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Variational wave functions with 4-isobar components are used to study trinucleon magnetic moments,

the Gamow-Teller matrix element of tritium P decay, thermal neutron radiative capture on 'He, and

low-energy proton weak capture on 'He. The 6-isobar components are generated by transition correla-

tion operators acting on realistic nuclear wave functions. These correlations are obtained from a fit to

exact two-body ground-state and low-energy scattering solutions for the Argonne v2, and v&8& interac-

tion models, which include 6-isobar degrees of freedom. Contributions of 5 isobars to electroweak

current operators appear at the one-body level in this formalism. Their effect on low-energy electroweak

transitions is significantly smaller than that obtained in perturbation theory analyses, where 5-isobar

effects are commonly subsumed into effective two-body current operators. The resulting theoretical

cross section for thermal neutron radiative capture on 'He is =86 pb, compared to an experimental

value of 55+3 pb; the astrophysical S factor for proton weak capture on 'He is predicted to be in the

range (1.4—3.2) X 10 MeV b.

PACS number(s): 24.80.—x, 21.45.+v, 21.30.+y

I. INTRODUCTION

The radiative He(n, y) He and weak He(p, e+v, ) He
capture reactions at thermal neutron and keV proton en-

ergies are interesting in that their cross sections are very
sensitive to the model used to describe both the ground-
state and continuum wave functions, and the two-body
electroweak current operators [1—6]. This is because the
single-nucleon electromagnetic or axial current operator
cannot connect the main S-state components of the He
and He wave functions at low energies. Hence in im-

pulse approximation the calculated cross section is small,
since the reaction must proceed through the small com-
ponents of the wave functions. However, the exchange
current operator can connect the S-state components,
and its matrix element is exceptionally large in compar-
ison with that obtained in impulse approximation.

Two groups, Wervelman et al. [4] and Wolfs et al. [7],
have recently measured the He(n, y) He cross section;
they quote values of 55+3 and 54+6 pb, respectively, in

good agreement with each other and with two earlier
measurements [8,9], although not with the smaller value
reported in Ref. [10]. The He(p, e+v, ) He cross section
cannot be measured in the energy range relevant for solar
fusion. The possibility that the small neutrino Aux asso-
ciated with this reaction (the Hep neutrinos) might be
detectable in the new generation of solar neutrino experi-
ments makes an accurate theoretical prediction highly
desirable [11].

Most of the previous calculations of the eH(n, y) He
and He(p, e+v, ) He reactions have been based on shell

model descriptions of the initial- and final-state nuclear
wave functions, and the Chemtob-Rho prescription [12]
(with some short-range modification) for the two-body

components in the electroweak current operator [1—4].
These calculations have led to contradictory results. For
example, in the radiative capture reaction, Towner and
Khanna [2] have found that the cross section is dominat-

ed by exchange current contributions, whereas Tegner
and Bargholtz [3], and more recently Wervelman et al.

[4], have found that these contributions provide only a

small correction to the cross-section value obtained in

impulse approximation. Furthermore, large differences

exist even between the impulse approximation (IA)
values: Towner and Khanna quote results ranging from 2

to 14 pb depending on whether harmonic oscillator or ex-

ponential wave functions are used to describe the He and

He ground states. However, Wervelman et al. quote an

IA cross section of 50 1Mb. These discrepancies are

presumably due to the schematic wave function models

used in the calculations.
In an attempt to reduce the uncertainties in the pre-

dicted values for both the radiative and weak capture
rates, we recently performed a fully microscopic calcula-

tion of these reactions, based on ground-state and contin-

uum wave functions obtained from a realistic Hamiltoni-

an with two- and three-nucleon interactions [5,6]. Both
correlation and initial-state interaction effects were thus

included. Furthermore, the main part of the two-body

electromagnetic current operator (denoted as "model in-

dependent") was constructed consistently from the two-

nucleon interaction model with the methods developed in
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Refs. [5,13,14]. The less-well-known electroweak
currents associated with the excitation of an intermediate
5 isobar, and the p~y and cue.y electromagnetic cou-
plings (denoted as "model dependent") were also includ-
ed. However, it was emphasized that their contribution
should be viewed as numerically uncertain, as very little
empirical information is available on their coupling con-
stants and short-range behavior. These studies showed
that both reactions have large (in the case of radiative
capture, dominant} contributions from two-body current
operators. Indeed, the calculated IA and total values for
the cross section of the radiative capture (astrophysical S
factor of the weak capture) were 6 and 112 pb
(5.8X10 3 and 1.3X10 MeVb), respectively. This
was in sharp contrast with results reported in the two
most recent shell model calculations [3,4]. Our results
also indicated that the common practice of inferring the
astrophysical S factor of the weak capture from the mea-
sured radiative capture cross section is bound to be
misleading because of different initial-state interactions in
the n+ He and p+ He channels, and because of the
large contributions associated with the two-body com-
ponents of the electroweak current operator.

