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Neutral pion condensation in quark matter is investigated including vacuum polarization effects. The
vacuum instability is removed by eliminating the Landau ghost from the meson propagators.
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Relativistic field theoretical models describing fer-
mions moving in background meson fields are frequently
used to describe the structure of nucleons [1], nuclei [2],
or infinite matter like quark matter [3] and nuclear
matter [4]. Since these models are relativistic, they are
capable of describing the change of the vacuum structure
due to the presence of valence particles, i.e., the vacuum
fiuctuation effects. However, in a series of papers [5] it
has been pointed out that, in these nonasymptotically free
field theories, the vacuum by itself exhibits an instability
in the following sense: If one applies the loop expansion
and the standard renormalization procedure, the energy
of the nontranslational invariant vacuum in which the
background meson fields have finite momenta can be
made arbitrarily low relative to the translational invari-
ant vacuum by increasing the momenta of the meson
fields. It has been pointed out that this instability is relat-
ed to the "Landau ghost" [6] in the meson propagators,
i.e., poles of the meson propagators at spacelike momenta
of the order +—

q =1 GeV. Recently a method to re-
move the Landau ghost has been proposed [7] by extend-
ing the ideas of Redmond and Bogoliubov, Logunov, and
Shirkov [8] to the case of finite baryon density. In this
paper we will show that the vacuum instability discussed
above can be removed by using the method of Ref. [7].
We will use the chiral o. model [9] as a model for quark
matter. The mechanism by which the meson fields ac-
quire finite momenta is the familiar pion condensation
[10]. Recently [3], this model with a neutral pion con-
densate [ll] has attracted attention because, due to its
simplicity and transparency, it can give valuable insights
into the more complicated calculations for finite solitons.
In particular, we can use this model to get insight into
the role of a classical pion field in quark systems [1],and
this point, together with the problem of the vacuum in-
stability, motivates our work.

The Lagrangian of the linear o. model is, assuming ex-
act chiral symmetry (m =0),

X=@[ijl g(o +i y, r.—rr)]g+ ,'(t)„o)—
+—'(8 m)2 — (u2+m2 v2)2—

2 p 4

where f is the quark field and o and sr are the chiral
meson fields. Here v=f, where f is the pion decay
constant, and A, is related to the o. meson mass by
A. =m /2v

We assume neutral pion condensation with the follow-
ing standing wave configuration of the classical meson
fields [3,11]:

O. =Vcosq x ~ =m =0, m.3=v sinq. x . (2)

2=+ p +m + ++(p q) +q m
4

1/2

(3)

A useful concept in Lagrangian field theories is the
effective action (I ) which is a functional of the classical
meson fields, from which the energy density of the system
can be obtained directly. In actual calculations one has
to specify an expansion scheme to approximate I, and
the one used most commonly is the loop expansion. In
this scheme, the one-loop approximation is identical to
the familiar Hartree approximation, and the energy den-
sity of the system simply consists of the contribution due
to the classical meson fields and a sum over the energies
of all occupied fermion states with fixed background
meson fields. In our case,

~B+~F+CD (4)

The radius of the chiral circle v and the momentum q are
treated as variational parameters. The translational in-
variant vacuum (zero density) is characterized by v = v

and q=O. In the case q=O, the quantity m =gv has the
meaning of an effective quark mass. The parameters of
the model are the free quark mass m =gv and m

The meson fields (2) are obtained from the "normal
state" (o =v, sr=0) by applying a chiral rotation. Since
this rotation is a local one, the energy changes and the
pion condensed state might become the ground state.

With the meson fields (2), the Dirac equation for the
quarks can be solved analytically by undoing the chiral
rotation mentioned above, and the spectrum is given by
[1 ll

E(p) =+E+—(p)
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where e~ is the energy density of the classical meson
fields,

8U

and e~ and eD are the contributions of the Fermi and
Dirac sea, respectively, given by

d3
e~ =P~+ f [E+8(A~ E+—)+E 8(Ax E—)],

where X=F or D, P~ = 1, PD = —1, A~ equals the Fermi
energy E~, and AD is an ultraviolet cutoff which we will

let go eventually to infinity. y =12 is the degeneracy fac-
tor. After adding the meson mass and wave-function re-
normalization counterterms, which are determined for
zero density at the renormalization point k =0, eD be-
comes finite. Analytical forms can be found in Ref. [3].
The vacuum instability is due to the term eD, which for
large q behaves like —q in~q~.

