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We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic
large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula

for the leading quantum correction to the classical collective potential energy function in this theory.

This is an extension of the usual calculation of the quantum corrections to the static Hartree-

Fock energy using the random phase approximation. The answer can be expressed in terms of those
solutions of a local random phase approximation that describe oscillations orthogonal to the collective

surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from

the usual quasiboson approximation, yielding the correct ground-state correlation energy for a static
solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a
previous treatment of the low energy spectrum of Si.28

PACS number(s): 21.60.—n, 21.60.Ev, 27.30.+t

I. INTRODUCTION

In recent years, we have developed a theory of large
amplitude collective motion (LACM) in the adiabatic
limit and begun a program of applications to nuclear
physics. (For a review of this theory and extensive refer-
ences to previous work in the field, the reader can consult
Ref. [1], for applications of our work other than to nu-
clear physics Refs. [2—5], and for applications to nuclear
physics Refs. [6—8].) In almost all work in this subject,
the approach is to construct a classical Hamiltonian and
subsequently to requantize it. The justification for start-
ing from the classical limit, equivalent to mean-field the-
ory, is that it represents the leading term in the solution
of the many-body problem in powers of (1/N), where N
is the number of degrees of freedom that participate in
the collective motion.

In the theory of large amplitude adiabatic collective
motion, the largest contribution to the classsical collec-
tive Hamiltonian is the potential energy. By comparison,
the kinetic energy is of relative order (1/N). The aim of
this paper is to take a further step in the development
of the theory, namely, to compute the first quantum cor-
rection to the potential energy. This goal is to be distin-
guished from much previous work in this field involving a
quantum theory of collective motion, where the goal was
to derive a classical description of large amplitude collec-
tive motion from some approximate quantum many-body
theory. There one finds derivations based on the method
of generator coordinates [9, 10], the Born-Oppenheimer
method [ll], a generalized coherent state method [12,13],
and the equations of motion method [14, 15]. The point
at issue is that none of the aforementioned work provided
a systematic expansion in (1/N).

The basic problem is that of computing quantum cor-
rections about mean-field solutions describing nonequi-

hbriem configurations. Thus in the simplest case of one
collective coordinate, that we choose as an example, the
fluctuations must be studied at an arbitrary point on a
"collective path" that interpolates between equilibrium
configurations.

The interest of studying quantum fluctuations about
nonequilibrium mean fields has certainly not escaped the
attention of previous workers in the field, including an
extensive study of rotating nuclei [16] using a boson ex-
pansion method, a preliminary study of quantum fluc-
tuations about an arbitrary time-dependent mean field
[17], and semiclassical quantization of periodic solutions
[18] using a path integral method. In the last work it is
implied that the adiabatic case of interest to us had been
disposed of earlier [19], but a study of this last reference
does not sustain the claim. It appears that Reinhard and
Goeke and their co-workers are the only authors who have
evaluated and included a part of the correction in their
calculations (see Ref. [10], and references therein). They
have not evaluated the full (1/N) corrections, however.

In this paper we present a method for studying quan-
tum fluctuations that contains essential elements from
previous work. In Sec. II, for example, we develop a for-
mal theory of the collective potential energy based on the
idea of a moment expansion of matrix elements of oper-
ators taken between localized collective states; this is a
general method of defining an adiabatic expansion [20].
In Sec. III, we then describe the core of the microscopic
theory, consisting of three elements.

(i) The first task is the perfectly standard one of de-
composing the Hamiltonian into a sum of a (nonequilib-
rium) mean-field part and of a residual quantum part.
The mean field is chosen by application of the (classi-,
cal) self-consistent theory of large amplitude collective
motion [1] that is taken to underlie the present devel-
opments. The discussion given in Sec. II leads to the
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noncovariant (conventional) form of the random phase
approximation (RPA) matrix. The changes necessary to
obtain the covariant RPA (as defined in Ref. [1])are given
in Appendix C. A feature distinguishing our discussion
from much previous work is that we do not resort to
the Hartree approximation, so that direct and exchange
terms are treated on an equal footing.

(ii) The analysis of the quantum part is carried out
in terms of particle-hole (density fluctuation) creation
and annihilation operators. Particle-particle and hole-

hole operators are eliminated in favor of the particle-hole
operators by means of a technique called the number-
operator method [21, 22] that is technically elementary
and enforces the Pauli principle.

(iii) Matrix elements of the linearized equations of mo-

tion are taken between suitably chosen superpositions
of eigenstates of the Hamiltonian, leading to equations
that reduce to the random phase approximation in low-

est approximation. It is observed that the lowest-energy
collective mode, that plays an essential role in the self-
consistent classical theory, also plays a role similar to the
one played by the spurious modes associated with broken
symmetries.

Finally in Sec. IV we pull together the results of the
previous sections, and by a method that respects the
Pauli principle, derive a formula for the leading quan-
tum corrections to the pot, ential energy. In this way we

obtain a result that disagrees with that obtained from the
quasiboson approximation, but coincides with the correct
result for the ground-state correlation energy at an equi-
librium configuration [23]. In Appendixes A and B, we

supply some technical details omitted from the body of
the text.

In Sec. V, we show how application of an approximate
form of the theory improves the results found previously

[8] for the low-energy spectrum of 2sSi.

II. PHENOMENOLOGY

The computation of the quantum corrections to the
collective potential energy will be carried out in Sec.
IV, based on amplitudes defined in Sec. III. The present
discussion is designed to lay a basis for our rigorous
treatment. Perhaps the most important new result that
emerges from the considerations that follow is that a well-

defined meaning is assigned to the concept of excitation
energy measured with respect to a nonequilibrium con-
figuration.