The substantial overprediction of the n+ He capture
cross section obtained in Ref. [5] was unsatisfactory,
however. The "model-dependent" contributions, particu-
larly those due to the 6-isobar current, seemed unreason-
ably large. For example, the 5-isobar current contribu-
tion to the radiative capture was about 30 pb, or 27'l/o of
the total calculated value. In the present work the 6-
isobar degrees of freedom are explicitly included in the
nuclear wave functions, rather than being eliminated in
favor of effective two-body operators acting on nucleon
coordinates, as is commonly done in perturbative treat-
ments [2—6, 15—17]. Thus the present calculation is along
the lines of the coupled-channel approach of Refs.
[18—20] in the two-body system, and of Ref. [21] in the
three-body system. However, one- and two-b, com-
ponents are retained in the three- and four-body wave
functions, in contrast to Ref. [21], where the nucleon and
6-isobar Hilbert space was truncated at the one-5 level.

The correlation operator method is used to generate
the one- and two-b components. The NN~Nh or hN
and NN —+Ah transition correlation operators are ob-
tained from two-body ground-state and low-energy
scattering solutions for the Argonne v28 and v28& interac-
tion models [22], which have explicit b, -isobar degrees of
freedom, and fit the available NN scattering data at
E&,b ~400 MeV. The correlation operator method has
been shown to provide high-quality trial functions for use
in variational calculations of light nuclei with nucleon de-
grees of freedom [23]. It is reviewed and generalized to
the case of 5-isobar degrees of freedom in Sec. II. The
expressions for the N~A transition and 6-electroweak
current operators are given in Sec. III, while the calcula-
tion of the required matrix elements is discussed in Sec.
IV. The results for the trinucleon magnetic moments, the
Gamow-Teller matrix element of tritium P decay, the
thermal neutron radiative capture on He, and the low-
energy proton weak capture on He are presented in Sec.
V. Finally, a concluding discussion is given in Sec. VI.

II. THE CORRELATION OPERATOR METHOD

Here 4 is an uncorrelated spin-isospin wave function,
and the f'(r, ) are two-body spatial correlations which
keep the particles apart at short distances, to avoid the
repulsive core of the NN interaction, while at large dis-
tances they fall off to provide confinement. The U; are
two-body spin and tensor correlations,

U;J=u (r,j)rr; cJ~+u "(r;J)S;J(r;.r~), (2.2)

and S is a symmetrizer because the operators do not com-
mute. The f'(r; ) and u "(r;~) are shown in Fig. 1 for
H, He, and He. The U; generally have very little A

dependence.
The f'(r,"), u (r,"), and u "(r; ) are determined by

minimizing the energy. In practice it is very convenient
to relate them to two-body wave functions in 'So and
S

&

- D ] channels:

f( So,r)=[1—3u (r)]f'(r),
f( S„r)=[1+u (r)]f'(r),
f( D&, r)= —3&8u "(r)f'(r),

(2.3)

(2.4)

(2.5}

which are solutions of the two-body Schrodinger equa-
tions:

V' +u('So, r)+I('So, r) f('So, r)Pose=0, (2.6)
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FIG. 1. The f'(r) and u "(r) correlations for H, He, and
He with the Argonne U&4+ Urbana VIII Hamiltonian.

The correlation operator (CO) method has proven very
useful in the variational theory of light nuclei [13,23—27].
We will first briefly review the method used with only the
nucleon degrees of freedom, and then discuss its generali-
zation to include the 6-isobar degrees of freedom. In the
simplest version of the CO method the variational wave
function for light nuclei is taken as [24—26]

(2.1)
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FIG. 4. Comparison of exact and approximate two-body
wave functions in Po scattering at E1,b =10 MeV. Solid lines
are exact solutions for the Argonne v» interaction; dashed lines
are the approximate fit obtained with Eq. (2.12) using the transi-
tion correlations U;, and the exact %N for Argonne v14.

dashed lines in Figs. 2—4. It is important that the %z
used in Eq. (2.12) be proportional to the projected NN
channels from the full wave function for the v&8 interac-
tion, and in Figs. 2-4 it can be seen that they are indeed
very similar. In the case of the deuteron, the difference
between the u&4 and u28 solutions in the S& NN channel
is about the same magnitude as the smallest of the hh
channels, while the difference in the D& NN channels is
an order of magnitude smaller.

The transition correlation functions, which are shown
in Fig. 5, have been obtained by fitting the Nh and hh
wave functions in the deuteron, and in 'So, Po, and P&

scattering. The u "' correlation generates the large
D0 Nh component in 'S0 scattering, and is chosen to

exactly reproduce the D0 wave function. The u ""and
u' ' correlations generate the 'So and Dz hb com-
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The correlations u pT(r ) are also shown in Fig. 5 for the
Argonne U28 model, where the coupling constants are
such as to g~ve u ""=2U "' and U ""=2U "" hence

ponents in 'So scattering and the S&, D &, D &, and

G, hA components of the deuteron. We determine the
u and u" by an average fit to these six channels.
The u "' correlation only contributes in S=1,T=1
channels, and we obtain it from a fit to Nh channels in

P0 and P, NN scattering, with the other transition
correlations already fixed.