Next we remove the instability from the energy densi-
ty. The prescription of Ref. [7] to accomplish this in the
case of the familiar loop expansion is as follows: Calcu-
late the effective action (or the energy density functional)
in the usual way up to some order in the expansion. Take
the Lorentz covariant part (i.e., that part which does not
explicitly depend on the density) of the resulting expres-
sion and expand it further around the vacuum values of
the meson fields. The coefficient functions of the quadra-
tic terms, which are the inverse meson propagators at
zero density in this approximation including the Landau
ghost, should be replaced by their ghost-subtracted
counter parts which satisfy the Kallen-Lehmann repre-
sentation. The resulting effective action is the generating
functional of all one-particle irreducible Green's func-

tions, where the two-point functions now satisfy the
Kallen-Lehmann representation. In the case of the loop
expansion, this "overall ghost subtraction, " which is
done at the end of the calculation, is indeed sufficient in
the following sense: it leads to total meson propagators
(including the density-dependent parts) which are free of
the Landau ghost, and to an expression for the energy
density which is free of the corresponding instability due
to the high-momentum components of the meson fields.

We now follow this procedure and expand ez+eD in

powers of s(x)=0 —v=v cosq x—v, and ~(x)=v sinq x
(we suppress the isospin index 3). The second-order con-
tribution becomes, in momentum space,

d3
e' '= — I [s(p)G '( —p )s( —p)

2V (2m)

+m(p)G„'( —p )~( —p)],
where V is the volume and G ' and G„' are the o and m

inverse propagators, respectively, for zero density:

G
—1( 2) 2 2 y (p2)

G, '(p')=p' —& (p') .

Here X and X are the one-fermion loop self-energies of

ivT( —q—;q, O)=b, '(q ) —b, '(q~) . (10)

Here T( —q;q, O) is the crmvert. ex including the one-
fermion loop correction, and the arguments denote the
incoming meson momenta ( —q for the sigma and q, 0 for
the pions). In the spirit of Ref. [7] we amend only the
two-point functions of the theory, that is, we leave T un-

changed, construct the ghost eliminated pion propagator
b, , and then use Eq. (10) to obtain b, . The ghost-
eliminated pion propagator is given by

Z
& (p')=G„(p')—

p +m

where mg is the ghost mass and Zg is the residue of this
pole (Z (0). From Eqs. (10) and (11) it follows that our
Kallen-Lehmann propagators satisfy the same renormal-
ization conditions as the original ones. The pion inverse
propagator before and after ghost elimination is shown in
Fig. 1. We note that the ghost mass m = 1 GeV is rather
low, and therefore we expect that the ghost subtraction
will significantly affect physical quantities.

The final form of the ghost-eliminated energy density is

-2
eK„=e+ [G '( —q ) —b, '( —

q )], (12}

where we used Eq. (10).
The results are shown in Figs. 2 —5. Here we use the

parameters m =372 MeV and m =800 MeV. In Fig. 2

the energy per quark is shown as a function of the baryon
density for three cases, namely, the "normal" phase
(q =0), the pion condensed phase including the Landau
ghost, and without the Landau ghost. The pion conden-

the sigma and the pion. For large spacelike momenta
they behave like p ln( —p ), which leads to the Landau
ghosts in G, G and to the instability of the vacuum.
Due to the above discussion we replace e of Eq. (4) ac-
cording to

e~ E~L—e+( E~L e ) (9)

where eK„' is obtained from (7}by replacing the propaga-
tors G by the Kallen-Lehmann ones 6, which are free
of the Landau ghosts and satisfy a Kallen-Lehmann rep-
resentation. We wish to point out that, although our
method can be applied systematically to stabilize systems
against high-frequency fluctuations of the boson fields, it
is rather formal in the sense that the new form of the en-

ergy density cannot be simply reinterpreted physically by,
say, specifying a modified way to fill up the fermion lev-
els. This is due to the fact that the ghost subtraction is
done for the effective action after integrating out the fer-
mion fields [7]. The method thus corrects directly the
meson spectra and affects the fermionic motion only in-
directly.

