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Hyperspherical approach for the trinucleon system with hard-core potential

T. K. Das* and H. T. Coelho
Departamento de Fisica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil

J. R. A. Torreao
Departamento de Informatica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil

(Received 10 December 1991)

In this work we present a method for solving the hard-core (HC) three-body problem by the hyper-
spherical approach. We restrict ourselves to the totally symmetric S state of the dominant trinucleon
system interacting via a central spin-dependent HC potential, but the method can be generalized to in-

clude other states.

PACS number(s): 21.45.+v, 21.60.—n

I. INTRODUCTION

The few-body problem has been an area of intense ac-
tivity in nuclear physics for the last three decades. The
interest is mainly due to the fact that the few-nucleon
problem can be solved essentially exactly and vital infor-
mation about nuclear interaction can be inferred from
such calculations. The most widely used theoretical ap-
proaches to solve the few-body Schrodinger equation are
the Faddeev [1] or Yakuboviskii [2] equation methods
and the hyperspherical approach (HA) [3]. In most of
these calculations, the nuclear potential chosen has a soft
core (SC); i.e., it goes to infinity gradually as the interpar-
ticle separation goes to zero. However, only sporadic and
feeble attempts have been reported so far in the literature
to solve the three- or four-body problem interacting
through two-body hard-core (HC) potentials. A hard-
core potential is one in which the potential becomes + ac,
whenever the interparticle separation is less than the so-
called hard-core radius r, The so. lution [4] of the two-
body problem interacting via HC potentials is quite
straightforward and is easily solved. However, the situa-
tion becomes much more complex even for the three-
body system. In this case each of the three interparticle
separations must be ~ r, for the total wave function to be
nonvanishing. Imposition of a similar restriction for the
two-body problem only restricts the scalar radial distance
(r&2) independent of the orientation (r,2). Hence the
problem reduces to a differential equation in one variable
where the r, 2 space is restricted to the interval [r„~].
However, for the three-body problem, the wave function
vanishes whenever any of the pair separation distance
r," ~ r, (i,j = 1,2, 3 cyclic). Naturally, then, the boundary
conditions become very involved and difficult to handle.

In this paper we propose a method for solving the
three-body Schrodinger equations by the HA method
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when the particles interact via HC potentials. The HA
has been widely used [3,5] for the three- and four-body
problems interacting via SC potentials. But, to our
knowledge, little effort has been made to solve the three-
body problem involving HC potentials, although the HC
potential is of considerable interest in physics. In partic-
ular, it is well known that the two nucleon shows a hard-
core behavior as demonstrated by standard potentials
such as Hamada-Johnston [6] (HJ) or Reid hard-core [7]
(RHC) potentials. Because of the fact that the inclusion
of HC potentials for the three-body problem is very
tricky, one encounters such calculations only by varia-
tional or other approximation methods [8]. It is impor-
tant to note that the SC potentials have been formulated
in such a way that they reproduce the two-nucleon data
equally well. Thus, in the two-nucleon problem, there is
no special choice between SC and HC potentials. But the
situation is quite different in three-nucleon systems.

