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Extracting a value of the deuteron radius by reanalysis of the experimental data
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A new value, rD=1.9546+0.0021 fm, for the rms radius of the deuteron has been extracted by
reanalyzing the experimental data for the ratio R (q ) of the deuteron to proton electric form factors and
for the slope of the neutron electric form factor GE„(q') at q'=0. The short-range structures in the ra-
dia1 deuteron wave functions found for a certain class of potentials (e.g., Kermode et al. and potential
models presented here) cause an increase in the model values of the deuteron charge form factor CE{q ),
but have no special features in the variation of Cz(q ) with q . A new method for calculating CE(q ) ac-
curately is presented.

PACS number(s): 21.30.+y, 13.75.Cs, 21.45.+v, 21.10.Ft

I. INTRODUCTION

Several works [1—6] have been reported in the litera-
ture on extracting the root-mean-square (rms) matter ra-
dius of the deuteron rD from the measurements of the
elastic scattering of electrons by deuterons and protons.
Berard et al [1] foun. d an empirical linear relation be-
tween b and rD for deuteron potential models, where b is
the slope of the neutron form factor Gz„(q ) at q =0.
They used their experimental data for the ratio
R (q ) =GzD /Gz~ of the deuteron to proton electric form
factors in the calculations of b. The extracted value
rD = 1.9635+0.0045 fm corresponds to the experimental
value b =0.0189+0.0004 fm given by Krohn and
Ringo [7]. Akimov et al. [2] used their experimental
data for the deuteron electric form factor GzD(q ), and
obtained 1.944+0.028 fm for rD. They also obtained
three other values for rD corresponding to three values of
the proton radius rp they are ra =1.947+0.029,
1.935+0.029, and 1.921+0.029 fm corresponding to
r =0.81+0.01, 0.84+0.01, and 0.87+0.01 fm, respective-
ly. Simon et al. [3] used their measurements of R(q )
and obtained rD = 1.9625+0.0047 fm (ro = l.9560
+0.0068 fm), by fitting their data with polynomials of or-
der three (four).

Experimental data have been reanalyzed by Allen
et al. [4], McTavish [5], and Klarsfeld et al. [6]. For the
radial deuteron wave functions of a given potential model
and their family of the wave functions produced by uni-
tary transformations, Allen et al. [4] found a linear rela-
tion between ra and b. The experimental value

b=0.0199+0.0003 fm given by Koester et al. [8] has
been used to determine rD "indirectly" from the plotted
straight line. The points (rD, b) have the common proper-
ty that all the wave functions are similar at large values
of r; hence, they have the same values of the asymptotic
S-state amplitude Az and the asymptotic ratio g. The
experimental value of rD eras not obtained directly from
the graph because the deuteron wave functions used did
not have the correct experimental values of both A& and

Allen et al. [4] assumed that r) is more accurately
measured than Az and that a small change in q is pro-
portional to a small change in rD. They obtained
ra =1.952+0.004 fm which corresponds to the then ex-
perimental value [4] of ri of 0.0264+0.0003.

McTavish [5] used the experimental data of Berard
et al. [1]for the ratio R f q ) to obtain the "experimental"
values of the charge form factor Cz(q ). He modified
Wilson's expansion [9] of Cz(q ' and used it in a one-
parameter St to obtain rD =1.956+0.005 fm.

The contribution of the asymptotic terms of the
parametrized form of the radial deuteron wave functions
u and to of the Paris potential [10] (but with values for
3& and q given by A&=0. 8800+0.0060 fm ' which is
an average of several measurements [6], and
g=0.0268+0.0007[11]has been used in the expansion of
Cz(q ) in powers of q by Klarsfeld et al. [6] to deter-
mine the higher-order moments (r "). They fitted the
data of Simon et al. [3) and Berard et al. [1] and ob-
tained rD = 1.953+0.003 fm.

The aim of this work is an attempt to improve the
determination of the root-mean-square (rms) radius of the
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deuteron rD from the experimentally determined electric
form factor ratio R (q ) and from the slope b of the neu-
tron electric form factor Gz„(q ) at q =0.