One can see in Figs. 2—4 that these transition correla-
tions acting on 4'& do a reasonable job of reproducing the
actual Nb and hh components. Another measure of the
accuracy is the extent to which the bound state or
scattering energy is reproduced, as shown in Table I,
where the energy components of the deuteron and 'S0
scattering state at E=0.5 MeV (E&,b= 1 MeV) is given
for both the exact wave function in the v28 model, and
the approximate wave function of Eq. (2.12). The NA
and h4 wave functions are truncated at 12 fm in these
calculations, and the integration in the scattering channel
is done to the same distance. The total energies and Nh
interaction energies differ by less than 10%.

The 5-isobar components in nuclear wave functions
are commonly estimated using first-order perturbation
theory, and neglecting the kinetic energies in the denomi-
nator. Such calculations are equivalent to using Eq.
(2.12) for the nuclear wave function with the components
of U, given by

-0.02

-0.04

-0.06

TABLE I. Comparison of energy contributions (in MeV) to
the deuteron bound state and 'So scattering at E1,b = 1 MeV, as
obtained with the exact wave function for the v» model, and
the variational wave function using the U;,.

"and %N for the v14
model. M, T, and V are the mass difference, kinetic energy, and
potential energy contributions to the total energy E. The
Vrest VNg gN+ VNg Ng+ VNg gg+ V

/
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FIG. 5. Transition correlation functions u ", u' " (solid
lines), u "", u' '" (long dashed lines), and perturbation theory
equivalents (short dashed lines); the peak value for upT" is
—0.27.

MN~+M~~
TNN
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VNN~Nh
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E

3.08
19.25

1.41
—16.27

—10.40
0.71

—2.22

3.01
19.10
1.48

—15.66

—10.62
0.69

—2.00

1.35
2.85
0.90
0.58

—4.80
—1.02

0.64
0.50

1.35
3.07
0.90
0.63

—4.99
—1.07

0.64
0.53



2632 SCHIAVILLA, WIRINGA, PANDHARIPANDE, AND CARLSON 45

u py
= u py, and u zz' =u ~z". The perturbation theory

estimates of the transition tensor correlations are much
larger than those calculated in the two-nucleon system,
while the transition spin correlations are somewhat
smaller.

In this work on three- and four-nucleon systems, the
wave functions +& are calculated for a Hamiltonian con-
taining the Argonne vi4 two-nucleon [22] and Urbana
VIII three-nucleon [23] interaction models. The latter
explicitly contains the two-pion-exchange interaction
with the b,-intermediate state, and a phenomenological
repulsive term to represent multi-pion-exchange three-
nucleon interactions [23—26]. The b, -isobar components
of the wave function are generated with the U; of Fig. 5

calculated for the two-nucleon system. We thus neglect
the A dependence of the U," which is presumably a
good approximation because the correlations are short
ranged, and the nucleonic u "(r, ) show very little
dependence. The A dependence of U;

" is also neglected
when first-order perturbation theory is used [2—6,15—17].
The present treatment of 6-isobar components in the
wave function of light nuclei is significantly better than
that using first-order perturbation theory, and we expect
the error in the present approach to be much less than
the difference between it and the perturbation method.

The NN~Nh and NN~Ah interactions are not too
well known. In the Argonne v28 model the long-range
transition interaction is assumed to be due to pion ex-
change. At short range this interaction is cut off with
factors that are the same for the NN —+NN, NN —+NA,
and NN~hA interactions. The published Argonne v&8

model uses the coupling constants f ~~/4n. =0.081,
f„z~ /4n =0.324 froin Chew-Low theory, and

f„zz /4m =0.003 24 from the static quark model. Note
that the Chew-Low value of ONE coupling is =9%
smaller than that extracted from the observed 6-decay

I

width, and that our results are very insensitive to f z~
We also have an unpublished phase-equivalent potential
with the same structure as Argonne vz8, but with the
quark-model value f zz/4m =0.233, which we designate
Argonne v2s& [22]. In the present work we have used the

U,j calculated from the Argonne v28 and vz8& models,
with the hope that the difference between the results ob-
tained with these two models may provide an indication
of the effect of the uncertainties in the transition interac-
tions.

III. ELECTROMAGNETIC AND AXIAL
CURRENT OPERATORS

We expand the electromagnetic or axial current opera-
tors into a sum of one- and two-body terms that operate
on the nucleon and 5-isobar degrees of freedom:

T, (q) = g T,'"(i,q)+ g T,' '(ij, q), (3.1)

T,"'(i,q) =
B,B'=N, b,

T, (i,q;8 ~B'), (3.2)

and is illustrated in Fig. 6. T, (N~N) is the standard
single-nucleon electromagnetic or weak current operator,
T, (N~b, ) and T, (b ~N) are the current operators as-

sociated with the N~h transitions, and T, (b, ~b ) is the
6-isobar current. The expressions for T, (N ~N ) are
well known and we have used those given in Refs. [5,6].
The expressions for T, (N ~b ) are given by

where q is the momentum transferred by the electromag-
netic (a =y) or weak (a =P) probe. The one-body term
is written as

T, (i,q;N~b)= .
exp(iq r, )qXS, T, ;, a=y,e

~PyNE

—g&~zexp(iq r; )S, T+;, a =P, (3.3)

where T+ =
—,'(T„+iT ); the expressions for T, (A~N)

are obtained by replacing the transition spin and isospin
operators by their Hermitian conjugates.