A. Moment expansion and collective motion

Let us first introduce the concepts necessary to give a
quantum foundation to collective motion. For simplicity
of exposition, we shall develop the following argument
for one "collective" coordinate, but the extension to any
number is straightforward. We assume the existence of a
set of states ~n), labeled by an integer, n, and constitut-
ing a decoupled or approximately decoupled set in the
Hilbert space. Let H be the many-body Hamiltonian.
We introduce a complete set of states ~X), localized in

the coordinate X and related to the states ~n) by the
unitary transformation

(n) = f dX (X)(X)n), (2.1)

together with the Hermitian operator that characterizes
these collective states,

Q[X) = X[X) . (2.2)

We can, formally, calculate the Hamiltonian matrix
within the decoupled subspace by means of the expres-
sion

(niHin') = W„b„„
nXdX XHX'dX'X'n' . 2.3

We now identify the many-body wave amplitudes (X~n)
with a set of one-body collective wave functions

(Xin) = (Xin) . (2.4)

This is the basic tenet of the quantum version of collec-
tive motion, and expresses the fact that collective motion
is the effective behavior of a many-body system as a few-

body system. Consequently, we identify (X~H~X') as
the collective Hamiltonian. The problem is that we have
carried out a purely formal transformation, and except
under very special circumstances, where the collective
motion is associated with a symmetry operation of the
Hamiltonian, we do not know either the wave functions
(2.4) or the collective Hamiltonian. In order to make any
progress, we must add some physics, i.e. , make some spe-
cial assumptions concerning the properties of the matrix
elements of operators in the coordinate representation,
that reflect the fact that we are describing adiabatic large
amplitude collective motion.

To formulate the required assumptions, we first intro-
duce the sum and difference coordinates

Q = -'(X+ X'),
(= X —X',

and the notation

(XiHix') =—H(Q, g) . (2.7)

H(Q, P) = d(exp( —iP()H(Q, (), (2 8)

which is now required to be a slowly varying function of
P.

We consequently assume that we may expand in a
power series in P,

H(Q, P) = ) —,H&'l(Q)P",
R=O

(2 9)

Our minimal assumption is that H(Q, () is always

strongly peaked around the origin of the difference co-
ordinate. It is also slowly varying in the average coordi-
nate. This minimal assumption is reexpressed in terms
of the Wigner transform H of H,
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and by the inversion of (2.8) find the sum of distributions, is the inverse collective mass. Using the operator Q, de-

fined in (2.2), Eq. (2.18) can be cast in the form

where

(Q 4) =). "(Q)—,(—c)/~&) (() (2.10)
(X l [8, H —(d V/d Q)Q] l

X') = b'(g) B(Q)(d/d Q)8( )(Q) .

(2.20)

H'"'(c)) = f4( 'o-&("q 4) (2.11)
Here we have made the adiabatic approximation, and
have ignored all moments of higher than second order in
the expansion of '8

Substituting (2.10) into Eq. (2.3), we obtain the results

(nl+I"') = f dc)(~lc))R a(c), pq)(c))n),

&-(Q, P) = ),,
„(H'"'(Q)P)'"'

(H( )(Q) P)( ) = (.. . (H(") P) P)
v times

where

(2.12)

(2.13)

(2.14)

B. Fluctuations orthogonal to the collective path

In order to study the quantum corrections to collec-
tive motion, we introduce a class of eigenstates of the
Hamiltonian ln, u„&),p = 1, 2, . . ., where we have a non-
collective excitation on top of a collective excitation. For
each value of p, we assume existence of a set of excited
localized states, lX, p), where, in analogy to Eq. (2.1),

(2.15)

In Eqs. (2.12)—(2.14), we have thus identified a possi-
bly useful form of the collective Hamiltonian as a power
series in the collective momentum, provided we can cal-
culate the moment functions, H&"&, independently of the
wave functions (2.4). In particular, in this paper we shall
address the problem of computing the potential energy,

lX, p) = ) ln, ur„„)(n, ~„„lX,p),

(X,plX', p') = b„„b(X—X'),
(X,plX') = 0,

and, independently ot p,

QlX p) = XlX p) .

(2.21)

(2.22)

(2.23)

(2.24)

V(Q) -=H'"(Q) (2.16)

(nl[8 H]ln') = (~ ~ —lV )(nl8ln') . (2.17)

Transforming to the localized states lX), we have, as
discussed in detail in Appendix A,

(Xl[8, H]lX') = (Xl[8, '8, i]lX')
=-(dV/dQ)'bu)8")(Q)

+b'(()B(Q)(d/dQ)8( )(Q), (2.18)

where the zeroth and first moments of 8 occur, and

B=M =H~ i {2.19)

It is now possible to state the physical underpinnings of
our minimal assumption: It means that the power series
(2.9) is dominated by the lowest term.

We can choose the scale of the coordinates and mo-
menta consistently with the Poisson bracket such that
Q oc Ni~z and P oc N i~z, which is the typical scale for
the low-energy matrix elements. Here N is the number
of degrees of freedom that participate in the collective
motion. For this choice of length scale the successive
moments can be shown to be of the same order of magni-
tude, so that the convergence of the moment expansion
is thus determined by the size of P However, be. cause of
the scale of Q, each derivative with respect to Q brings
in a factor of N ~; this observation plays an essential
role in terminating expansions at low order.

We study the equations of motion for an arbitrary op-
erator, 8, first within the collective subspace,

In order to make these assumptions we must be able
to identify the states of the same p but different n. Fur-
thermore, for the latter relations we need the fact that
the operator creating the state lX, p) from lX) commutes

with Q as well as that those operators commute among
themselves. These conditions are closely related to the
adiabatic limit, where we can expect X to remain con-
stant during a fast noncollective excitation.

To reach the result that we are after, we need one more
assumption, namely, that just as the spectrum of the
states ln) can be reproduced by a collective Hamiltonian,
'8, i(X, Px), dominated by its potential energy V(X), so
also can the additional energies, ~„„,be reproduced by
an operator, ~„(X,Px) that is dominated by its local
part, u&(X). In other words, the intrinsic excitations are
assumed to vary slowly with X. In analogy to Eq. (2.20),
we find, with the help of definitions and assumptions just
made, that

(X,pl[8, H —(dV/dQ)Q]lX') = —u„(X)(X,pl8lX').