We now discuss the ghost eliminated propagators 6 .
In the case of the nonchiral model considered in Ref. [7],
the ghosts are subtracted from the meson propagators
separately because the meson fields are independent. But
now the cr and m fields are not independent because of the
chiral symmetry, and the propagators are related by the
Ward identity [9]
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FIG. 1. Inverse pion propagator in free space before and
after ghost elimination. The full line is the ghost-included one
(6 ') and the dashed line is the ghost-eliminated one (6 '). mg
is the ghost mass and Zg is the residue of the ghost pole.

with

q ZV

2
(13)

2

Z =[—qG( —q)] '~ — g ln
7T 7T

16
(14)

In Fig. 3(a) the optimized momentum is shown and in
Fig. 3(b) the optimized effective quark inass (or, strictly
speaking, the radius of the chiral circle) is shown. Con-
sider first Fig. 3(a). In both cases with or without the
ghost

~ q ~
starts to increase from zero at the critical densi-

ty. (Note that we use zero pion mass. ) In the ghost-
eliminated case, the chiral phase transition occurs at p2
and above this density the energy no longer depends on
~q~. In the other case, ~q~ eventually goes into the ghost
region where no stable state can be found. Figure 3(b)
shows that the chiral phase transition in the ghost-
eliminated case is a continuous (second-order) one. In
the case including the Landau ghost, m remains finite.
This behavior can be understood as follows: For high q
the energy density behaves as [see Eq. (7)]

sation sets in at p, =0.05 fm, and at pz=0. 52 fm the
chiral phase transition (U~0) occurs for the case where
the ghost is eliminated. Between these two densities the
pion condensed phase has a lower energy than the normal
phase. Although the energy for the case where the ghost
is included goes to minus infinity for large values of ~q~, it
is possible to find a local minimum up to p3=1. 1 fm
Around this density ~q~ becomes comparable to the ghost
mass, and for higher densities there does not exist even a
local minimum. As can be expected from Eq. (12), the
ghost subtraction introduces additional repulsion. An
important point to note is that, if the ghost is not sub-

tracted, there occurs no chiral phase transition. This
point will be discussed further below.
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FIG. 2. Energy per quark as a function of the baryon density
in three cases. The full line is the ghost-eliminated case, the
dashed line is the ghost-included one, and the dash-dotted line
corresponds to the normal (no pion condensate) phase. For ex-
planation of the p's, see text.

FIG. 3. (a) The optimized momentum. The full line shows
the ghost-eliminated case and the dashed line shows the ghost-
included case. (b) The optimized effective quark mass. The full

line shows the ghost-eliminated case and the dashed line shows
the ghost-included case, and the dotted line corresponds to the
normal (no pion condensate) phase.
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FIG. 4. The various contributions to the energy per quark
for fixed density as a function of (a) the effective quark mass and
(b) momentum. In both cases the full line is the total result and
the dashed, dash-dotted, and dotted lines are the contributions
of the Dirac sea (eD), Fermi sea (eF), and the classical meson
fields (e&), respectively. The value of p equals the normal nu-
clear matter density (0.17 fm '), and the parameters q in (a) and
m in (b) are the optimized ones at this density.

of the ghost pole [7], Z becomes negative for high q,
and Eq. (13) shows that then the point e(u =0) is always
a maximum. On the other hand, if the ghost subtraction
is performed, Z is positive and finite for high q . (In the
limit q ~~, it becomes the wave-function normalization
factor for the pion field. )

In Figs. 4(a) and 4(b), the contributions from the vari-
ous parts are shown as functions of m and q for fixed den-
sity for the ghost-eliminated case. From these figures one
can see that the contribution from the Dirac sea is repul-
sive and the pion condensation (as well as the chiral
phase transition at higher densities) occurs as a result of a
cancellation between the Fermi sea contribution and the
others.