It has now been established that the three-nucleon
force [9,10] (3NF) plays a significant role in the trinu-
cleon system, accounting for about 15% of the ground-
state binding energy. Now the form of the dominant
two-pion-exchange three-nucleon force (m.rE-3NF), for
very short internucleon separation, is uncertain and a
matter of great speculation and controversy. The sim-
plest forms of mm. E-3NF, like that of Fujita and Miya-
zawa [11],have a very strong singularity, which goes as
r for r~0, where r is the hyperradius [5], and is at-
tractive for the most likely equilateral triangle
configuration of the trinucleon system. This makes the
Hamiltonian to be unbounded below, and there can be no
stable bound state. But the fact of nature is that stable,
bound trinucleon systems are well known. The reason for
this apparent fallacy is the fact that the 3NF is not
uniquely known for very short internucleon separations.
Attempts have been made to include the pion-nucleon
form factors in the derivation of the two-pion-exchange
diagrams [9,10] or to consider heavier-meson-exchange
diagrams to regularize the singular short-range behavior.
Interestingly enough, the ad hoc cutoff parameter intro-
duced to regularize the short-range behavior [5] agrees
closely with the hard-core radius of HJ [6] or RHC [7]
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potentials. However, one must admit that these are all ad
hoc in nature and the "correct" 3NF can never be known,
since it is impossible to include all possible diagrams and
all possible effects into account (such as quark structure
of the hadrons involved, for instance). But a little
thought will reveal that all these complications are al-
most totally redundant since the strong two-nucleon
short-range repulsion will not permit the nucleons to
come so close as to invoke more complicated diagrams
and processes (all higher-order diagrams involve heavier-
particle transfer and therefore shorter range). However,
the use of a soft-core two-nucleon force, when the nu-
cleons are treated as pointlike particles, will not forbid
the nucleons from coming close enough and producing
catastrophic effects due to the strong 3NF singularity.
Inclusion of form factors or heavier-meson-exchange dia-
grams effectively introduces "cutoff parameters" [e.g., the
A in Tucson-Melbourne (TM) [10] or Brazilian (BR) po-
tentials [9]]. A simple phenomenological approach [5] is
to cut off the singular 3NF below a "cutoff radius" ro and
replace the 3NF for r (ro by its value at ro. Although
quite crude and ad hoc in its appearance, this form is, in
practice, equivalent to the more sophisticated methods
for recalculating 3NF [9,10]. One should further
remember that the calculated ground-state properties
[binding energy (BE), charge form factors, charge radius,
etc.] are strongly dependent on the cutoff or smoothing
parameters (for all the alternative forms of 3NF), thus
making the calculations rather uncertain and incon-
clusive. A particular choice of the cutoff parameter (ro
or A as the case may be) may reproduce the BE [5,9,10],
but it is hardly justifiable or reliable, as is evident from
the calculated numbers. We have to keep in mind that
the introduction of a hard core in the forces is just a
mathematical device, not a physical mechanism. If one
introduces such a mathematical hard core, then the sensi-
tivity of the cutoff dependence of the 3NF will shift to a
sensitivity to the hardcore radius. However, the latter
can be determined by fitting two-nucleon data.

Clearly, the singularity of the 3NF will not present any
catastrophic situation when the HC potential is used, as
the interacting particles simply do not come close
enough. This is true for the simplest and highly singular
Fujita-Miyazawa form of 3NF. Most of the additional
effects of the sophisticated 3NF will, so to say, be hidden
behind the "hard core" and will produce little detectable
consequence. Thus a solution of the three-body
Schrodinger equation including the HC potential is of
great interest from the point of view of nuclear interac-
tions in addition to the inherent interest in facing the
challenge.

This is the motivation to propose a method for solving
the HC three-body problem by the HA method. In this
paper we restrict ourselves to the totally symmetric S
state of the trinucleon system interacting via a central
spin-dependent HC potential.

In Sec. II we present the theoretical method for incor-
porating the HC potential and the resulting equations to
be solved. In Sec. III we present the numerical results.
Conclusions are drawn in Sec. IV. An appendix is in-
cluded to clarify the methods used in Sec. II.

II. HYPERSPHERICAL APPROACH
FOR HARD-CORE POTENTIALS

In this work we adopt the HA for solving the
Schrodinger equation for three nucleons of mass m (after
c.m. motion is removed),

$2
(V„+V„)+V %(x,y)=Eq((x, y),

which is written, in terms of Jacobi coordinates,

x=r2 —r&,

y=(2/&3}[r3—
—,'(r, +rz}],

(2)

when r; (i =1,2, 3) are the particle coordinates, while

V=+;&, V; + IV is the sum of pairwise two-nucleon
forces (2NF's), g; & V,", plus the three-nucleon force W.
In the standard HA approach for SC potentials, 4 is ex-
panded in a complete orthonormal set of hyperspherical
functions [3]:

%(x,y}=g
Ea

ux (r)
Fx (Q),

T
(3)

where r =(x +y )', x=r sing, and y=rcosP
(0~/&@/2}. The symbol 0 stands for five angles,
namely, 0—= [x = ( 8„,$„},y = ( 8„,$ ), P ], where x and y
define the usual spherical polar angles of x and y.