(2.25)

Later, we shall only need the zeroth moment of ma-
trix elements connecting the collective and noncollective
spaces, for which purpose Eq. (2.25) will prove suKciently
accurate.

Both (2.20) and (2.25) show that in adiabatic limit
the relevant Hamiltonian for study of the equations
of motions at general points of the collective path is
H —(dV/dQ)Q. In the following we shall elaborate on
the structure of the quantum corrections for such a con-
strained Hamiltonian.
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III. C}UANTUM CORRECTIONS
TO THE POTENTIAL ENERGY

A. Transformation of the Hamiltonian:
Normal form and number-operator method

In order to utilize the formalism that has just been
described, we must express H as a function of operators
whose matrix elements can themselves be studied by the
moment expansion.

We work with a Hamiltonian of the form

H = @t(z)h(zlz')g(z')

H —VO(Q) + ~Q1 + Hll + H22

+(H40+ H.c.) + (H» + H.c.) + H,', , (3.9)

where V0(Q) is the Hartree-Fock energy WHp determined
from the Q-dependent modes,

do not wish to cover this familiar ground again; it suKces
for present purposes that a suitable algorithm has been
established, the same algorithm that we shall apply in
Sec. V.

Next we arrange the Hamiltonian into normal form
with respect to the Slater determinant constructed from
the fh. We thus obtain the result

+-, ~(., yl*,'y')et(. )O'(y)~(y')4("), (3.1) WHF = tr(hp+ 2Vp)
—~hh + p Vhh'hh'

1 (3.10)
where the interaction, U, is Hermitian and antisymmet-
r1c)

&(z) = & (Q)f (* Q) (3.3)

where the f (z, Q) are a set of localized modes (i.e. , they
describe the local single-particle orbits), referring to the
point Q along a collective path; these modes are deter-
mined by applying the self-consistent theory of large am-
plitude collective motion [1, 8]. They are thus solutions
of the constrained Hartree-Fock equations

~(z ylz' y') = ~(y zl—z' y') = —~(z yly' z') (32)

We transform the Hamiltonian (3.1) by substituting
the mode expansion (where we use the summation con-
vention)

and

Q l = 9ph 0p0h + (Ihp Phipj t

H11 —

happ'

4'p Qp' +hh'

4'hathi

)
t

H22 —Vph' hp' (0p 4'h )(0h~ 4p' ) ~

H40 =
4 Vpp'hh'0p4p 0h'1)i h

H31 =
2 Vpp'hp" Pp4'h4'p'4'p"

+ 2Vphh h" 0 |)'h"0h'4h

Vpp/pllpl lg I1l) I (/pill IPpll

+ 4 Vhh'h" h'" 4h'" 0h" 0h PhI

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

+ph —~mph (3 4)

(It is not necessary to introduce any special assumptions
concerning the matrix elements 'Mpp or 'Hhhi. ) Here 'M

p
are the matrix elements of

'H=h+V, (3.5)

where

~(*l*')=j~(*,~l~', u')~(v'Iv),

~(y'Iy) = ) fh(y')fh(y)

(3.6)

(3 7)

Furthermore, A has the value

A = dV(Q) jdQ, (3 8)

and q&h is a suitably chosen time-even solution of the
random phase approximation (RPA) determined by the
basis (3.3). [More precisely, it is a solution of an iterated
local RPA equation whose eigenvalues are the squares of
the usual ones; this equation must, in general, be solved
in conjunction with Eq. (3.4).] The solutions of interest
are real, and we choose the eigenvector with the smallest,
often negative, eigenvalue. The solution procedure, the
practical definition of the collective coordinate, Q, and
other such matters of fundamental importance have been
described in Refs. [1,8] and earlier work cited there. We

When deriving the equations of motion, as we have
seen in Sec. IIB, we must subtract from H the quan-
tity (dV/dQ)Q. We shall, as a practical expedient, ap-
proximate the operator Q by the one-body operator Q1,
defined in Eq. (3.11). The difference between these two
operators is of theoretical importance in guaranteeing the
covariance of the description of the geometrical structure
of our collective subspace, but has so far proved to be
of no practical importance in numerical applications [1,
8]. In any event, the extension necessary to obtain these
extra terms is described in Appendix C. The following
derivations remain largely the same, apart from modifi-
cations to the detailed form of some terms.

As in previous, related, work on quantum Huctuations
about an equilibrium mean-field configuration [22—24],
we shall analyze this Hamiltonian by the combination of
two techniques.

(i) By means of the so-called number-operator method,
we shall rewrite the Hamiltonian as a formal series in the

particle-hole (density fiuctuation) operators @pgh and

This method is used in place of the usual boson
mapping; relative to the latter, it has the advantage that
the Pauli principle is automatically taken ca.e of, but the
disadvantage that the algebra of particle-hole operators is

nonlinear. Below, we shall give a brief review of the basic
elements of this method. This analysis shows that H~~

is second order in the density Auctuations, with higher-
order corrections, H22 and H4o and Hermitian conjugate
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are exactly second order, Hsi and Hermitian conjugate
are at least third order in these operators, and H&2 is at
least fourth order.

(ii) Further analysis of the resulting Hamiltonian will
be carried out with the help of equations of motion in
which the basic dynamical entities are all possible ma-
trix elements of density-fluctuation operators, with ma-
trix elements of a product analyzed by means of the com-
pleteness relation. The simplest way of reaching the final
form of the equations of motion is to use the original
form of the Hamiltonian and of the commutation rela-
tions for all gtg pairs, and to subsequently apply the
number-operator method. But the correct equations of
motion can also be obtained after first carrying out the
number-operator transformation on the Hamiltonian and
on the algebra [22]. In the latter case, one is led to the
concept of effective Hamiltonian described below. (Simi-
lar ideas in another context have been applied previously
with some success to the low-energy spectra of semimagic
nuclei [25].)

We next review briefly the elements of the number-
operator method. We write the number operator, N, in
the form applicable to a system with N particles,

o
I )= '(& & —&t&)o I )

o„ln)= n '(y, y-, —ghyh)o„ln) .