V= V~+ VL~L S+S)2VT . (2.1)

The functional form of each part is taken to be the sum of
Yukawa potentials

rV;(r)= g A;(n)e (2.2)
n=1

where i denotes the central and spin-orbit parts, and
@=0.7 fm '. The longest-range components are deter-
mined by the one-pion exchange potential (OPEP), i.e.,
Ac(1)= —14.94714 MeVfm and Aiz(1)=0. The ten-

sor part is taken to be of the form

(2.3a)

where

rVz."(r)=B(1)[(1+3/pr+3/p, r )e

II. A LOCAL POTENTIAL MODEL
WITH CORRECT As AND g

At present there is no potential model which gives the
correct experimental values of Az and g. Approxima-
tions made by Allen et al. [4] are not adequate to com-
pensate for the absence of such potential. For example,
their extracted value rD = 1.952+0.004 fm may be
changed to be rD =1.954+0.003 fm if the Reid soft-core
potential [12] is used in the analysis [4] or to be

rD =1.958+0.003 fm if the value extracted for rD is to be
consistent with the experimental value of Az instead of
that of g [5]. Also, in the absence of such a potential,
Klarsfeld et al. [6] used, in their "asymptotic method" to
obtain rD, a parametrization of the radial deuteron wave
functions consisting of a mixture of terms like those of
the parametrizations of the radial wave functions by
Paris [10], Hulthen and Sugawara [13), and Adler et al.
[14].

We present here a potential which has the recent ex-
perimental value of A& =0.8838+0.0004 fm ' of Stoks
et al. [15] and i)=0.0273+0.0005 of Borbely et al. [16].
The local potential has been chosen to be of Reid's hard-
core type [12] and fits accurately the energy-dependent
scattering parameters of Amdt et ol. [17] (y /datum
0.15) in the laboratory energy range 0—300 MeV. This
potential consists of central (C), spin-orbit (LS), and ten-
sor (T) parts:

TABLE I. The free parameters of the local potential.
B (1)= —14.947 14 MeV frn.

Ac(n)

—14.947 14
—1 491.328
30 324.30

—193483.3
480 649.9

—405 831.0

0.0
593.9225

—12 351.39
88 378.22

—240062.0
210 874.9

AT(n)

0.0
—421.2055
6 943.784

—31 696.09
48 675.39

—19291.89

are listed in Table I. Properties of the potential are given
in Table II. The radial dependences of the potential and
its radial deuteron wave functions are compared to those
of the Reid hard-core potential [12] in Figs. 1 and 2. It is
interesting to note the shape of the D-state wave function
in Fig. 2. It has the form expected for a nonlocal poten-
tial, but we emphasize that this is the result for a laca1
potential.

It is worthwhile to mention that this local potential fits
the experimental value of the quadrupole moment Q of
the deuteron (Q=0.2860+0.0015 fm (Ref. [18]) and

Q =0.2859+0.0003 fm (Ref. [19])). It has been thought
that the experimental value of Q is too large to be repro-
duced by local deuteron potentials. For example, Allen
et al [20] cla. imed that the quadrupole moment of the
deuteron is almost impossible to be fitted with energy-
independent potentials. Also, De Tourreil et al. [21] ar-
gued that no existing potential models —at that
time —reproduced this high value of the deuteron quadru-

pole moment and that the meaning of this seemed unclear
but very interesting. In a recent paper by one of us [22],
two simple local potential models having Q)0.3 fm2

have been given as an example for the possibility of fitting
the quadrupole moment of the deuteron with local poten-
tials.

It was diScult to fit the experimental value of the trip-
let scattering length a, =5.149+0.007 fm and the triplet
efFective range r, = 1.754+0.008 fm by this local potential
because of the correlation between rD, As, and a, [23,24].

TABLE II. Properties of the local potential of Table I.

III. EXTRACTING rg) FROM BOTH THE
EXPERIMENTAL DATA ON R (q~) AND b

We used both the experimental data for R(q ) of
Simon et al. [3], for momentum transfers 0.044&q~~4

and

N(1+3/Npr+—3/N p r )e ""]

(2.3b)

6
rVTi '(r)= g AT(n)e (2.3c)

B ( 1 ) is determined by the OPEP and is equal to
—14.94714 MeVfm. The value of N was taken to be
N=6. The value 0.54833 fm is assumed for the hard-
core radius. The free parameters of this local potential

Binding energy Eb
Quadrupole moment Q
D-state probability PD
Asymptotic S-state amplitude As
Asymptotic D-state amplitude AD

The asymptotic ratio q = AD /As
rms radius rD

D2 parameter
Scattering length a,
Effective range r,
Shape parameter P

—2.2246 MeV
0.2860 fm
6.451%
0.8838 frn

0.0242 frn

0.0273
1.963 frn

0.5043 f
5.396 fm
1.704 frn

0.0260



EXTRACTING A VALUE OF THE DEUTERON RADIUS BY. . . 2605

0.6

0—

(MeV)

