed at the zero energy. The agreement between
the two methods at low energies (dotted vs solid curves)
suggests that the potential approach is reasonable and
should be even more reliable in the less energy-dependent
residua1 interaction. At high energies the coupled chan-
nels results are significantly larger than the correspond-
ing energy-independent TPE potential would give. The
reason for this deviation is mostly due to the inhuence of
the Nb, threshold. Also the interaction (Reid soft core
potential modified to counteract the channel coupling
efFect on the phase shifts) was made phase equivalent with
the original Reid potential only at 100 MeV, and the
width of the Nb state is included above pionic inelastici-
ty threshold. The dotted curve presents the real part of
the mixing parameter, which becomes complex in the
presence of inelasticities [24]. In the present case (02)
the imaginary part is sma11, since the operator SI Xo.z L
cannot connect NA states with lower I. than in the initial
state. The actively participating intermediate states are
not favored in the transitions.

The situation is very different with the tensor transi-
tion potential part of V„of Eq. (10), which can arise
from the use of both the charge-independent couplings
and the CSB vertex H, . With this a high orbital angular
momentum initial state can get to a low I. NA state. At
the distance of 1 fm, most relevant for strong interac-
tions, the gain in the centrifugal barrier energy can be
comparable to the mass difference, resulting in an
enhanced NA amplitude around this distance. Examples
of transitions particularly important in the NN interac-
tion are 'Dz~ Sz, F3~ P3, and '64~ D4 "di-
baryons. " Section II C 2 indicated that this could be ac-
counted for by a correction in the angular dependence of
the propagator. Figure 11 shows now a comparison of
mixing parameters for P waves (dashed curves) and D
waves (solid curves) using the class IVb part of the poten-
tial (25) derived in Sec. II C 2 vs the coupled channels re-
sults. Again at low energies the two methods give quali-
tatively similar mixing parameters, while at and above
the 5 threshold the coupled channels result is qualitative-
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FIG. 10. The real parts of the mixing parameters y& and y&

arising from H& and H2 with Nh excitations calculated by cou-
pled channels (dotted) and by the corresponding zero energy
box potential (solid).
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FIG. 11. Contributions to the mixing parameters y, (dashed)
and y2 (solid) arising from the Hl vertex in the box diagrams of
Fig. 7. The smaller ones are results from using the class IVb
part of the potential (24), whereas the larger ones are obtained
from a coupled channels calculation (the real parts of yJ are
shown).



45 CHARGE SYMMETRY BREAKING TWO-PION EXCHANGE 2661

ly larger. However, now it is important to remember that
the figure shows only the real parts of coupled channels
results. The S2 and P3 N4 amplitudes go through a
rapid resonancelike variation around their respective
effective thresholds [31], and the imaginary parts are
comparable to the real parts [24]. Quite apparently also
this effect must be included in the consistent evaluation
of TPE effects in charge symmetry breaking.

In the following calculations the coupled channels
method will now always be used to treat the iterative part
of the isobar contribution, and the effects of V„, and non-

iterative nucleon states will be added to the coupled
channels results. Furthermore, also p exchange will be
included in the isospin symmetric transition potential, so
that equivalence of the pion box potential and coupled
channels can no more be expected.

In the above consistency checks the diagonal NN in-

teraction of the coupled system was the usual Reid soft
core potential simply adjusted at intermediate range to
produce the same phases at 100 MeV as the original. In
the final calculations a better overall fit is used with also
some short-range modifications added in both isospin
states. To be precise, using the Nh transition potential
defined below the corrections to the Reid potential in the
most important partial waves are (in MeV}