(3.18)

(3.19)

As an example of the successive application of (3.18),
we have

(3.17)

This equation describes the only independent Casimir
invariant of the algebra of particle-hole operators in the
space of antisymmetric wave functions for N particles,
and as such is an expression of the Pauli principle. If 0„
is any operator that diminishes the particle number by
n, and ln) is any state with N particles, we can derive
the two following identities from (3.17):

(n'l@p@p ln) = (n'l4'p&h@h@p ln) —(n'I@p@p @p @p ln)

= (n I@t@hqh@p In) ——,(n l@,@,„A@h0h @h0p @p I ) . (3.20)

Here, in the first transformation, we have 0„=Qp,
and in the second line two additional applications of
(3.18), to other, equally obvious choices of 0„,with n = 2
and n = 1, respectively, have been used, giving an ap-
proximate result where the first omitted term involves six
density-fluctuation operators. Of course the sums go over

all indices except p. The operator /hah is given by a sim-
ilar expression with summation over all indices except h.
The operators in H3~ and H2p may be transformed in like
fashion, and it is then seen that one obtains series that
start with terms that are cubic and quartic, respectively,
in the density fluctuations. The utility of the transfor-
mation just described is not at all obvious. In general, we
shall discover that when matrix elements are evaluated by
sum-rule methods to be described, each matrix element
of a density-fluctuation operator contributes an amount
of order N ~2, because this is the average size of RPA
amplitudes as long as the quantum fluctuations are about
a stable mean-field solution. In most cases, we encounter
incoherent sums over such quantities, where the size of
the individual matrix element then determines the size of
the associated sum. Nevertheless, the matter of counting
orders is more subtle than we have so far indicated, but
further elaboration of this point will be more meaningful
within the context of the arguments developed in Sec.
IV.

The number-operator transformation may also be ap-
plied to the exact commutation relations

�

[0,o„o;o.]=&,&„&..@,, q,-~„.q, yt .
t

(3.22)

We then see that the second term on the right-hand side
of Eq. (3.22) is at least second order in the density fluctu-
ations. For our purposes, we can thus replace this equa-
tion by the quasiboson corrunutator,

(3.23)

where we have introduced a notation for the particle-hole
destruction and creation operators,

(3.24)

We are now in possession of all the elementary tools
needed to calculate the potential energy defined by Eq.
(2.16). The value of the leading quantum corrections that
we seek will be seen to be determined by solutions of the
equations of motion at the RPA level of accuracy. We
therefore turn to the problem of studying these equations.

B. Modified RPA analysis

A typical element needed in the analysis of (YIHIX),
the quantity that enters into the evaluation of the quan-
tum corrections to the potential, is the matrix element
of a product of fluctuation operators. As an example, we
consider a contribution from Hqq,

[0p @p" @p4h] = bpp" @p 0ht
„

t
„

t (3.21) (Yl&p h. &phlX) —) (Yl+p h II)(Il+phlX& . (3.25)
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Accuracy to relative order N is maintained by choos-
ing the intermediate states to comprise two sets: the ele-
mentary fluctuation operators induce transitions primar-
ily either to a range of localized collective states IZ) or to
states, IZ, a„(Z)),with additional intrinsic excitation en-
ergies u&(Z), that we shall soon identify with local RPA
states. Thus to evaluate sums such as (3.25), we must
calculate the following matrix elements:

Hefr —~php'h'Ap&h~ Aph

+~(8php h'AphAp'h + H. c.) + AQi, (3.37)

for the inhomogeneous terms that have their origin in our
choice of nonequilibrium mean field as a starting point.

It is useful to observe that the same equations of mo-
tion follow by replacing the Hamiltonian H by an oper-
ator, H, fr, where

(Y, p IAp„IX) = Z„(phlXY),
(Y, s IA.hlX)

—= y (phlXY),

(YIA „IX)=—Z(phlxY),
(Y'IAphlX) = P(phlXY) .

(3.26)

(3.27)

(3.28)

(3.29)
H = Co(Q) + H, fr . (3.38)

and evaluating the commutator by using the quasiboson
commutation relations (3.23). In this approximation, we

may replace the Hamiltonian, Eq. (3.9), by the expression

We remind the reader that we are after moment ex-
pansions for these matrix elements, since it is simple to
verify that integrals over products of moment expansions
of the individual operators will generate the required mo-
ments of the Hamiltonian (convolution theorem). It will

turn out to be sufficient to calculate the zeroth moments
of (3.26) and of (3.27), whereas we shall require up to the
first moments of the recoil amplitudes (3.28) and (3.29).
In other words it is sufficient to consider the approxima-
tion

(Y &IAphlx) =—~(&)&~(phlQ)

(»s IA hlx) =—~(&)~ (phlQ)

(YIAthlX) = b(()Z& &(phlQ)

+(—icl/&&) ~u) &"(»IQ),
(Y IA,.IX) =- ~(~)~&'l(phlQ)

+(- W~~)~(~)~&"(phlQ)

(3.3o)

(3.31)

(3.32)

(3.33)

(The reason that we can ignore higher moments, despite
our assertion in the introduction that the moments are
all of the same order of magnitude, is that the corrections
to the contribution of a given moment involve derivatives
with respect to the collective coordinate Q of higher mo-

ments, and each such derivative introduces a factor of
~-1/2 )

To derive equations for these moments, the cleanest
procedure is to use the Hamiltonian in the form (3.9) be-
fore application of the number-operator transformation,
together with the exact commutation relations (3.21) and

(3.22). Subsequent application of the number-operator
relations (3.17)—(3.20) then allows us to identify the lin-

ear approximation

4Jp rsZp(phIQ) = Mphpih'Z„(p'h IQ) (3.39)

where rs is the usual generalized Pauli matrix (0 I ),

/ ( hlQ) I
zp(phlQ)

Ig~.(phIQ)r ' (3.40)

We cannot, however, obtain the value of the function

Co(Q) except by computing the zeroth moment of the
original Hamiltonian and comparing the corresponding
result for H g.