-2000—
0.4—

-4000-
0.2—

-6000 '

0.4 0.6 0.8
0

0

2000-

(fm)

FIG. 2. The radial deuteron wave functions of the local po-
tential of Table I (solid lines) are compared to the Reid hard-
core potential [12] (dashed lines). The upper (lower) curves are
the u (w) wave functions.
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1000-
fm, and the experimentally measured value
b =0.0199+0.0003 fm for the slope of the neutron elec-
tric form factor Gz„(q }at q =0 fm

dGE„(q')b=
dq q2=0

(3.1)
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200—

(c}

I
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( fm) ( 2) R(q )(1+2}
1 G ( p)znq C( 2) Epq

E
(3.2a)

where the proton electric form factor Gzp(q ) is given by
Simon et al. [25] as

2 0.312 1.312

1+q /6 1+q /15. 02

0.709 0.085

1+q /44. 08 1+q /154. 2

the deuteron charge form factor CE(q ) is given by

Cz(q )=f (u +w j)o(qr/2)dr,

(3.2b)

(3.2c)

of Koester et al. [8] to determine rD The q v.ariation of
the neutron electric form factor GE„(q ) may be obtained
from

-200
0.4

I

0.6 0.8
(fm)

FIG. 1. (a) Central V&, (b) spin-orbit VL&, and (c) tensor V&

components of the local potential of Table I (solid lines) are
compared to the Reid hard-core potential [12] (dashed lines).

r=q /4m, mz =4.76146 fm ' is the proton mass, and
u and w are the radial deuteron wave functions. We also
used the four experimental values of R(q ) at q =1.55,
2.1, 3.3, and 4.0 fm from which Klarsfeld et al. [6]
have subtracted the quadrupole form factor contribution
(Table I of Ref. [6]}.

The variation of CE(q ) versus q is first obtained by
using (3.2c) for the radial deuteron wave functions of the
local potential of Table I and is also obtained for each of
the various radial deuteron wave functions obtained from
them by applying unitary transformations of the follow-
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ing form used by Kermode et al. [26]

Z„O
Z 0 Z

where

Z„=Z =Z=t(a, P)=1—2g(s)g(s'),

g(s ) = Cs(1 —Ps }e

s=r —r, .

Here, r, in the hard-core radius, C is a normalizing con-
stant C=[4a j(a —3ap+3p )]'i such that (gag)=l.
The transformed deuteron wave function is given by

+—2g(r )f g(s)+(s)ds,

-0.4—

.p
~ I

li
I ~

I '~ ~ I
I ~ i:i
l
1 ~ I
1
) ~ I
) .I
) I

I
) I
) u

I
)

4

s 7

where + means u and w radial deuteron wave functions
of the reference local potential. The parameter of the
nonlocality "range" u is assumed to have the values 1.7,
2.5, 3, and 3.5 fm '. For each of these assumed values of
a, the parameter of the nonlocality "strength" P is
changed from P=O fm ' to P=1.5 fm ' in steps of 0.1

fm '.
Then, each of these variations of Cz(q 2) versus q

~ is in-
serted in Eq. (3.2a) to get the corresponding q2 variation
of GE„(q ). The model-dependent values of b are ob-
tained by simulating each of these variations by a polyno-
mial of order m in q,

FIG. 4. Transformed radial deuteron wave functions having
the correct value of b. They are obtained by using the unitary
transformations with a=2. 5 fm ' and 13=1.2 fm ' (solid lines),
a=3 fm ' and )3=0.6 fm ' (dashed lines), and a=3.5 fm
and P=0.6 fm ' (dotted lines}. The corresponding values of the
deuteron quadrupole moment are 0.289, 0.280, and 0.279 fm',
respectively. The upper (lower) curves are the u (w) wave func-
tions.

Gz„(q )= g b;q ', m =2, 3, 4, and 5 (3.3)

0. 1

(fm )

with b =bt For a pa.ir (u, w) of the radial deuteron wave
functions u and w, we calculate ra and four values of b

corresponding to the four values of m in Eq. (3.3). Allen
et al. [4] used only positive values of b to draw the linear
rD —b relation. We consider the general case here, where
both negative and positive values of b are used. The vari-
ation of b versus rz for m =3 is shown in Fig. 3. The ra-
dial dependences of transformed deuteron wave functions
having the correct value of b are shown in Fig. 4. No
effect on other deuteron properties is found (other than
rD} as a result of having the same value of b, e.g. , these
transformed wave functions have different values for the
quadrupole moment. The extracted values of rD and the
standard errors Ab close to the experimental value
b=0.0199 fm are listed in Table III. The meson ex-
change current (MEC) and the isobar contributions are
given by Lomon [27] and have been used in the analysis

-0.2—

2
(fm )

D Ab (fm ) r (frn)

TABLE III. The extracted values for the rms matter radius

of the deuteron rD. The q variations of Gz„(q ) (in the case of

using the local potential of Table I and its phase equivalent po-

tentials produced by unitary transformations) are simulated by

polynomials of order m to obtain the corresponding values of b.