The transition magnetic moment pzzz is taken to be

3p~, as obtained from the analysis of yN data in the 5-
resonance region [30]. It should be noted that the present
value for p~~z is about 30'Fo smaller than that predicted
by the static quark model [31]. The value of the axial
coupling constant g&&z is not known, and in this work we
have used two choices. In the first the observed tritium P
decay is used to determine the value of g&&&, while in the
second g&zz =(6&2/5)g„as predicted by the static
quark model [31],with g„=1.262 being the nucleon axi-
al coupling constant [32]. It is worth mentioning that the
nucleon can also be excited to a 5 isobar via an electric
quadrupole transition, but the associated pion photopro-

I

duction amplitude is empirically found to be small at res-

onance [33]. In any event, the N~b, quadrupole (E2)
coupling cannot induce any of the transitions studied

here.
The expressions for T, (b, ~h) are taken as

FIG. 6. The current operators T, (N ~X), T, (N ~~ ),

T, ( 6~N ), and T, ( 5~5 ). Thin and thick lines denote nu-

cleons and 6 isobars, respectively.
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T, (i, q;b, ~4)=
.Pqaa
l

12
exp(iq r,. )qXX,.(1+8„), a =y,2' 7

—gIi~~exp(iq r, )X. ,. 8+, i, a =P, (3.4)

where X;(8;) is the Pauli operator for the b, spin (iso-
spin}, 8+= ,'(8—„+i8}, and the b,-convection current is

neglected. The b, + magnetic moment prinz is taken to
be 4.35pz, using the average of the values recently ob-
tained from a soft-photon analysis of pion-proton brems-
strahlung data near the b, ++ resonance [34]. For the b,

axial coupling constant we use the value g@,z= —5g~, as
predicted by the static quark model [31,35]. However, it
should be noted that the contributions to the electroweak
transition amplitudes associated with T, (b,~b, ) are
found to be small for the cases studied here, and hence
the final results are not sensitive to the assumed values of
p&a& and

In the present work we have used only NN~NN two-
body terms, and their expressions are given and discussed
in Refs. [5,6, 13,14]. The contributions to T~(NN~NN)
are separated into "model-independent" (MI) terms asso-
ciated with and determined from the NN interaction, and
"model-dependent" (MD} terms associated with the pay
and corny electromagnetic couplings. As the axial current
operator is not conserved, all the two-body terms
T&(NN~NN) are to be considered "model dependent. "
Note that the 6-isobar current contributions are now ex-
plicitly evaluated via T, (N~b, ). In previous work these
formed a part of the MD two-body terms. In principle
there are also two-body currents associated with the
NN~NA and NN+ hh transitions as illustrated in Fig.
7. However, these have not been included in the present
study.

The dominant MI terms are obtained from pseudosca-
I

IV. CALCULATION

In this section we discuss the evaluation of the matrix
element of the electroweak transition operator between
wave functions that include 6-isobar components:

&q'flT. /q';&

[&qf/qf &&q, [q, &]'" (4.1)

The initial and final states %„(x=i or f ) have the form
of Eq. (2.12). It is convenient to expand these as

iq„&=i+" &+ y U'Riq" &+ (4.2)

and the matrix element of the current operator becomes

lar and vector components of the interaction. For one-
boson-exchange (OBE) potentials these are due to m. and p
exchange. If the Argonne v, 4 and v28 models were OBE
potentials with identical meson-nucleon coupling con-
stants and form factors, these MI contributions to
Tr(NN~NN) would be the same in both models. The
Argonne v, 4 and v28 models are not strictly OBE poten-
tials, however, and their pseudoscalar and vector terms,
which are obtained by a projection method, are slightly
different. In principle the present calculation should use
the MI terms from the v28 model, but the results reported
here have been obtained with the MI terms from the v, 4
model. %e have checked that the trinucleon magnetic
moments change very little when MI terms from the v28
model are used, as noted in Sec. V.