The procedure just described, that will be imple-
mented below, can be generalized as follows: (i) Com-
pute the exact equations of motion for particle-hole oper-
ators, using the exact commutation relations. (ii) Apply
the number-operator method up to any desired order to
both the equations of motion and to the algebra. The
latter now becomes a nonlinear algebra of particle-hole
operators. (iii) Define H,g as a sum of contributions of
different order so that its commutator with a particle-
hole operator, computed by means of the nonlinear al-

gebra, also carried to the appropriate order, yields the
equations of motion to the desired accuracy. (iv) The
function Co(Q) is to be computed as described above'.

The results of steps (i)—(iii) are somewhat surprising, and
will be reported in a separate account.

Let us note that the only difference between (3.37)
and the quadratic terms of H is that H40+ H04 has been
multiplied by a factor of two in the former.

The preliminary spadework necessary to derive matrix
elements of the equations of motion has already been car-
ried out in Sec. II B.We deal first with the excited states.
The equation we need is simply the zeroth moment of the
equation of motion, Eq. (2.25). This yields standard RPA
equations, which we write in the matrix form

—[Aph, H] = Aphp h Ap h + 8php h p h + Aqhp,t t

(3.34)

alid

~W 8~=
I 8.~. (3.41)

where

+php'h' —+pp'~hh' +hh'bpp' + +p'hh'p ~ (3.35)

~php'h' —Vhh'pp' (3.36)

and the asterisk indicates complex conjugation. Equa-
tions (3.34) are recognized as the RPA equations, except

That the solutions satisfy the usual RPA orthonormality
condition,

) Z„(ph)X„*(ph)—P„(ph)P„'(ph) = 6„„,(3.42)
ph

follows from the equations themselves together with the
completeness relations derived below.
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As discussed in our previous work on adiabatic large
amplitude collective motion, we use the eigenvector with
lowest uz (which is always real) of the local RPA equa-
tion, Eq. (3.39), to determine the collective coordinate.
This squared eigenvalue can be positive, corresponding to
a stable mode, or negative when the local mode is unsta-
ble. (If there is more than one unstable mode we have to
introduce more than one adiabatic collective coordinate. )
The character of this eigenvalue will generally change as
we change the point Q. According to the standard the-
ory, as we have already remarked, the role of this solution
is to determine the self-consistent cranking operator. In
geometrical terms this solution specifies the direction of
a path labeled by the variable Q, the one-dimensional
manifold that provides the domain of definition of the
collective Hamiltonian. In any event this solution is to
be excluded from the list of solutions that describe ex-
cited states. Henceforth, we use the symbols a, b to refer
to the solutions of (3.39) exclusive of the lowest one(s).

There is, of course, a mathematical problem, the same
one that we encounter when there is a Nambu-Goldstone
mode, namely, that of mathematical completeness of the
solutions of (3.39). The resolution of this problem, as we

shall see in due course, is that the extra solution associ-
ated with the collective path enters the completeness re-
lation in a manner completely analogous to that in which

spurious modes do. We shall now study this mode using
Eq. (2.18). Utilizing a matrix notation similar to that
defined in (3.40), we calculate for the zeroth and first
moments of the aforementioned equation,

~php~h Z~ I(P'h') = i(dV/dQ)rsZ~'&(Ph) —AQ, (3.43)

Plphplh~ Z (p'h') = iBra Z— (ph), (3.44)

where

that can be established directly from the definitions of
these quantities, where p is the local density matrix, and
also implies that

X&'&(ph) = —.&„,,

yI'~(ph) = iqph .

(3.47)

From this last result we see that since (dV/dQ) = A, a
consistent solution of Eq. (3.43) is

ZI'I(ph) = 0. (3.48)

This is a local equation, so that it is not inconsistent to
have dZ&ol(ph)/dQ g 0. Starting from (3.48), which is

also a consequence of the definition of the density matrix,
we can unroll the same reasoning in the reverse direction.

We have not yet extracted all the information con-

tained in Eqs. (3.43) and (3.44). If we differentiate the
former with respect to Q (A is not differentiated here),
and use the results just established, we find the equation

dZ~o&(p'h') .dz V
JHphp ht

Q
—i z r&Z~ "~(Ph) (3.49)

Together with (3.44), this provides the missing solution of
the RPA, namely, the one that determines the collective
path. We also see that (dZ~ I/dQ) does not describe a
spurious mode.

We are almost in possession of all the results necessary
to carry out the calculation of f d((Y ~H ~X) One miss. ing
ingredient is the completeness relations for the solutions
of the RPA to which we now turn.

(

&ph
)

(mph)
(3.45)

It is appropriate to refer to (3.43) and (3.44) as the equa-
tions of motion along the path.

The unambiguous solution of these equations is based
on the recognition that (3.44) is one of the decoupling
conditions in the theory of large amplitude collective mo-

tion, the so-called mass condition [1] in the classical the-
ory of large amplitude adiabatic collective motion. The
basis for this identification, described in Appendix B, in-
cludes the equations

C. Completeness relations

d((Y')[Aph, A', h, ])X) = bpp bhh . (3.50)

To evaluate quantum corrections to the potential en-

ergy, in addition to the results of the previous subsection,
we also need the completeness relations associated with
the quasiboson corrunutation relations. For example, we

study the zeroth moment of the commutation relation

dX~ ~(ph)/dQ = (dp/dQ)h»

dy~'~(ph)/dQ = (dp/dQ), . (3.46)
Utilizing a sum over intermediate states, the definitions
(3.30)—(3.33), and a definition to be discussed below, we

find straightforwardly at each point Q of the path

) [&a(Ph)&g (P h ) ya(P h )ya(Ph)] + (ephPp'h' + Pphlp'h') —bpp'hhh'
a

Here we have introduced the definition

(d/dQ)ph = iPph/N . (3.52)

The point of this definition is that q and p can thus be

I

identified as a set of (local) canonical coordinates. The
consistency of this identification is justified in Appendix
B.The contribution to the sum rule associated with these
operators arises from transitions along the path, i.e. , from
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the quasispurious mode. The term involving the q and
p's can be replaced by an expression involving the corre-
sponding eigenvector of the RPA, in which case we find
that Eq. (3.52) is equivalent to the usual RPA normal-
ization condition.