The values listed for the standard error Ab are determined for
—2

values of b close to the experimental value [8] b =0.0199 fm

in each case. The MEC contribution [28] km =0.0034+0.0003

fm is taken into account.

FIG. 3. The straight line representing the variation of b
versus rD in the case of m =3. The circles represent the local
potential of Table I and its phase-equivalent potentials. The er-
ror bars representing the standard errors Ab are not drawn;
their lengths are shorter than the circles' radii in all cases.

0.0009
0.0015
0.0022
0.0038

1.9631+0.0013
1.9546+0.0021
1.9549+0.0032
1.9548+0.0057
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of McTavish [5]. In this work, we used
b, rD =0.0034+0.0003 fm given by Kohno [28] to take the
MEC into account. It is clear from Table III that for
m ~ 3, the extracted values of rD, to three decimal points,
are almost the same.

We ignored the contribution to the standard error ArD
caused by the errors +6Az and +kg in the experimental
values of Az and g, respectively. The determination of
these contributions may be carried out by constructing
local potentials having properties similar to that of the lo-
cal potential of Table I, except for the values of Az, g,
and rD. The difference between the values of A& and g of
these potentials and the value of Az and g of the local
potential of Table I should be either +DAN with no
change in g or +kg with no change in Az. The required
contribution of +b, Az (+b,ri) to b, rD may then be taken
as the maximum difference between the values of rD of
these potentials of the first (second) case and the value of
rD of the local potential of Table I. We expect the values
of these contributions to be small enough to be ignored
since Az and g change "faster" than rD during the search
procedure so that relatively large changes in Az and g
would correspond to relatively small changes in rD. We
quote

b, Cz(q )=f (u +w j)o(qr/2)dr . (4.2)

u=A&e r»

w= ADe r"(I+3/yr+3/y r ),
(4.3a)

(4.3b)

are required. Thus, for example, the terms in a power-
series expansion of b, CE(q ) can be evaluated analytically
[6]. We shall present an alternative, improved approach

0.75

0.7

0 ' 65

For the second integral, only the asymptotic forms of the
radial deuteron wave functions u and w,

rD =1.9546+0.0021 fm (3.4)

corresponding to m =3 as our result. This value agrees
to within the quoted errors with corresponding values ob-
tained by Allen et al. [4], McTavish [5] and Klarsfeld
et al. [6]. In comparison with the case of Allen et al. [4],
although they used a one-parameter fit to obtain b from

Gz„(q )+0 0036q =b. q

(a)
0 ' 6

0.6

1.0

0.8

their standard error for rz is larger than the standard er-
rors in the cases of using two-, three-, and four-
parameters fits in our case (see Table III). This is because
the value of rD is "directly" extracted from the rD-b
graph, as we used a potential model with correct A& and
g, and also because a larger number of data pieces are in-
volved in the fitting (16 here and 9 in their case).

Although the method used to obtain our new value of
r~ involves using a potential model with correct values of
Az and g, this new value of r~ of relation (3.4) is
model independent because the rD-b lines representing
different potentials are parallel and are ordered only by
the values of ri and Az [4] (e.g. , as g decreases and Az in-
creases, the lines will be shifted towards higher values of
rD), so that, the rD bline of any o-ther potential model
having the correct values of Az and g would necessarily
be the same as the rD-b line of the local potential of Table
I ~

0.8

0 ' 6

0.4

0 ' 2

s I s I a I s I s

2 4 6 8
2

(fm )

10

IV. A NEW METHOD FOR CALCULATING
MODEL VALUES OF CE(q )

The deuteron charge form factor Cz(q2) may be writ-
ten

CE(q )=f (u +w )J'o(qr/2)dr+DC+(q ), (4.1)
0

where

FIG. 5. The q variations of the deuteron charge form factor
CE(q ) of the local potential of Table I, calculated without ex-
panding the sine function (solid lines) and with expanding the
sine function up to a certain number of terms, e.g., 10 terms
(dashed lines), 20 terms (dotted lines), 40 terms (long-dashed
lines), and 70 terms (dash-dotted lines). The dash-dotted line in
(b) coincides with the solid line in (a). ACE(q ) is calculated
analytically.
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by considering the properties of the exponential integral
function.