7p, f
+ 18 000

3pf
hV( P, )=—150

pr
2pp

b, V('P, ) =20 e
—6pr—3100

3@p

b V('D )=230
7IJ,P

+8000

(34)

pr
3pp

b, V( D2)=20
r

pr
7p, f

+ 1500

In this way the J=L phase shifts of the energy-
dependent analysis of Ref. [32] can be reproduced to
within three degrees over a wide energy range —only 'Dz

gets too attractive above about 700 MeV. However,
these potentials are only used to give the distortions of
the wave functions to calculate the mixing parameters
yz. The strong interaction amplitudes of Ref. [32] are
otherwise used to avoid introducing unessential theoreti-
cal error sources. As described in Ref. [8], the long-
ranged OPE is subtracted in partial wave amplitudes and

added back into the overall angle-dependent spin ampli-

tudes to avoid truncation effects on the partial wave ex-

pansion. Also all the calculated mixing parameters have

the relativistic correction factor [6] (M/Ez), where ET
is the total energy of a nucleon in the center-of-mass sys-

tem.
The form factors are important in the overall strength

of the transition potential. This can be fixed most con-
veniently and reliably by the height of the pion produc-
tion maximum at about 580 MeV in the reaction
pp ~dr+. Using for this the model of Ref. [33] with the
pNÃcoupling constants g /4~=0. 55 MeV and E =6.1

(Ref. [34]) it was possible to reproduce this cross section
with the above A=1000 MeV for the pion and A =1050

P
MeV for the p, not very far from the pion value but

significantly smaller than the Bonn potential fit [30].
However, this is quite gratifying in that the p does not see
a different nucleon than the pion, and is also consistent
with the proton electromagnetic form factor. No poten-
tial is inserted for the diagonal Nh interaction V~&.

Figures 12 and 13 show the final TPE mixing parame-
ters y, and y2 and their composition of different contri-

butions as a function of energy. The dotted curves are
the results of the coupled channels Nh calculation only,
analogous to (but not the same as} the dotted curves in

Fig. 10. The residual interaction turns out to be about as

important at low energies due to its long range and the
large factor in Eq. (20) vs the factors in Eq. (18). At short
distances V„, changes sign, and this diminishes its effect

at high energies. It decreases y, , but enhances the value

of the negative yz, i.e., is a negative contribution in both.
Structurally this is similar to pro mixing, but again an or-
der of magnitude smaller and of opposite sign. The total
isobar effect arising from H2 and H2 is shown by the
dash-dotted curve. As expected previously, at low ener-

gies yl is quite small. The noniterative TPE with nu-

cleonic states is in turn similar to pion exchange, as anti-

cipated in the end of Sec. IIC1, and significantly in-

creases both yi and y2 (in the former largely cancelling
the effect of V„, and bringing the total essentially to the
same result as the iterative isobar contribution; dashed
curves}. The total sum of the TPE potential mixings, also
including the contribution from the HI vertex, is given

by the solid curve. This part shows the important
S2(NA) threshold effect in the energy dependence of y2.

In Figs. 12 and 13 also the onset of the imaginary part
is presented, since it is so closely related to the box dia-

grams with 5's. It is clearly seen that the imaginary part
gets contributions mainly from the direct coupling to the
Nh states. For the inelasticity, the isospin breaking ten-
sor interaction due to HI is crucial. As a curiosity, to
check the cancellation of the Nh effect under this in-

teraction, if the correlations had been the same in
different channels, the Lz was set to L=J in all Nh
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FIG. 12. The TPE contributions to the final mixing parame-

ter y&.. Dotted: Coupled channels result including 5's with the

vertex H2, dash-dotted: including also the residual interaction

(20); dashed: including also the nucleonic intermediate states;
solid: the total result, where also the transition potential arising

from H& is used in the coupled channels calculation. The
curves starting above 400 MeV are the imaginary parts, others

the real parts.
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FIG. 15. As Fig. 14but at 183 MeV.

channels. The result with more similar channel wave

functions was indeed suppressed by an order of magni-

tude as compared with the above results, which confirms
the conjecture presented in Sec. II C 2. Also inclusion or
omission of any one channel in this exercise caused order
of magnitude effects in the cancellation, even if a high an-

gular momentum state was omitted.
In Figs. 14—17 the TPE effects to the observable