From the vanishing commutator between two A oper-
ators, we obtain in a similar fashion

Here the linear term has been omitted since it does not
contribute to the final result.

If we now evaluate the zeroth moment of Eq. (4.4), as
discussed in great detail in Ref. [23], we find that (4.2)
overestimates the contributions of H~~ and H40 by a fac-
tor of two. The right answer is therefore

) [X;(p'h g' (ph) —Z,'(ph)P (p'h )] = 0. (3.53)

Notice that in this relation, there is no contribution from
the quasispurious mode. These last two equations and
their complex conjugates can be assembled into the usual
completeness relation for the RPA in exactly the same
fashion as when there is a spurious mode, implying all
the textbook properties [26] such as normalization of so-
lutions, that we shall require below.

V(Q) =Vo(Q)+ 2 ) ~ (Q) —trA
)

-[(H )''+(H. +H.)''],
with

(Hl 1 ) —
2 ) (7fpp' ~hh' 7fhh' ~pp')

php'h'a

xP;(ph)P, (p'h ),

(4 5)

(4.6)

IV. EVALUATION OF FIRST QUANTUM
CORRECTIONS TO THE POTENTIAL ENERGY

For technical reasons, it is convenient to first evaluate
the zeroth moment of Eq. (3.37), the effective Hamilto-
nian that yields the correct equations of motion in the
quasiboson approximation. The method of evaluation
is exactly the same as that used for the completeness
relations including contributions from transitions along
the collective path as well as from the RPA intermediate
states "orthogonal" to the collective path. We find

H~ ~(Q) = A h [P;(p'h )P, (ph)
—(i/&)(Vp'h'P ph + Pp'h'mph)]

+-[8 h h Z,*(p'h )p, (ph) + c.c.], (4.1)

where the term linear in the quasiboson operators does
not contribute. This expression can be transformed with
the help of the completeness relations (3.51) and (3.53).
We thereby find

H,",(Q)=-,') Z. WZ. ——,'trW

(4.2)

H = Vo(Q) + H,fr,
H, fr ——Hii + Hgg+ (H4p+ c.c.) .

(4.3)
(4.4)

This is the well-known result [26] for the zero-point en-

ergy associated with the standard bosonization proce-
dure, except that it refers to the local solutions at a spe-
cific point of the path. As is well known (see, e.g. , the
discussion in Ref. [23]) this expression overcounts some
contributions, due to the fact that we have not kept track
of the Pauli principle.

As has been emphasized, to obtain the correct descrip-
tion of the ground state, we must be sure that we have
not violated the Pauli principle to the required accuracy.
It therefore behooves us to deal with the Hamiltonian
before transformation by the number-operator method.
We thus use the following approximate form of Eq. (3.9):

(H04) = -„'8h h &,'(p'h')X, (ph) (4.7)

For dV/dQ = 0 this expression reduces to a value of the
ground-state energy that agrees in the limit of weak resid-
ual interaction with the result of perturbation theory [22,
23] (of course after addition of term ziti, associated with
the collective coordinate Q). It also contains the zero-
point energy calculated by Reinhard and Goeke [10] as
a special case: If we discard the ~, terms, and approx-
imate the trace by the contribution along the collective
path (discussed in more detail in the next section) we
obtain the expression (4.4b) in Ref. [10].

V. APPLICATION OF THE RESULTS TO Si

(& + 8)(& 8)php'h''Vp'h' —~i'Vph
2 (5.1)

Since it can easily be shown that there is a one-to-one
correspondence between the left and right eigenvalues of
the iterated RPA and the Z„and P„eigenvectors of the
usual RPA, the complete set of solutions of Eq. (5.1) can
be shown to provide all the information we will need to
calculate the quantum corrections.

As an application of the result derived in the previous
section consider the problem discussed in Ref. [8] (which
we shall refer to as WDK in the following). Let us set
the stage for the further discussion by giving a brief re-
capitulation of the relevant points of that paper. There
we describe a calculation for z Si in the sd shell using
Kuo's interaction. The most important features of this
system for the present discussion are the fact that the HF
equations have two stable solutions: a global minimum
of oblate deformation and a local prolate minimum with
slightly higher energy. In WDK we discuss in great detail
the calculation of a path (where each point represents a
triaxial Slater determinant) connecting the two minima.
A projection of this path on the quadrupole-deformation
P-p plane is given in Fig. 1.

For the calculation of this path the algorithm con-
sists of solving the local, constrained, Hartree-Fock equa-
tions (3.4), where the constraining operator (or rather
the numbers mph) are obtained self-consistently from the
iterated RPA equation
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the description of the spectrum as compared to the exact
shell-model spectrum is quite good for the ground-state
band, but of limited quality for the first excited band,
which is the band built on the prolate minimum. Let
us now study how quantum corrections to the potential
change this picture.

We write

V(Q) = Vo(Q)+ 2 ) cu, —tr(A)

J2$-[(H»)(') + (H„+H„)('&]—) 2Ig

20 15 10

FIG. 1. The one-dimensional collective path projected
onto the quadrupole deformation P-p plane. (P = (Q2p) +
2(Q22) .) The oblate minimum is attained for y = s', corre-

spondinm, to symmetry around the z axis. The dots indicate
the points Q = i/4, starting from the oblate minimum where
i=0.