The contribution b,CE(q ) to CE(q ) is small and may
be regarded as an analytic asymptotic "correction. " The
value of R may be chosen in the range between 12 and 16
fm. If R is large enough, e.g. , R =25 fm, b, Cz(q ) will be
negligible. The corresponding value of Cz(q ) in this
case can be used to determine the range of values of q
for which the determination of b, Cz(q ) is good. The
form factor CE(q ) was calculated twice, first by using
R =25 fm and b, CE(q )=0, and second by using R =12
fm and b, CE(q )WO. The two values obtained for CE(q )

will be the same if the value of b, Cz(q ) is correct, for a
given q .

The expansion of Cz(q ) in powers of q at low values
of q is known to converge for values of q below 0.9
fm (Refs. [3,6,29]). Klarsfeld et al. [6] claimed that the
divergence for q ~0.9 fm [see Fig. 5(a)] is caused by
the Taylor's expansion of the sine function in
jo(qrl2)=(qrl2) sin(qr/2). They used Pade approxi-
mations and the method of continued fractions to extend
the q range of convergence. We think that the use of the
Taylor's expansion of the sine function may not cause
this divergence, but it may be caused by the mutual in-
corporation of both of the sine expansion and the analytic
forms of the radial deuteron wave functions in the formu-
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FIG. 6. The q dependencies of the form factor C& (a) ob-
tained "independently" by using the relations (4.6) (solid line),
the recurrence relations (4.8) (dashed line), and (b) the asymptot-
ic relation (4.10) (dash-dotted line), are compared to the case of
using the relation (4.1) with R =re+25 fm (dotted line).

FIG. 7. The q variations of the analytic asymptotic correc-
tion hCF calculated by using (a) the "independent" relations
(4.6) (solid lines), the recurrence relations (4.8) (dashed lines),
and (b) the asymptotic relations (4.10) (dash-dotted lines) ~



45 QF THE DEUTERQN RADIUEXTRACTING A VALUE OF TH

). This may be seen from F g.Fi . 5(b), where
) given by the use of

of th
h h"' bt""'dthe radial deuteron wwave functions, w ic ar
alues of q whichI methods, converge for va ues o

may r e rovided that enough terms aremay be relatively large, prove e a
"p

&35 fm, are given e ow.
as m

' '
b, C ( ) is first related to the ex-asymptotic correction ACE&q is rs

ponential integrals

E (z)= f t "e "dt,

namely,

2As D2/D 6 ]5

(4.4)

+ F4+ F5
18 9
r' (4.5)

E z); then the stan-where F„are e
'

th imaginary parts of E„(

10

jl
II
I

II
II
II
II
II
I
II
III
II

-2 "

-4
0

I

10
2 -2

(fm )

I

20

I

I
I
I
I I

I

l I

30

(o)

6 -4 -2 0 2 4

10 Gi

10 I l
I

l

l

l

I

l
l

l

l

l

!
l

l

l

l I'

I'

l I'

I

I
-I

I

I

-O. 5 ,
J

I

I

05- I

I

I
a

I
I

0 I

/3
I l

i l

j 'l

I

j l

j 'l

l

l

I

i !
l !

I
I

'l I
OJ

j l
j l

j l

l
l
l
l
l
l
l
'l I
'l I

I
I

Q/

j 4

j \

j l

j l

j l
l

I l

l

I

0 ~
8—

0.4-
10 1

-0.4-

(b)

~O~O~g

~r ~~o
,/ .r

/ y

II

,//I I
I
/

I t/,
l ((

'~

~l l
li i

I I'

I/I I

g/I /g,/t lt j.r'Z'/ /

~~
~~ ~~~a~~~

II I I I I

40
I

60
l

80

-0 ~ 8 -0 ' 4 0 0.4 0.8

10 G,
2 -2

( fr@ )

The variations of F2 obtaine y
'

gd b usin (a) the "in-
th 1 tot" relations (4.6) (solid ine, e re

~ ~

usin (b) the asymptotic relation(4.8) (dashed line), and by using
(4.10) (dash-dotted line).

of G versus F& (a) for q in steps ofFIG. 9. The variations o
&

versus
usin the "independent" relations . in0.05 fm by using e

the asymptotic relations25 fm and (b) by using t e asym
2 Of -2f q2instepsof0. 25fm35~ 90 fm or qg

Larger absolute values of bot h of F an
smaller values of q .