&q'flT, lq';&=&'p~~lT, (N only)lql~&+ g &0'fz~ g [T,(kl)]z~+Jv &+ (three-body terms), (4.3)
A, =1,..., 5 k&1

(4.5)

(4.7)

where T, (N only) denotes all one- and two-body contributions to T, which only involve nucleon degrees of freedom,
namely, T, (N only} = T, (N ~N)+ T, (NNNN). Its matrix element for the electroweak transitions under considera-
tion has already been calculated in Refs. [5,6,13]. The operators [T, ]z are illustrated in Figs. 8—10, and are given by

[T,(ij )]z,=T, (i;b, ~N)UJ + U; T, (i;N~h)+i~j (4.4)

NA Nh, t[T,(ij )]z z=U, . T, (i;N +b, )U, +U, . T—, (i;b, ~. N)U, +i~j.
[T,(ij )]z 3= U," [T,(i;h~b )+T, (j;N~N)) U, +U;. T, (i;"b ~b, )U, +i~j" (4.6)

[T,(ij )]z 4= . U& g T, (k;N~N) U; +i~j,+ U;. g T, (k;N~N) U~~,
kWi,j kWi,j

B,Nt h, N[T,(ij)]z 5=, U~ g T (kl NN~NN) U; +i~j + U;. g T (kl NN~NN) U~~ .
k &1%i,j k & IAi,j

(4.8)

The terms [T,)z, z 3 are two-body current operators. The remaining [T, ]z ~ 5 are to be interpreted as normalization
corrections to the "nucleonic" matrix element & VfN

~ T, (N only)
~ %N &, due to the presence of the 6-isobar components

in the wave function, and occur only in systems in which A & 3 for A, =4, or A ~4 for A, =5 [36]. Finally, the last term
in Eq. (4.3) represents all remaining connected three-body contributions of the type shown in Fig. 11. These are
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neglected in the present work, since they are expected to be significantly smaller than those associated with the [T, ]i.
Using the identities for the operators S and X,

S AS B=—A.B——0".( A X B),
3 3

5. 1 1 4
S . AX BS C= —i A (BXC)——o".AB-C ——A BC.o+—A.(B.o )C,

3 3 3 3

(4.9)

(4.10)

where A, B, and C are vector operators that commute with o, but not necessarily with each other; the [ T, ]z are ex-
pressed as operators acting on the nucleon coordinates.

The normalization of the wave function is given by

(d'Id'&=]e„le„)+('Ye X ]2US U,, +U,, U, ] %',e)+ (three-body terms),
i (j

(4.1 1)

and the three-body terms have been neglected consistent-
ly with the approximation introduced in Eq. (4.3).

The matrix elements in Eqs. (4.3) and (4.11) are com-
puted, without any approximation, by Monte Carlo in-

tegration [24]. The wave functions are written as vectors
in the spin-isospin space of the A nucleons for any given
spatial configuration R= [r„.. . , r„]. For the given R,
we calculate the state vector [T, ]&~ 'hl]v) by performing
exactly the spin-isospin algebra with the techniques de-
scribed in Ref. [13,24]. The spatial integration is done
with the Monte Carlo method by sampling the R
configurations according to the Metropolis algorithm

V. RESULTS

In this section we present our predictions for the mag-
netic moments of the trinucleons (Tables III and IV), the
Gamow-Teller (GT) matrix element of tritium P decay
(Tables V and VI), the thermal neutron radiative capture
cross section on He (Tables VII and VIII), and finally
the proton weak capture cross section on He at very low
(keV) energies (Tables IX and X). In Table II we give the
results for the three- and four-body wave function nor-
malizations (iI1~%') /(]II]v~ql]v ). The normalization of
the n+ He or p+ He scattering states is the same as
that of He, up to corrections of order (volume) '. The
ground-state and low-energy continuum wave functions
of the nucleon component %z, the model for the one- and
two-body parts T, (N~N) and T, (NN~NN) of the
electroweak operator, and the variational Monte Carlo
(VMC) method used to calculate the required inatrix ele-
ments have been discussed at length in Refs.

[5,6, 13,14,23]. Here we shall summarize the essential
points.

The variational ground-state wave functions for the
three- and four-body systems have been obtained using
the Argonne U&4 two-nucleon plus Urbana VIII three-
nucleon interaction model. This Hamiltonian gives the
experimental binding energies in exact Faddeev [28] and
GFMC [29] calculations; the variational wave functions
agree within =3%. The wave functions have fairly large
D-state amplitudes: approximately 9% in the trinu-
cleons, and 16% in He. The same realistic Hamiltonian
and the VMC method are also used to determine the
wave functions of the very low-energy continuum n + He
and p+ He states, with full account of the nucleon-
nucleus (including Coulomb) interaction effects [5,6,38].
The n+ He and p+ He scattering lengths are found to
be 3.50+0.25 fm [5] and 10.1+0.5 fm [6], respectively.
These are quite close to the values of 3.52+0.25 fm [39]
and 10.2+1.4 fm [3,40,41] obtained from effective range
parametrizations of n + He and p+ He elastic scattering
data at low energies. The uncertainties in the calculated
values are due to the statistical errors associated with the
Monte Carlo integration technique.

In the present work the contributions of the MD two-
body currents due to the axial m- and p-seagull terms and

p~ mechanism (labeled collectively as "mesonic" in

FIG. 7. Some of the two-body exchange-current operators
which involve one or more 6 isobars not included in T,' '. Thin
and thick lines denote nucleons and 6 isobars, respectively,
while the dashed line represents a m. or p meson.