The complete orthonormal set [Fx ] are given by

mgmp (R*) J
ST ~E (( ( )L M (4)

where I sz (R} are the orthonormal irreducible repre-
sentations of spin-isospin states for trinucleon system
have a total spin S and a total isospin T, their projection
being mz and m~, respectively, and which correspond to
a specific symmetry (R } under pairwise exchanges, and9'" ' are the hyperangular functions of conjugate repre-
sentation (R ') and are the part of homogeneous harmon-
ic polynomials of degree E (IC=0, 1,2, ... , 00) in six-
dimensional space. The label u stands for all the other
quantum numbers required to specify the system, involv-
ing five degrees of freedom contained in 0, namely
a= [l„,l,L,M]. For large values of K, the number of
independent hyperspherical harmonics (HH's) is very
large [3]. In order to handle numerically the three-body
system, one usually reduces the number of partial waves
involved in the expansion 4 to the minimum number of
significant terms by using the so-called optimal subset
[5,12]. That formally means the substitution
['(/(x" ']~[Px( '], where [Px( '] stands for the op-
timal subset (for the trinucleon system this condition re-
stricts E to even values). The wave function (p including
various symmetry components becomes
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(R)

%(x,y)= g ' [I zz (R)PK" '(Q)]J —1/2 .
Ka. R r

r2] =r~ —r] =x,

32 3 2

13=r3

3 1

2 2y ——x,

3 1y+ —x.

As r; ) r, (i,j, =1,2, 3), we have the following condi-
tions:

T

sing
)—,

T

—+—cos P+ p, sin(2$) )
4 2 4

2

Substitution of Eq. (5) into Eq. (1) and projecting it on a
particular HH, one obtains a system of coupled
differential equations [3]:

AK(AK+1)
,+, +s uK(~1(r)

dE' r

+ g (KaR ~v~K'a'R')uK" '(r)=0, (6)
R'K'a'

where AK=2K+L+ —,', s=( —ml1ri )~E~, ~E~ the trinu-
cleon BE, and v =(m/fi )[(V(2+V(&+ V2&)+ W]. The
matrix elements ( v ) contain spin-isospin operations be-
side integrals over the five angles, resulting in a function
of r.

When a HC-2NF, with a hard-core radius r„ is em-

ployed, the wave function vanishes for r; & r, (i,j =1,2, 3
cyclic). This can be incorporated in the structure of Eq.
(5) in the way to be presented below.

The interparticle separations are given by

where p=x-y. We should note that for SC interactions,
r, =0 and then 0 & sing & 1, as expected.

For illustration of our approach, let us consider only
the space totally symmetric S(L =0) state of the trinu-
cleon system, since its probability is about 90% of the to-
tal trinucleon wave-function probability.

Our ansatz for the HC triton wave function is

where PK('(0) is the HH basis function for the totally
symmetric S state (suppressing other conserved quantum
numbers for notation simplicity), I I/z'»z ( A) is the to-
tally antisymmetric spin-isospin wave function, and

O(r, (t1,p) O~(—r, 2 r, ) 8(—r 32r, ) O(r 31r ) .

The function 8(x) is the usual theta function defined as

1 for x)0,
8(x)= 0 for x &0 (12)

We introduce the theta function in Eq. (10) in order
that 45 vanish whenever any pair separation is less than
or equal to r„as required for the HC potential.

We would like to point out, however, that Eq. (10) is
more an ansatz for the wave function than a formal "ex-
pansion" of the wave function in a complete basis as the
hyperangular space is restricted by the 8 function [Eqs.
(11) and (12)]. However, the right-hand side of Eq. (10)
should be a good representation of the HC wave function

+s since this already satisfies the criterion that 4's vanish

whenever any pair separation goes to r, . Substitution of
Eq. (10) into Eq. (1) gives

+5( fI) 1/2 I/2 ( A)(3( g &/2 PK '(Q) 8(r p, p)
K

(10)

8 5 8 1 8 () l+— —— +4 cot(2$)
(3r r ()r r BP sin P

(2

cos P

uK (r)
+v+E g PK '(Q)8(r, g,p)=0,

P
(13)

where PK.' can be further expanded as [5]
K

p(0)(~) —y u( F00
1=0

(even)