2610 MUSTAFA, HASSAN, KERMODE, AND ZAHRAN 45

dard properties of the exponential integrals [30] are used
to simplify the resulting formulas.

am+&

a
(m —n+1)p m~n .

(m n—+2)(m+1) (4.7b)

A. Formula for Ecz(q ) within the range
0(q2&25 fm

—~

m=N
F) =8+ g a~slum 8,

m =1

F2 = —p[8 cos8+ (lnp+ I —1)sin8]
m=N

+ g a sinm8,
m =2

2

F3 = [0cos28+(lnp+ I ——', }sin28]

{4.6a)

(4.6b)

m=N
+p sin8+ g a sinm 8,

m =3
(4.6c)

Accurate values of FACE, in the range 0 & q ~ 25 fm

may be obtained by using in Eq. (4.5) the following for-
mulas for F„derived from the series expansion [30] of
E„(z) (see Appendix A 1 for details):

1
F„+,=—[e "siny+yG„xF„],— (4.8a)

1
G„+,=—[e "cosy —xG„yF„],— (4.8b)

The values of Cz calculated by using F„ofEqs. {4.6)
are drawn in Fig. 6(a). They are accurate to five decimal
points up to q =25 fm . The variation of ECE with q
is shown in Fig. 7(a). The imaginary parts F„[Fig. 8(a)]
change smoothly with q up to q =22 fm
teresting that the relatively less smoother variations of F„
in the range 22&q 25 fm do not imply incorrect
values of ACE and CE within that range of q . The value
b, Cz =0 is obtained (even for relatively small values of R)
for certain values of R and q because of the alternate na-
ture of the integrand of Eqs. (4.2) and (4.5).

Alternatively, it is also possible by using the following
recurrence relations to determine F2, F3, F4, and F~, and
hence, b, Cz(q ), given that both F, and G, are known,
where G, is the real part of E, (z):

[8cos38+ (lnp+1 ——", )sin38] with F, given in Eq. (4.6a) and G, from

2 m=N
+ +sin8 — sin28+ g a sinm 8, (4.6d)

2 2
G&= —&—lnp —g a cosmic. (4.9)

F5 = [8cos48+ (lnp+1 —~» )sin48]

+ +sin8 — sin28
3 4

m=N
+ sin38+ g a sinm 8,

6 m=5

z =2yR iqR /2—=pe ' =x iy, —

x =2yR, y =qR /2,
p=+x +y, 8=tan '(q/4y),

(4.6e)

1)m m

a —— , m&n.
(m —n+1) m!

(4.7a)

For a given value of n, it is more efficient to calculate the
coefficients a by only using both the first coefficient a,
and the ratio a +, /a

I =0.5772156649. . . is Euler's constant, and X is

chosen to be 90. The coefficients a of the summation in

F„are given by

The coefficients a in (4.9) are obtained from (4.7) with
n=1. The q variations of CE, ACE, and F„obtained by
using the "recurrence" Eqs. (4.8) are compared to those
obtained "directly" by using Eqs. (4.6) in Figs. 6(a), 7(a),
and 8(a). The different shapes between the graphs of F„
of Eqs. (4.6) and those of Eqs. (4.8) for q

~ 11 fm do
not necessarily mean obtaining different values of CE, the
values of Cz of the recurrence relations (4.8) are correct
up to q = 19 fm, bUt for q ) 19 fm and again
X=90, numerical stability is a problem: the graph
representing CE is no longer accurate, as shown in Fig. 6.
We deduce that it is better to use Eqs. (4.6) than (4.8) in

determining the values of the functions F„up to q =25
fm

B. Formula for ECe(q ) within the range q ~3S fm

For values of q greater than 35 fm, accurate values
of ECE and hence CE may be obtained by using the for-
mula for F„obtained from the asymptotic expansion of
the exponential integrals [30] E„(z}(Appendix A 2):

e X

F =
n

n . n(n+1) . n(n+l)(n+2)
cosy sin8 ——sin28+ sin38- sin48+ - . .

p p P

n n (n +1} n (n +1)(n +2)+siny cos8 ——cos28+ cos38- cos48+
p p

(4.10)
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Results of calculations for CE, AC@, F„,and G„which
use Eqs. (4.10) are compared to those obtained by using
Eqs. (4.6) and (4.8) in Figs. 6, 7, 8, and 9. The q varia-
tion of Cz [Fig. 6(b)] is accurate to five decimal points for
q 35 fm . Ninety terms are summed in each of the
two square brackets of Eq. (4.10).