FIG. 8. Diagrams associated with the terms [T, )],—] p 3.

Thin, thick, and dashed lines denote nucleons, h-isobars, and
transition correlations U;,-, respectively.
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A&3 A&4

Flax. 9. Diagrams associated with the terms [T, ]&=4 in the
three-body system. Thin, thick, and dashed lines denote nu-

cleons, h-isobars, and transition correlations U;, , respectively.

FIG. 11. Diagrams associated with connected three-body
terms, which are neglected in the present work. Thin, thick,
and dashed lines denote nucleons, h-isobars, and transition
correlations U;J, respectively, while the dotted line represents
all two-body exchange contributions included in T, (NNNN ).

(5.1)

In Tables IV, VI, VIII, and X the cumulative nucleonic
contributions are normalized as

(%~+~ T, (N only)~VIv &

(5.2)

However, when the isobaric contributions are added to
the cumulative sum, the normalization changes to

(5.3)

In the tables there are two sets of results for the isobar-
ic contributions which correspond to using the Argonne

Tables V, VI, IX, and X) have been calculated using the
cutoff masses A =0.9 GeV and A =A„=1.35 GeV,
which were fit to tritium P-decay in Ref. [6]. However,
the pnyan. d con.y electromagnetic couplings (in Tables
III, IV, VII, and VIII) have been calculated with the pre-
viously preferred values A = 1.2 GeV and A =A„=2.0
GeV [5]. It should be stressed that there is very little
empirical information on the coupling constants (the
values used are listed in Refs. [5,6]) and the short-range
cutoffs in the mesonic, p~y, and co~y terms, and there-
fore their contributions should be viewed as numerically
very uncertain.

In Tables III, V, VII, and IX we list the values of the
contributions normalized as

v28 or U28& interaction models to generate the transition
correlation functions. Furthermore, in the weak transi-
tions the U28 values have been calculated with the axial
N~b, coupling constant obtained from tritium P decay,
while the U28& values use the coupling constant from the
static model. As already mentioned in Sec. IV, the
three-body terms have not been retained in the evaluation
of either the matrix elements, Eq. (4.3), or the normaliza-
tion, Eq. (4.11), as they are expected to produce a small
correction. For example, in He ( 4

~
4 & /( 4z ~ %z & is

found to be 1.092 without the three-body terms, and
1.103 with them. Finally, the cumulative results quoted
in Tables IV, VI, VIII, and X have Monte Carlo statisti-
cal errors which are not shown, but are typically less than
1% in the trinucleons, and a few % in the four-body sys-
tems.

A. Magnetic moments of the trinucleons

The values quoted for the impulse approximation (IA),
"model-independent" (MI), and "model-dependent"
(MD) prry (isoscalar) and rotry (isovector) contributions
to the trinucleon magnetic moments are the same, within
Monte Carlo errors, as those published most recently in
Ref. [23]. (Note that in Table VIII of Ref. [23] the values
labeled IA+MI+MD include the contribution associat-
ed with the N ~A transition current obtained in pertur-
bation theory by using u pr"' and u pm in [T ],. ) In that
study, the isovector magnetic moment, p, calculated
with the variational ~ql~ &, was overestimated by 0.077pz
(3%). The present study with inclusion of explicit b;
isobar degrees of freedom in the wave function reduces
this overestimate to 0.050'~ (2%).

As mentioned at the end of Sec. III, it would be more
consistent to use MI NN~NN contributions derived
from the Argonne U28 or U28& interaction. A erst calcula-

TABLE II. The ratio (%~%)/(%~~%'~ &, obtained with the
Faddeev and variational ~%'N ).

Flax. 10. Diagrams associated with the terms [T,]~= in t5he

four-body system. Thin, thick, and dashed lines denote nu-

cleons, h-isobars, and transition correlations U;J, respectively,
while the dotted line represents all two-body exchange contribu-
tions included in T, (NN ~NN ).

Interaction
model

028

U2so

He
Faddeev

1.0348
1.0240

He
variational

1.0361
1.0249

4He

variational

1.0919
1.0635
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TABLE III. Individual contributions to the isoscalar p and isovector p combinations of the trinu-
cleon magnetic moments associated with the single-nucleon current (IA), the two-body currents that
are constructed from the nucleon-nucleon interaction (MI), the pm.y and con y mechanisms
(per)»+ cony ), and the terms [ T» ]q of Eq. (5.1) ( [h»]q).

IA
MI
p7Ty +C077y

[~»lz
[~»]3
[~»]4

V28

0.0065
0.0091

0.405
0.017
0.006

V28Q

0.0036
0.0072

V28

—0.056
—0.013
—0.011
—0.027

—2.187
—0.379
—0.024

V28Q

—0.049
—0.0087
—0.0063
—0.019

TABLE IV. Cumulative and normalized contributions to the isoscalar p and isovector p combina-
tions of the trinucleon magnetic moments. The rows labeled IA+ +cony and IA+ +b denote
the contributions defined in Eqs. (5.2) and (5.3), respectively.