The pion condensation is related to the instability of
the normal state. At the critical density for pion conden-
sation, the normal-state pion propagator for qo =0
changes its sign (has a zero energy pole at finite

~ q~). This
is shown in Fig. 5, where the inverse of the full pion
propagator in the medium is plotted as a function of
q = —

q for three different densities. The values of m
used in this figure are the self-consistent solutions for the
normal state (q =0). If one expands the full energy densi-
ty e~„of Eq. (12) with respect to s = u cosq x—u,

+=v sinq x, the inverse pion propagator shown in Fig. 5
appears as the coefficient of ( ——,'~ ) [compare with the
expansion for zero density, Eq. (7)]. Using this relation,
we see the following: For low densities we have

'(q )=aq, a) 0 for small spacelike momenta, and
the normal state is stable, i.e., eKL has a minimum at
q=0. With growing density a decreases and becomes
zero at the critical density (p, of Fig. 2). For higher den-
sities a (0 and the normal state is unstable [see Fig. 4(b)].

In Fig. 6 we compare the result of the full calculation
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FIG. 5. Density-dependent inverse pion propagator in the
normal phase without the Landau ghost for three different den-
sities. The dash-dotted line shows the low density case (p & p&),
the full line corresponds to the critical density (p=p&), and the
dashed line shows the higher density case (p & pl). The values of
m for each density are the self-consistent ones for the normal
state.

FIG. 6. Energy per quark as a function of the baryon density
for four cases. The full line shows the result of the full calcula-
tion (m varied and the contribution of the Dirac sea included)
and agrees with the full line in Fig. 2. The dashed line refers to
the case where m is varied but the contribution of the Dirac sea
is ignored. The dash-dotted line shows the result when m is
fixed to m (only q varied) and the contribution of the Dirac sea
is included. The dotted line refers to the case where m is fixed

to m and the contribution of the Dirac sea is ignored.
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with that where the Dirac sea contribution (en) is ig-
nored. The vacuum fluctuation effect is seen to be sizable
and repulsive. %'e note that, in the calculation where ea
is ignored, the chiral phase transition sets in at a much
higher density (p=2. 7 fm ). In order to compare with
the results in Ref. [3], we also show the corresponding
two curves which are obtained in a calculation with fixed
m =m, where only q is varied. We see that, by allowing
the radius of the chiral circle to change, a sizable attrac-
tion is obtained.

The dependence of the energy density on the parame-
ters m and m is as follows: By increasing m or de-
creasing m, one obtains more repulsion. For example, if
we use m =600 MeV and the same m as in Fig. 2, there
appears a bound state of quark rnatter at p =0.35 frn

Finally, we wish to address the question of appropriate
expansion schemes in Lagrangian field theories like the
present one. Our calculation was based on the Hartree
approximation [Eq. (4)], which has been generally quite
successful in relativistic many-body theories [2] and
therefore should presumably be the starting point in any
sensible expansion scheme. The familiar loop expansion,
however, has been shown to be unsuccessful for the case
of a nonchiral field theory [12] because the inclusion of
two-loop terms leads to a description of the system which
is radically different from the Hartree one. There is,
however, the possibility of alternative expansion schemes
which start from the Hartree approximation. One candi-
date is the 1/N expansion, where N denotes the numbers
of fermion species and must be eventually identified with
2 for the case of the isospin SU(2). In this scheme the
Hartree term is the leading one, and by explicitly calcu-
lating the next-to-leading term, it has been shown [13]for

a nonchiral model that there emerges at least a "weak
convergence" in the sense that the qualitative features of
the solution do not change. It has also been shown that
the procedure of the elimination of the Landau ghost can
be systematically applied in this case, too. (In the I /N
expansion, one also has to perform the ghost subtraction
from the subgraphs in addition to the overall ghost sub-
traction discussed above. For details, see Ref. [13].)
There is thus the possibility that chiral models like the
one used in this paper can also be treated successfully in
the I /X expansion scheme.

To summarize, in this paper we proposed a useful
method to eliminate the vacuum instability due to the
Landau ghost in quark-meson theories where the classical
meson fields have finite momenta. We exemplified this
method for quark matter, but it can also be readily ap-
plied to finite solitons. We found that, besides removing
the instability for large momenta, the ghost elimination
has the further important effect of rendering possible a
chiral phase transition at some value of the baryon densi-
ty. The properties of quark matter which emerged in our
study are as follows: There are two kinds of continuous
phase transitions, one at low density from the normal
phase to the pion condensed phase and another at higher
density from the pion condensed phase to the Wigner
phase. Both phase transitions emerge as a result of an in-
terplay between the attractive Fermi sea contribution [eF
of Eq. (4)] and the repulsive bosonic (es) and Dirac sea
(eD) contributions.
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