V. INVESTIGATING THE EFFECT
OF INCORPORATING AN ATTRACTIVE

SHORT-RANGE NONLOCALITY IN THE D STATE

Mustafa and Hassan [31]and van Dijk [32] proved that
it is possible to construct potentials whose scattering
lengths a, and rms radii rD correspond to values that do
not satisfy the linear a, -rD relation found by Klarsfeld

et al. [6] (the a, rD-line does not pass through the experi-
mental point). Potential models [33—35] incorporating
short-range repulsive nonlocal components have relative-
ly large values for rD with an increase in the repulsive
nonlocality strength leading to an increase in rD (e.g.,
Table III in Ref. [35]). On the other hand, Kermode
et al. [36,37] showed that an inclusion of an attractive
short-range nonlocal component in the S-state radial
equation will decrease rD and hence will help in fitting
simultaneously both the experimental values of rD and a, .
This finding has also been obtained by Mustafa and Ker-
mode [38] for a class of deuteron potential models incor-
porating attractive short-range tensor components that
have the necessary invariance properties. The nonlocal
potential presented in this section reproduces the experi-
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FIG. 10. (a) Central V~, (b) spin-orbit VLz, and (c) tensor VT components of the nonlocal potential of Table IV (solid lines) are
compared to the Reid hard-core potential [12] (dashed lines).
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(5.1)

The functional forms chosen for the local part V' ' are
similar to those of the local potential of Table I. The
coupled radial Schrodinger equations in this case have
the following form:

d2
2

—Vc —y u(r) 2&—2VTw(r)

mental value of the scattering length [11]
a, =5.419+0.007 fm and the new experimental value
rD = 1.9546+0.0021 fm of the present work.

The nonlocal potential consists of two parts —a local
part V' ' plus a nonlocal attractive separable part V'

V —V(.I-)+ V(N)

0.8

0.4—

0.2—

I
I

I
I

I
I

I
I
I
I

—Af(r) f f(r')u(r')dr'=0, (5.2a)

d 6———Vc+3Vt~+2Vz —y w (r)
T T

0

( fm)

2&2V—Tu (r) —Af(r) f f(r')w(r')dr'=0, (5.2b)

where k= —300 fm is the nonlocality strength, and

f (r)=e "with a=2. 1 fm '. The radial dependence of
the local part V' ' is compared to the Reid hard-core po-
tential [12] in Fig. 10. The free parameters A; (n) are list-
ed in Table IV.

Unlike the case of the potentials of Kermode et al.
[36,37], where the nonlocality is only introduced in the S
state, the attractive nonlocality is introduced here with
equal strengths in both S and D channels as implied by
Eqs. (5.2). No pronounced effect was found in the model
value of the rms radius rD as a result of introducing the
attractive nonlocality to the D state (in addition to the S
state); probably because the contribution of the w wave to
rD is much smaller than that of the u wave.

The radial deuteron wave functions u and w of this
nonlocal potential are shown in Fig. 11 where they are
compared with those of the Reid hard-core potential [12].
Both the u and w waves have the characteristic structures
at small radii similar to those found before in the u waves
by Kermode et al. [36,37].

VI. Cz (q ) OF THE POTENTIAL MODELS
WITH SHORT-RANGE STRUCTURE

IN THEIR DEUTERON WAVES

FIG. 11. The radial deuteron wave functions of the nonlocal
potential of Table IV (solid lines) are compared to the Reid
hard-core potential [12] (dashed lines). The upper (lower)
curves are the u (w) wave functions.

potentials, which have short-range structures in their ra-
dial deuteron wave functions. This is revealed in Fig. 12,
where the q dependences of the nonlocal potential of
Table IV, the nonlocal potential of Kermode et al. [36],
and the local potential of Table I are compared to that of
the Reid hard-core potential [12]. It is interesting that
the graphs of the form factor Cz(q ) are ordered mono-
tonically by the "amount" of the complexity of the struc-
ture incorporated in the deuteron waves at relatively

0.8

0.4

There are no special features found in the shapes of the

q dependences of the form factor Cz(q ) of this class of

TABLE IV. The free parameters of the nonlocal potential.