b, A(8) itself are given. Figures 14—16 have these split
into various contributions as in Figs. 13 and 14. The cor-
responding energies are chosen to be the ones where there
are data available [2,3] or an experiment is underway [4].
The division into single contributions is made to facilitate
comparisons and combinations with other possible calcu-
lations of similar nature. Figure 17 shows the full TPE
effect at four additional energies. These results show con-
clusively that at low energies TPE CSB can be neglected.
It does not affect significantly the IUCF point at 183
MeV. However, it is an about 15% contribution at the
TRIUMF energy 477 MeV and about 10%%uo at 350 MeV.
At higher energies also TPE is significant, though smaller
than the dominant mechanisms. The reason for the rela-
tive smallness of TPE is that out of the four different con-
tributions, roughly equal in magnitude, in y, two pairs
come with opposite signs. At the zero crossover angle of
A(8) this parameter is most decisive. Without this de-
structive interference the effect could have been twice as
large. Outside the zero crossing angle (especially in the
forward direction) the TPE contribution to b, A is rather
large.

Because the effect of TPE could, in principle, be larger
than the result obtained above at the zero crossing angle
(also indicated by the fact that outside this angle the con-
tribution to b A is significant) a check of the dependence
on the form factor is worthwhile. For this purpose the
potentials with A=790 MeV of Table IV were used in a
coupled channels calculation. The isospin breaking tran-
sition potential had also the same form factors, but the
stronger isospin symmetric one was kept as it was before.
In spite of an apparent inconsistency at this point, physi-
cally there is little point to change the latter much, since
its strength is dictated externally by the reaction
pp —+d m+. At intermediate energies the effect was to
lower the TPE contribution to b, A by 20—30%%uo, while at
low energy (183 MeV) this came down by a factor of 3.
The angular structure remained the same. Therefore, no
qualitative change to the previous conclusions became
necessary. Making the form factor harder would ap-
parently effect the opposite way, except that the low-
energy result would not change as drastically. Since the
latter is so small at the crossover angle, the TPE effect
remains still negligible at low energies. As observed also
in Ref. [8], varying the form factors cannot qualitatively
change the angular distribution and the forward max-
imum does not move towards the angle where experi-
ments are possible.

Finally, in Fig. 18 is a study of the angular distribution
of AA. Due to measurement uncertainty in the ratio of
neutron to proton polarizations, b, A (8) can be extracted
from an experiment only to within a constant times
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FIG. 14. TPE contributions to the observable EA(0) at 477

MeV. Notation as in Fig. 12.
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FIG. 16. As Fig. 14 but at 350 MeV.
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FIG. 17. The total TPE effect on EA(6I) at four more ener-

gies.

A (8), as indicated in Eq. (1) [3]. In the face of this ambi-

guity, a meaningful comparison between theory and ex-
periment can still be made by considering the coefficient
of A(8) in Eq. (1) as a free parameter, adjusted to mini-
mize the variance of b, A(8) [3]. Effectively, this pro-
cedure determines a distribution b, A(8) optimally or-
thogonal to A (8) subject to the constraint (1). The same
method has been applied in Fig. 18 for the present
theoretical results at 183 MeV (Ref. [35]},using the same
angle range (68'—121') for the variance minimization as
was used to obtain the experimental results [3]. Here are
shown the results including OPE+y+p (model 1, dash-
dotted and dotted curves) and OPE+p+y+pco+TPE
(model 3, solid and dashed curves), the interest being in

the effect of the pcs contribution. The curves without
TPE at this energy are slightly lower in the forward
direction but qualitatively indistinguishable. The full re-

sult changes little in going from the true b, A(8} to the
minimum variance modified distribution, but in the OPE
result the change is more significant. The resulting full

distribution agrees well with the similarly treated data,
and is essentially indistinguishable from the one obtained
from the Bonn results [7] in Ref. [3]. In calculating the
CSB p and pro contributions, the full Bonn potential cou-

plings and form factors [30] are used, while the distorting
potential is the full coupled channels calculation as de-

scribed above.
Figure 19 shows a similar comparison of CSB effects

for the true b, A (8) and the modification due to the
minimal variance at 350 MeV. (Here, an angle range
48'-96', centered about the zero crossing angle at 350
MeV, has been used for the minimization. ) Now the
change of b, A (8) from the minimal variance in the case
of the total result is much larger than in Fig. 18 bringing
the distribution close to OPE (which in turn remains