(14)

where az are known coefficients obtained by symmetrization and are given by

l p ll ll 27T ll 2'
uK =+2i + 1&K P2K(0) +P2K + +P2K

3 3
P2K(0)+P2K + +P2K (15)

where

'(/K +3, K =3n
12K = — X +K —1, K =3n+1p 1 1

&3 K+1 &K+1, K =3n+2,
(16)
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and n =0, 1,2, .... Note that I is even since PK ' should be invariant under 1~2.
For the S state, the L =0 hyperspherical harmonic [3] P» ~1 (Q) is

&»,a(Q} g (l, m, I, —ml00) YI (x)YI, — (ym'2»(0} (17)

where

P" (P)=JV sin'icos'tI}P'+' '+'
( cos2$),

P„' (x) being a Jacobi polynomial and JV»~ the normalization constant [3] given by

4(K + 1 }(K—I)!(K+1+1)!
I (K+—') (19)

Substituting Eq. (14) into Eq. (13), multiplying the resulting equation from the left-hand side by P»' '(Q), and integrating
over d 0, we obtain

d 5 d 1 - - 1

z
+— +e

5&z gN»» (r)u» (r) +
&z g[v»» (r) —M»» (r)]u» (r)=0,

r r dr r K r
(20)

where

[K,K']
N»»(r)= ,' g a»—a» (21+1)f dp f sin icos Pdg[PI(p)] Pz'»(P)Pz'»(P)8(r, g, p),

1=0 —1 0
(even)

[K,K']
M»»(r)= z g a»a» (21+1)f dp[P~(p)] f dPPz'»($)8(r, g, p)[f'&' —4fz —l(l+1)Pz~»($)],

2/' I —0
—1 0

(even)

and

[K,K']
v»»(r)= ,' g a»a—» (2l+1)f dp[P&(p)] f sin icos PdPPz'»(P)vPzv»(P)8(r, g,p),

1=0 —1 0
(even)

(21)

(23)

where f, and fz are given in the Appendix. The symbol
[K,K'] means minimum of K and K'.

Calculating f', and f'z' explicitly, Eq. (22) can be fur-
ther simplified, resulting in a simpler expression for
M»». (r):

—1 4K(K+2)
v»» (r) = gv»» (r)[N (r)]»» +

z 5»»
Klt

(28)

( )
4K(K+2)

T
(24)

Equation (20) is a matrix equation for a given r If we.
define a column vector 4 as

we finally obtain

15
z

+
z

+s 4»(r)+ gv»» (r)4» (r)=0,
dy 4p K'

which has a form similar to Eq. (6}.

(29)

Nu =4 or u =N

we obtain

u» (r) = g[N '(r)]».»-c'»-(r) .
Ktl

Using Eq. (26) in Eq. (20), we obtain

(25)

(26)

III. NUMERICAL RESULTS

In order to solve Eq. (29), we need to calculate the v
matrix, which in turn is calculated in terms of the u and
N matrices. The 8 function in Eqs. (21) and (23) can be
used to change the limits of the double integration in
N»», (r), leading to

d 15
z + +s 4»(r)

dT 4P

+ $ [v»».(r) M»». (r)]$[N —'(r)]»,»., 4»., =0 .

K,K'

N»». (r)= ,' g a»(2!+ I)f —sin icos PdP
1=0

(even)
K'

Using Eq. (24) and defining

Ktt

(27}
XPz»(P)Pz». (P)

x f '
[ai(p)] dp,

P PI
(30)
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where

P, = sin '(r, /r),

3 ~c= sin (s), s= minn ——2—
p, = min[z(P), 1],

l"

z = — —+—cos (()—
i/3 sin(2$) 4

2 1/2

2

(31)

t.o

0.8--

0.6-

—Np, p
—N66

Ntp, ip

x ression is obtained .or Uxxf r U (r) by includ-
)i th it dof

. One can immediately ver-

—U (r ) +U 32( P32)+Ui3 r3ii e

I
= l, and using ethe orthonormality of P2x P an

& p,
Eq. (30) gives

04-

0.2-

N (r) =5++ for r, ==0.KK' (32)

resentative diagonal ele-

r, +4 fm, together with

ression for Uxx, (r) coincides with
e otential matrix for t ethe e p sio o po

Thus the basic requirements in
(21) (28), d (29).r =0 are satis e y

'
fied b the set of Eqs.