B(1)= —14.947 142 MeV fm and A, = —300 fm

0—
I

10 15
I

20
c(n)

—14.947 14
—2 013.984
40 751.22

—260044.9
728 816.1

—680 360.6

AI~(n)

0.0
266.5741

—5 228.148
47 139.10

—150 147.5
143 155.4

r(n)

0.0
—442.8619
5 421.484

—16 591.15
11 073.24
7 816.735

2 -2
(fm )

FIG. 12. The q variations of the deuteron charge form fac-
tor CE(q ) of the nonlocal potential of Table IV (solid line), the
nonlocal potential of Kermode et al. [36] (dashed line), the local
potential of Table I (dotted line), and the Reid hard-core poten-
tial [12] (long-dashed line).
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small radii. The Reid hard-core potential [12], having
relatively the simplest deuteron waves, is at the bottom,
and the nonlocal potential of Table IV, having deuteron
waves with relatively the largest complex shapes at small
radii, is at the top. In between, and going upward, is the
curve of the local potential of Table I, having a small
"amount" of short-range structure in its w wave (Fig. 2),
and the curve of the potential of Kermode et al. [36],
having larger structure in its u wave (Fig. 3 in Ref. [36]).
The existence of such correlation between the short-range
structure in the deuteron waves and the magnitude of

CE(q ) is plausible since the short-range structures in the
deuteron waves are associated with the non-point-like
structure of the nucleon [37], and since the form factor
CE(q ) is intimately related to the deuteron structure.
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APPENDIX: FORMULA FOR THE ANALYTIC ASYMPTOTIC CORRECTION LANCE(q )

The analytic asymptotic correction b CE(q ) can be written as a sum of two parts. The first part is the u part

2 sin(qr/2) 2~s ~, 2 „.2

f u dr = f r 'e r "sin(qr l2)dr .
qr/2 q

Putting r =tR yields

2 A~2 2As
ImE, (z)= F, .

2As
Im f t 'e ' '«"dt=

1

2A

2AS ~
1 2 z, .f t 'e r 'sin(qRt l2)dt =

q q q

Similarly, the w part of b, CE(q ) can be given in terms of the imaginary parts F„ofthe exponential integrals E„(z)

2A
'2

2 sin(qr l2) D 3 3 2r„sin(qr/2)
W dr= 1+ + 22 e

R qr/2 q E yr y r r

(Al)

(A2)

Then, adding (Al) to (A2) gives the relation (4.5) for ~CE(qz)

1. Fpp0 q 25 fm

The imaginary parts F„of the exponential integral E„(z) can be written in simple forms by using the series expan-
sions [30] of E,(z) and E„(z):

1)m m

E,(z) = —r —i~ —y mm!
ca

( 1 )mpme
—im8= —I' —ln(pe ' )—

m=1 mm!

(
—1) p sinm8

m=1 mm. l

Hence, Eq. (4.6a) for F1 is obtained. Also, in the case of using the series expansion [30] of E„(z)for n ) 1,

E„(z)= ( —lnz+ f„)—(
—z)" ( —z)

(n —1)! "
0 (m n+1)m!—

mWn —1

1)n
—1 n —1 —i(n —11' ao

( 1) m im8-
( lnp+i 8+g„—)—

(n —1)! (m n+1) m—!
mWn —1

where

(A3)

(A4)

(A5)

(A6)

n —1

f„=—I + g —(n)1) .
1m

Then, F„=ImE„(z)

(A7a)

(A7b)
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F„= [icos(n —1)t)+(lnp —g„)sin(n —1)8)]—(
—1)" 'p" ( —1) p sinm8

(n —1)! (m —n +1)m!
mWn —1

(A7c)

The formulas for F„(2~ n ~ 5) of Eqs. (4.6) are obtained from Eqs. (A7) by the substitution with the appropriate value
of n.

2. For Q ~35 fm

For q 35 fm, formulas giving correct values of F„are derived from the asymptotic expansion of E„(z) [30]:

e Z

E„(z)=
z

n n(n+1)
Z Z2

n (n +1)(n +2)
Z3

(A8a)

e X
&(e+y) n /(2e+y) n (n + 1 ) /(3o+y) n (n + 1 )(n +2),i4o+yi+

P p P'
(A8b)

Then, F„=ImE„(z):

F„=e X n . n(n+1) . n(n+1)(n+2)
cosy sin8 ——sin28+

2
sin38- sin48+

P P p'

+siny cos8 ——cos26+ cos38-n n (n +1) n (n +1)(n +2) cos4t9+
P P p'

(A9)

which is Eq. (4. 10); and the real parts G„=ReE„(z):

e X n n(n+1) n(n+1)(n+2)
cosy cos8 ——cos28+ cos38- cos48+ ' ' '

P p' P'

n . n(n+1) . n(n+1)(n+2)—siny sin8 ——sin28+ sin38- sin48+
P P P

(A 10)
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