practically unchanged). The reason for this large effect is
the nearly complete correlation of the pro effect with the
analyzing power A (8) itself at this energy, as was dis-

cussed in the Introduction. This shows that above, say,
300 MeV the only significant contributions to the
minimal variance modified angular distribution must
arise from class IVa forces, i.e., from charged exchanges.
The minimal variance result without TPE at this energy
would be about uniformly 0.0007 lower than the dashed
curve shown here. At this point it could be added that
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FIG. 18. The true and minimal variance modified angular distributions of EA(L9) at 183 MeV. 1 refers to OPE+y+p contribu-

tions, 3 to the total of all (OPE+p+ y+ pro+ TPE). The data are from Ref. [3].
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the program scoRE [36], used in these calculations for
Figs. 18 and 19, does not allow for inelasticity even in

charge symmetric NN amplitudes (which is included in

all other results of this paper). Since this program has

been widely used in recent theoretical work on CSB [6,9]
and also some other work [7] is elastic by construction,
the neglect of inelasticity above the pion production
threshold deserves an explicit study [37].

IV. CONCLUSION

In summary, a systematic study of class IV CSB in
TPE has been made including both the NN and Nh inter-
mediate states. It can be seen that the energy dependence
in the box diagrams is rather crucial and apparently a
coupled channels treatment of the effect is preferable.
However, far below the Nh threshold an energy-
independent TPE potential is found to be a reasonable
approximation to the more exact approach. A division
into two parts, in one of which the coupled channels
method is applicable and the other a residual interaction
with its propagator as in crossed diagrams, was intro-
duced and employed in the calculations. In the particu-
lar case of class IV interactions the residual part was not
small. This approach can be applied also more generally
in charge-independent interactions and in the case of
class III CSB [38]. A practical parametrization of TPE
potentials is given in Table IV.

TPE does not change earlier interpretations of the
available two data points at 183 MeV and at 477 MeV.
The latter is dominated by OPE and the error limits are
wide enough to allow the present 10—15 go TPE contri-

bution to be added. At the lower energy TPE is negligi-
ble as compared with OPE, pro meson mixing, and y ex-
change. The proposed TRIUMF experiment at 350 MeV
would be about intermediate also in the importance of
TPE. The smallness of the effect is partly due to cancel-
lations between individual contributions of roughly the
same size. From the formalism of Sec. II C one may ex-
pect the NA effect to be of equal importance as TPE with
nucleonic intermediate states (calculated in Ref. [16]) in

the case of class III, but still an explicit calculation
should and could easily be done for the difference of the
singlet scattering lengths b,a =a —a„„[38].The formu-
las in Sec. II C and the parametrization of TPE potentials
in Table IV can also be used as a starting point for calcu-
lating CSB in nuclei.

This work has evaluated one group of contributions of
potential importance to CSB as a precaution in interpret-
ing the data. There are other effects which also have a
long range and should be incorporated for consistency.
The mixing of the pion and the g meson gives rise to
similar transition potentials as the vertex H, does [20,24].
This can be considered as long ranged since basically the

q acts as if it were a soft form factor in OPE. The tensor
coupling will be important in the mixing of the D states
around the b, threshold energy. Reference [24] treated
only box diagrams which appears justified, since the effect
is formally similar to that arising from 0, discussed in

Sec. II C 2, and so the crossed box contribution should be
expected to be zero. However, the gNN coupling con-
stant remains a great source of uncertainty in this effect.
Another long-ranged effect is the combined pion and y
exchange. It has been shown to be significant in the cases
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of the isotensor interaction [16], giving 20% of the

scattering length difference b,a =(a~~+a„„)/2—a„~, and

of class III CSB interaction [39],but has not been studied

for class IV forces. Further work on this contribution is
needed before CSB in np scattering can be said to be un-

derstood. This need is even more compelling, if one con-
siders the possibility that pro mixing is strongly different

for off-shell meson exchanges as compared with isospin
violating on-shell decays or formation of p and co mesons.
Recently a simple quark model based calculation of Ref.

[40] suggests that due to this effect the pro mixing poten-
tial would be negligible in practice.
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