m with a suit-We have also checked o p m w
C

ur corn uter program w'

otential and r, =0; this repro uces e

rif that the minimum va ue o
d o h 112r which correspon s operradius r is 2r„

nfi uration of an equi atera r''1 1 triangle ofpermissible configura ion
x = =r [see Eq. . e. (2)] We calculate thesides r„so that x =y =,

'
t in the intervalN, U, and v matrice s at each r-mesh poin in

v'2r +15 fm. Ther being taken as r,
m E s. (30) and (31) quicklyN (r) matrix calculated from qs.

i/2r .froapproaches the unit ma rix
N ( r) are appreciablyThe diagononal elements of zz. r

h l%%u) only in the range
ihth

1(b moret an o

-dia onal elements is a oue -ig
li htl larger than r, .ccu svauesof sig y

1 11

dia onal elements of x-x r as a unc i

po t is for on y t e na
v'2r &r &V'2r, +4 fm, showing a magni e o

'

C

scale.
In Table I we present some re

ments Nzz ( r ) for i/2r &r & 2

0.0 I.O 2.0
r(fm)

5.0 40

values of K, forFIG. 1. Plot of «rN (r) for representative va

K,„=12.

—143.4exp[ —(r/1. 105) ]
2—43.0 exp[ —(r/1. 291) ],
2V (r) =880.0exp[ —(r/0. 4385) ]S

2—67. 1 exp[ —(r/1. 270) ]
2—21.0exp[ —(r/1. 620) ],

(33)

nal elebient forthe magnitude o ef the largest off-diagonal

N () «i id
increases and also becomes t e uni mvergence as K incre

f this work is not tofor r ) v 2r, +4 fm. Since the aim o i
ion but to investiga et the feasibilitydo a realistic calculat o,

ith a hard-core potentia, we c
1 th tof oft o [13]HC potential rather arbitrarily as t a o

given by

V(r) =
—,
' [ V, (r)+ V, (r)],

where
2V r)=1 0000exp[ —(r/0. 4303) ]

&2 +4 fm, together with theative diagonal elements of Nz~ r(r) for t/'2r, & r & r,g
magnitude of the largest off-diagonal element

r (fm)

0.524
0.624
0.724
0.824
0.924
1.474
2.474
3.474
4.744

LODE

0.10
0.14
0.17
0.20
0.18
0.061
0.036
0.021
0.012

Np p(r)

0.227
0.537
0.723
0.829
0.892
0.986
0.997
0.999
0.999

0.117
0.418
0.587
0.667
0.730
0.931
0.980
0.992
0.996

N6 6(r)

0.120
0.386
0.568
0.696
0.780
0.934
0.964
0.983
0.991

Ns, s(r)

0.128
0.395
0.620
0.734
0.805
0.961
0.969
0.982
0.990

Nlo, lo(r)

0.134
0.445
0.630
0.750
0.807
0.958
0.975
0.982
0.989
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TABLE II. Calculated binding energy.

+max

2
4
6
8

10
12

EAA

3.9738
4.2302
4.2784
4.2949
4.3143
4.3298

Binding energy {MeV)
UAA

3.9446
4.1798
4.2239
4.2398
4.2588
4.2744

with a suitable hard-core radius r, =0.3 fm.
Although this potential is not a standard HC potential,

we choose this mainly to test the convergence behavior of
our numerical calculation. %e prefer this potential over,
for example, the Afnan-Tang HC potential [14] (which is
purely attractive just outside the hard core) for the fol-
lowing reason. For a potential which is repulsive as
r, ~r, +5 [e.g., the potential of Eq. (33)], the change of
potential at r;J. =r, is less drastic as compared with that
for a potential which is purely attractive as r," ap-
proaches the hard-core radius. This leads to unstable re-
sults in the numerical algorithm adopted by us as r ap-
proaches &2r, for the Afnan-Tang (HC) potential, while
for a potential which is repulsive just outside the hard
core, the probability of finding the particles at such sepa-
rations is small and the numerical algorithm presents no

difhculty.