IA
IA+ MI
IA+. . . +en.y
IA+ . +6
Experiment

V28

0.428

0.405
0.422
0.428

0.426

V28Q

0.428

V28

—2.603

—2.187
—2.566
—2.590

—2.553

V28Q

—2.608

TABLE V. Individual contributions to the GT matrix element of tritium P decay associated with the

single-nucleon current (IA), the axial ~- and p-seagull terms, pm mechanism (mesonic), and the terms

[T&]i of Eq. (5.1) ([h&]i). They have been divided by g„. Note that g&„~=2.177g„(6&2g„/5) for

V28 (V2«).

IA
Mesonic

[~g]i
[~p]z
[~P]3
[~8]4

V28

0.0393
0.0093
0.0051
0.0111

Faddeev

0.923
0.0066

V28Q

0.0270
0.0047
0.0028
0.0076

V28

0.0407
0.0099
0.0054
0.0118

Variational

0.929
0.0059

V28Q

0.0278
0.0049
0.0030
0.0081

TABLE VI. Cumulative and normalized contributions to the GT matrix element of tritium P decay
divided by g„. The row labeled IA+ . . +5 denotes the contributions defined in Eq. (5.3). Note that

g»& =2.177g„(6&2g„/5) for v28 (U280).

IA
IA+ mesonic
IA+ --. +5
Experiment

V 28

0.961

Faddeev

0.923
0.930

0.961

V28Q

0.949

V28

0.968

Variational

0.929
0.935

V28Q

0.955
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IA
MI
pay+ cony

[~y]i
[~y]z
[~y]s
[~y]4
[~~]s

V2S

0.133
0.033
0.008

—0.123
—0.002

—0.165
0.756
0.044

V2SQ

0.117
0.021
0.004

—0.086
—0.001

TABLE VIII. Cumulative and normalized contributions to
the radiative capture reaction He(n, y) He at thermal neutron
energies. The two most recent experimental results are also
given. See Table IV for notation.

o. (pb)

IA
IA+ MI
IA+ . +mwy
IA+ . +5
Experiment

'Reference [4].
bReference [7].

V2S

85.9

5.65
72.5
83.7

55+3'
54+6

V28Q

90.7

TABLE IX. Contributions to the matrix element of the weak
capture reaction He(p, e+ v, ) He, multiplied by
(exp(2m') —1/2n. g)' ', where g =2a/v, a is the fine-structure
constant, and v is the relative p- He velocity. See Table V for
notation.

IA
Mesonic

[~p]i
[~p]2
[~p]s
[~pl~
[~p]s

U28

—0.2860
—0.0713
—0.0401

0.1855
0.0006

M.E. (fm )

0.3849
0.0137

U28Q

—0.1970
—0.0363
—0.0224

0.1284
0.0004

TABLE X. Cumulative and normalized contributions to the
astrophysical S factor of the weak capture reaction
He(p, e+v, ) He at zero energy. See Table VI for notation.

10 'S (MeVb)

IA
IA+ mesonic
IA+ -. . +5

V28

1.44

6.88
7.38

V28Q

3.14

TABLE VII. Contributions to the matrix element of the radi-
ative capture reaction He(n, y) He at thermal neutron ener-
gies. See Table III for notation.

100 M.E. (fm' )

tion with this change lowers the values in Table IV by
1.7% for p and by 0.4% for JM, 0.422@& and —2.589pN,
respectively, for the v28 case. Alternatively, if we keep
the U&4 MI terms, but use the more accurate Faddeev
~%'& ) we get values of 0.426p& and —2.567pz. In either
case, the overestimate of p would be further reduced, to
(0.014-0.036)p~, or 0.5—1.5 %.

B. Gamow-Teller matrix element of H~ He+ e +v,

The results for the IA and mesonic contributions to the
Gamow-Teller matrix element of tritium P decay are
again consistent within Monte Carlo statistical errors
with those published in Ref. [6]. The values reported for
the [b&]1 and [b&]2 contributions are obtained by using
the coupling constants g»&=2. 177gz and (6&2/5)g„
in the Uz8 and v2s& models, respectively. The former

g»z value is obtained by reproducing the empirical GT
matrix element of tritium P decay using the Faddeev

~
qiz ), while the latter value is that predicted by the static

quark model [31]. It should be noted here that this quark
model prediction for g»z was used in Ref. [6] for the b,n.

and Ap contributions listed in Table II of that work.
However, the short-range behavior of the axial N~h
current, i.e., the cutoff masses A and A in up&" and
uz~", was adjusted by fitting the same empirical matrix
element.