J2 p2H=) ' + yVp(Q). (5 2)

For future reference the potential Vp(Q) is given in Fig. 2.
We have quantized the Hamiltonian (5.2) and found that

In WDK we make the additional approximation of only
considering the space of shapes of even multipolarity, i.e.,

of ellipsoidal symmetry. This reduces the dimension of
the RPA matrix considered by a factor of 4. (This means
that the space of excitations, or equivalently the RPA
matrix, is divided in four equal parts. One part gives the
ellipsoidal excitations, the other three parts each con-
tain an excitation corresponding to a rigid rotation of
the system as well as some other modes that are dis-
regarded. ) The rotational modes are used to calculate
the position-dependent moments of inertia, so that the
collective dynamics is described by the Hamiltonian

The first two corrections terms are the ones described in
the previous section and do not need further explanation
apart from the statement that we use only the ellipsoidal
excitations to calculate these two terms; the last term,
which is a subtraction of the expectation value of the
rotational energy in the local Hartree-Fock state, is just
a part of the total expression for the quantum corrections
obtained from the remaining three quarters of the space
(see, e.g. , Ref. [26], Eq. (8.111)).

The quantum corrected potential energy is given in
Fig. 2 as the dashed line. Clearly we have deeper min-
ima and a higher barrier, so that the wave functions will
become more strongly localized on the minima. In Fig.
3 we give each of the corrections to the potential en-

ergy separately. The solid line represents the quasiboson
result &[+ up —tr(g)], the dashed line represents the
rotational energy —Q,. (J; )/2X, , and the dotted line rep-
resents the overcounting correction —[(Hqq)& ) + (Hp4 +
H4a)( )]. We find that to good approximation the contri-
bution (H4p+Hp4) equals —2 times Hqq, a result that can
be shown to become exact in the perturbation limit. We
do not understand why this relation holds so well for our
calculation, but it may be due to a weak residual interac-
tion. In any event, in the following we shall disregard this
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FIG. 2. The potential energy Vp(Q) along the collective
path (solid line) as well as the quantum corrected potential
energy V(Q) (dashed line). Q = 0 corresponds to the oblate
minimum, whereas Q = 2.15 for the prolate minimum.

FIG. 3. The quantum correction to the potential energy,
decomposed in the quasiboson result [P u —tr(A)], given by
the solid line, the rotational zero-point energy [P (J„)/2X„],
given by the dashed line, and the overcounting correction

( —[(Hyy) + (Hgp) + (Hp4) ]), given by the dotted line.
The dash-dotted line represents the approximation (5.4) to
the quasiboson result.
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term, and concentrate on the two remaining terms. We
have also calculated the quantum correction correspond-
ing to Eq. (4.4b) in Ref. [10]. Recasting this expression,
which is given in terms of the Gaussian overlap approxi-
mation, into a form using our standard notation, we find
the following approximate result for the quasiboson part
of the correction:

'(Ifl B + Ifl &ii)
= ——,'(Ifl '+ Ifl'&i) . (5.4)

Here Iflz = P &(f(hl)z, and we have used our choice

of normalization of f (i.e. , Bi' = 1, see WDK) in the
second half of the equation. Clearly we find that this
approximate quantum correction is always smaller than
—2~~. As can be seen from the dash-dotted line in Fig.
3, that represents this result, this is in general a good
approximation to the quasiboson result, except near the
top of the barrier.

In Table I we give the numerical values we have calcu-
lated for some low-lying 0+ states. We give both absolute
and excitation energies to show the effects of various ap-
proximation schemes in the best possible way. The first
column gives the exact shell-model result, as a bench-
mark to measure the quality of various approximations.
The second and the third column give the results of a re-
quantization of the one-dimensional Hamiltonian without
(second column) and with (third column) the inclusion
of quantum corrections. Not surprisingly the absolute
value for the energies becomes closer to the true value
if we include quantum corrections, even though we ap-
parently still need more to attain the correct result. It
is gratifying to see that the excitation energy of the first
excited 0+ state, the bandhead of the first excited band,
is much closer to the true value.

For sake of comparison we give the RPA value for the
oblate and prolate minima, which are V(Q) + &~i, as
well as the excitations obtained by adding ~i (or uz) to
this value. As can be seen ~~ and u2 are quite close.
This has to do with the fact that we should really use
a two-dimensional coordinate surface. Stopping short of

that approach we have done a poor man's calculation
along the collective path. We realize that our path can be
imbedded in the (Qi, Q2) plane, and that due to the poor
decoupling it does not follow the line Q2 ——0. Actually,
in WDK we have calculated the change b,Q2 from point
to point. If we evaluate the sum of these numbers we
have an estimate for Qq ——q2(Qi) along the path. Since
we are at the bottom of a valley, we know that to lowest
order the potential as a function of Q2 is harmonic about
the points of the valley, with frequency ~2. Using all this
information we requantize the approximate Hamiltonian
(valid for 0+ states alone),

2 (Pi + +2 ) + EHF(Q') + 2~&[Q2 —q2(Qi)]

+-') .-.——,'t [&(Q )] ——,'):(J,')(~, (Q )
a+2

(5.5)

The results of this calculation are given in the column
labelled "2D" and can be seen to give a much better
overall result for the excitation spectrum.

VI. CONCLUDING REMARKS

We have shown that it is possible to calculate the lead-
ing quantum corrections to the theory of large amplitude
collective motion without undue effort. The theory is
closely linked to that of the ground-state correlation en-

ergy for the RPA, and requires only knowledge about the
RPA matrix and its eigenvalues that we have to evaluate
anyway to solve for the collective surface in the theory of
large amplitude collective motion.

Since our discussion starts directly from the Hartree-
Fock equations, and not just from the Hartree equa-
tions, we have to be careful about possible overcount-
ing of higher-order terms that have already been ac-
counted for in lower terms through the exchange mecha-
nism. This leads to the appearance of the "overcounting
corrections, " which fortunately appear to be small for the
present calculation.

Inclusion of the quantum corrections in our calcula-

TABLE I. A comparison of various approximate calculations of the 0 energies. E„gives absolute energies, whereas E„
represents the excitation energies. The first column gives the exact shell-model results. The next two columns represent the
results of quantization of the one-dimensional collective Hamiltonian; the first without quantum corrections, and the second
with inclusion of these corrections. The column labelled "2D" gives the results of the approximate two-dimensional calculation
discussed in the text. The last column gives the results obtained from the RPA on either minimum.