With the potential (33) we calculate the N and U ma-
trices by numerical double integration and v matrix by
Eq. (28) at each r-mesh point and then solve Eq. (29) by
the hyperspherical adiabatic approach (HAA} [5]. The
binding energies (BE's) calculated by both the extreme
and uncoupled adiabatic approximation (denoted, respec-
tively, by EAA and UAA have been presented in Table II
for various 1t.',„[eq ulato the truncated upper limit of
the K' sum in Eq. (29)]. It is clear that the BE ap-
proaches a convergence reasonably fast as K,„ in-
creases. A convergence in BE to be better than half a
percent is achieved with E,„=12. The exact BE is ex-
pected to be in between EAA and UAA values, since the
energy (E) satisfies an important inequality [15]
+E~ —E a t —EUAA. The smallness of lEU« —EE+A I

lends credence to the HAA procedure.
In Fig. 2 we plot the lowest eigenpotential [5] coo(r), in-

cluding the overbinding correction for E,„=12. Once
again, a convergence of coo(r} as K~,„ increases is clearly
demonstrated from our calculated numbers. The calcu-
lated coo(r) for K,„=2 to E,„=12are so close to each
other that they cannot be differentiated in Fig 2. Figure
3 is a plot of the ground-state hyperradial wave function
(which coincides with %o) for representative values of
E,„. The convergence is clearly demonstrated as E,„
increases. This wave function has the required behavior
that it vanishes as r~&2r, . One can reconstruct the
wave function 4 for any configuration from Eq. (10) us-
ing the calculated hyperradial wave function and known
hyperangular functions. Since the hyderradial wave

10.0.

(g (r ) I

(Mev)
I

I

O.O

-10.0--

"20.0--

-50.0--

5.0 10.0 15.0

FIG. 2. Plot of coo(r) for E,„=12. The two-body force is in-

dicated in the text. Curves for E,„&12 cannot be clearly dis-
tinguished in the scale used.

function goes smoothly to zero as r ~&2r„ the wave
function 4 will go smoothly to zero as r; ~r„and be-
cause of the presence of the theta function in Eq. (10), ql

will remain zero for all r,"&r, . This wave function has
the required behavior that it vanishes as r ~~2r, .

IV. CONCLUSIONS

Although the solution of the two-body problem in-
teracting via hard-core potentials is quite straightforward
[4,16], the corresponding problem for more than two in-
teracting particles is considerably more complex. In the
present work, we attempt to solve the three-body prob-
lem, interacting via pair wise hard-core interactions,
within the framework of the hyperspherical harmonics
expansion method by including a product of three theta
functions in the ansatz for the three-body wave function.
By an algebraic manipulation, the resulting system of
differential equations can be put in the standard coupled
differential equation form of the HAA method. For a
suitably chosen potential, we demonstrate that this calcu-
lation procedure converges fairly well and the calculated
wave function satisfies the physical requirements. This
shows that the calculation process is reliable and conver-
gent, giving credence to the ansatz proposed here. Al-
though the numerical algorithm is rather slow because of
the numerical double integration at each mesh point, this
method is a fairly straightforward and feasible one. The
method can be generalized to include the mixed-
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6--

4--

1.0
4Ãrc

5.0 5.0 7.0
r(fm)

9.0 11.0 15.0

FIG. 3. Plot of the ground-state hyperradial wave function for E,„=2and 12 showing the convergence of the wave function (re-
gion near &2r, is shown in an expanded scale in the inset).

symmetry and D states of the trinucleon, even though we
restricted ourselves to the space totally symmetric S
state.

ACKNOWLEDGMENTS

This work was partially supported by Conselho Na-
cional de Desenvolvimento Cienti'fico e Tecnologico-
CNPq and Financiadora de Estudos e Projetos-FINEP
(Brazilian agencies), and by the Departmental Special As-
sistance Project of the University Grants Commission
(India).

APPENDIX

where

f, =Pz'z((t ) sinz(() cos P,
f2=Pz'z(P)cot(2$) sin icos P,
X=P2~K(4)0(r 0 P)

Integrating by parts Eqs. (Al) and (A2), we obtain

I, = J'"f",Xdy,

(A2)

(A3)

(A4)

(A5)

(A6)

To obtain Eq. (22), we define

a2
I, = I f, Xdg,'

a(b'
(Al)

Iq= 4f —f'2X d(b .

The evaluation off", and f2 is straightforward.
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