C. The He(n, y) He and He(p, e+v, ) He capture reactions

As discussed in Refs. [5,6], the relative smallness of
the IA cross section in the He(n, y ) He and
He(p, e+v, ) He capture reactions is due to the fact that

the T, (N ~N ) operator between the initial S, scattering
states and the final He state cannot connect the large S-
wave components in the ground states of He and He.
Because of this pseudo-orthogonality, only the small
components in the wave functions contribute in impulse
approximation. Both reactions have large (in the case of
radiative neutron capture, dominant) contributions from
two-body current operators. The MI and MD mesonic
contributions shown here have already been reported in
Refs. [5,6]. If MI terms from the vzs interaction were
used instead, we estimate from the p calculation that the
matrix element in Table VII would decrease =3%, and
the cross section in Table VIII for the He(n, y ) He reac-
tion would decrease =6%.

The contribution [b, ], is the leading correction among
the 6-isobar terms. The present value for the radiative
(weak) capture matrix element in the U2&& model,
0. 117X 10 fm (0.197 fm ) may be compared to the
value of 0. 106X10 fm ( —0.22 fm ) obtained in
perturbation theory in Refs. [5,6] by using cutoff masses
A =1.2 GeV and A =2.0 GeV (A„=0.9 GeV and
A = l. 35 GeV) and the static quark model prediction for
f ~g and g»g.

The second leading 6-isobar contribution is that due to
the renormalization correction [h, ]4 of Fig. 9, which as
expected has the same sign as the IA matrix element.
What may appear surprising is its magnitude; for the v28
model, the ratio [6, ]4/IA is =0.75 (0.48) for radiative
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(weak) capture. However, this result is easily understood,
when one considers that the operator [T, ]4, in contrast
to T, (N~N), has a nonvanishing matrix element be-
tween the dominant S-wave components of the He and
He ground states. Finally, the combined contributions

[b,, ]2 and [h, ]3 amount to =31% (39%%uo) of the [b,, ]t
contribution for radiative (weak) capture. In all earlier
calculations the contributions [b,, ]z 5 were neglected.

Explicit inclusion of 5-isobar degrees of freedom leads
to a significant reduction of the discrepancy between the
empirical and theoretical values for the radiative capture
cross section than previously reported in Ref. [5], where
the calculated cross section was found to be 112 pb. Ig-
noring the cozy contribution would reduce the present
value of 86 pb for the v28 model to 72 pb. No experimen-
tal determination of the weak capture cross section is ob-
tainable. The uncertainty in the weak coupling constant

g&~z introduces a substantial uncertainty in the theoreti-
cal prediction for the astrophysical S- factor of this reac-
tion, as reflected in the difference between the v28 and

v28& results in Table X. The value of 1.3X10 MeVb
in Ref. [6] is slightly below the range of values quoted in
Table X.

VI. DISCUSSION

The present study suggests that the common perturba-
tive treatment of 6-isobar degrees of freedom in nuclei
[2—6,15—17] may not be accurate, and may produce a
large overprediction of their importance, particularly in
reactions as delicate as the radiative and weak captures
on He considered here, where the pseudo-orthogonality
between the main components of the bound-state wave
functions prevents the nucleonic part of the one-body
operator from dominating the transition rates. Explicit
inclusion of 6-isobar degrees of freedom in the nuclear
wave function influences these transitions in two ways:
first, via direct electroweak couplings, and second by re-
normalization corrections. Whether these effects lead to
an enhancement or a quenching of such rates depends on
the nature of the particular reaction.

A number of concluding cautionary remarks should be
made. First, the NA and Ab interactions and the axial
N~h coupling are not well known. The difference be-
tween the calculated Uz8 and U28& values, particularly for
the radiative and weak capture reactions, should provide
some estimate of the associated uncertainties —more than
a factor of 2 in the latter case.

Second, the capture cross sections show a strong
dependence on the scattering length. By varying the
n+ He (p+ He) scattering state wave function so that
the scattering length ranges from 3.25 fm (9.0 fm) to 3.75
fm (11.0 fm), which is the range given by the data
analysis, the radiative (weak) capture cross section varies
from =1.3 (1.2) to =0.7 (0.8) times the present predic-
tion [5,6]. Obviously, a more accurate experimental
determination of the effective range parameters for low-
energy n+ He and p+ He elastic scattering data would
be useful in ascertaining the quality of the interactions
and/or the reliability of the variational description of the
continuum states.

Third, there is no compelling evidence for the impor-
tance of the poorly known MD con.y mechanism. If any-
thing, at low momentum transfer its inclusion appears to
increase the discrepancy between theory and experiment,
as can be seen in Tables IV and VIII. Neglecting this
term would give p = —2.55pz with the Faddeev wave
function, and a radiative capture cross section of 72 pb,
in significantly better agreement with experiment.

Finally, the cross section of the capture reactions are
sensitive to the D-state components of the He and He
ground-state wave functions, and hence to the XN tensor
interaction, which is quite strong in the Argonne models.
For example, leaving out the D-state wave functions and
tensor correlations in the initial scattering state reduces
the predicted radiative cross section by =40%. It would
be interesting to repeat these calculations with an XN in-
teraction model such as the Nijmegen potential [42],
which has a weaker tensor force.
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