E+
1

Eo+
2

E+
3

Shell model

-149.638
-145.121
-140.409
-139.634

no zero pt.

-140.535
-137.580
-132.822

-127.841

1D
zero pt.

-146.941
-141.987
-134.929
-130.858

2D

-146.904
-142.163
-138.134
-137.347

RPA

-147.556

-142.381
-138.256

-136.618

(-138.058)
(-136.187)

3

4.517

9.229

10.004

2.954

7.712

12.693

4.953

12.012

16.091

4.741

8.670

9.557

5.175

9.300

10.937

(9.498)

(11.369)
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tion for ~sSi improves the calculation of both binding
and excitation energies. We have shown that a quasi-
two-dimensional calculation improves the results even
more. This makes it even more compelling to perform
a real two-dimensional calculation, which is currently in
progress.

This work was supported in part by the U.S. Depart-
ment of Energy under Grant No. 40264-5-25351 and by
the U.S. National Science Foundation under Grant No.
14577-5-25290.

APPENDIX A: EQUATIONS OF MOTION
ALONG THE PATH

(Xi[8, H —(dV/dQ)Q] iX') = 0 . (A2)

It turns out, however, that neither (A2) nor its prede-
cessor (Al) is sufficiently accurate for the needs of Sec.
III. For these latter purposes, by utilizing the moment
expansion, the right-hand side of (Al) can be rewritten
in terms of the first moment of (Xi8iX'),

(X —X')(XiHiX') = (8('&(Q)(—'8/B()b(()
= b(~)«"(Q), (A3)

and will thus contribute to the zeroth moment of the cor-
responding equations of motion. But we shall also need
the leading contribution to the first moment. A length-
ier, but elementary calculation shows that the collective
kinetic energy contributes an additional amount

Let us extend the concise discussion given in Sec. II A,
by giving some more details. We study the equations of
motion for an arbitrary operator, 8, within the collective
subsp ace,

(Xl[e H]IX') = (Xl[~ &«i]IX')
= [V(X') —V(X)](X[8iX')
=—(dV/dQ)(X' —X)(XIOIX') (»)

where we have made the adiabatic assumption that the
collective Hamiltonian, 'R~ i, is dominated by the poten-
tial energy V.

Using the operator Q, for which the states iX) are its
eigenvectors with eigenvalues X, we can rewrite (Al) as

php'h'B = (Rpp'bhh' Rhh'~pp') + Vp'hh'p Vhh'pp'

(B2)

and the further identification

qph = (&Q/&php) .

Thus Eq. (Bl) becomes

phpihi BQ 1 dpph

Bppihi M dQ
(84)

This is the standard mass condition in the theory of large
amplitude collective motion and also one of the RPA
equations determining the matrix elements qph.

We also consider the justification of Eq. (3.52) by com-
puting

dQ dQ dpph dQ dphp

dQ dpph dQ dphp dQ
= ( i/&)(qh-pPph Phpqph)
= (—i/N) [q, p]hh = 1 . (B5)

APPENDIX C: COVARIANT FORM OF THE RPA

In this appendix we discuss the derivation of the co-
variant RPA in the context discussed in this paper. As
we have shown in Sec. II B, the Hamiltonian relevant for
the study of local RPA excitations is H —AQ. We now
allow Q to be a sum of one- and two-body operators,

Q[p] = «(pq"') + 2«(pq'" p) (C1)

Arranging Q into normal form as we did with H, we find
to the accuracy to which we are working,

(~ —B)php h qp h = (1/M)(dpphldQ)

In fact, the de'erence matrix that appears on the left-
hand side of (Bl) coincides with the quantity that is
defined as the reciprocal mass matrix, B, in the the-
ory of large amplitude collective motion based on time-
dependent Hartree-Fock theory [6, 7]. According to the
definitions (3.35) and (3.36) we have (the use of super-
scripts is borrowed from previous work)

~'(&)B(Q)(d/dQ)~'"(Q)

where

(A4) Q = Q[p] i Qi y EHii + 6,H22+ (bH40 y H.c.) .

(C2)

B =—I-' —= a('~ (A5)

is the inverse collective mass. Thus we have derived Eq.
(2.20) .

Of course, the role of the first term is that it furnishes the
constraint in the derivation of the constrained Hartree-
Fock equation (3.4) from the variational expression

b(lV[p] —&Q[p]) = 0 .

APPENDIX B: RPA IDENTITIES

We consider the solution of Eqs. (3.43) and (3.44). We
first note that if we use Eqs. (3.46) and (3.47) [the latter
already expressing the solution of (3.43)] in (3.44), then,
for example, the first row of the latter becomes +Hi 1 — ~(qpp'gp@p' qhh'Oh@hi) (C4)

The term —AQi combines with a contribution to H, as we
have already shown in the study of the RPA in the main
text. The remaining terms that have not been treated in
the text have the values



NIELS R. WALET, ABRAHAM KLEIN, AND G. DO DANG 45

(2)
'h' — ~(q 'bhh' Vhh'happ' + J, hh', )

z (2)+~php'h' — &hh'pp' '

(C7)

(C8)

These are special cases of the more general formulas

b'0[P]
b.Aphp h

——A
bpph Ph'p' ) (C9)

&H» = —&v,'h'h, (@p@h)(@h @p ) (C5)

6H4 O
= —~ 4 |J p/ h h I q p y p

I 0'h ' oh ( )C6

Thus the RPA matrices A and 8 have the additional

contributions

b'Q[P]
&&p~p~ ———&21 ~

+c.c.),Pph Pp'h'
(C10)

that are equivalent to general formulas developed in our
previous work and reviewed in Ref. [1] in the context
of the iterated RPA. (The extra contributions displayed
here correspond to what we have called the "symplectic
RPA. ") Our tentative conclusion based on calculations
carried out for Si is that these extra terms are not nu-
merically significant in this case. This is fortunate, since
their inclusion does complicate the algorithm. We should
be alert, however, that we may not always be so fortunate
in future applications.
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