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Peripheral three-body coupling model for knockout reactions
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A new symmetric three-body coupling model has been developed for the description of the final state
of knockout reactions. This model provides an exact description of the three-body final state when ei-

ther one or both of the two distorting optical potentials vanish. Such a model gives a good description of
the situation present in the knockout reactions in the extreme peripheral region, where at least one of the
distorting optical potentials is ineffective. Comparison between the predictions of this model and the
conventional kinematic coupling model for the 140 MeV H(a, a'p)n reaction and the 90 MeV
' O(a, 2a)' C reaction are illustrative of the conclusions which could be drawn from cluster knockout re-

action analyses.

PACS number(s}: 24.50.+g, 24.10.Eq

I. INTRODUCTION

In the past two decades increasing evidence has been
gathered to show that the conventional distorted-wave
impulse approximation (DWIA) used in conjunction with
other associated approximations fails badly in reproduc-
ing the experimental data when the distortion efFects are
large [1—7]. Since most of the inputs to these calcula-
tions are very reliable, this failure in reproducing the data
indicates the breakdown of some of the approximations
made in the analyses [7]. In one of the papers published
earlier [8] it has been shown that the approximation in-
volved in replacing the three-body coupling term in the
distorted-wave treatment of the three-body final state by
its plane-wave contribution makes large changes in the
knockout cross sections. This difference is seen to be
large when the absorption in the optical potentials is
small and the recoiling nucleus is light. The nonlocal
three-body coupling term when expressed as local contri-
butions to the optical potentials is seen [9] to depend
strongly on the angular momentum, l, and its azimuthal
projection, m. Furthermore, these effective decoupling
potentials are strongly oscillating with no apparent pre-
dictability [9] in the position and strength of the kinks.
Normally, for the cluster knockout reactions involving
nuclear projectiles, the distortions introduced by optical
potentials are large. For example, in the case of the
' O(a, 2a)' C, reaction around 100 MeV the optical
distortions reduce the cross sections by about three or-
ders of magnitude [7]. Moreover, in these reactions the
distortions cut down contributions from the nuclear inte-
rior to such an extent that the calculated energy sharing
distribution is much sharper than that observed in the ex-
periments. It appears therefore that the explanation of
these anomalies lies in the improper treatment of the
three-body final state. The theoretical treatment of the
three-body final state, however, has not attracted much
attention during the last two decades. The development
of the diproton model (DPM) [10], the kinematic cou-
pling approximation (KCA) [11,12], and the potential
coupling model (PCM) [13] had taken place back in the
late sixties. The inadequacy of the diproton model was

realized early [14] when it was pointed out that the
neglect of the curvature and higher-order terms in the ex-
pansion of proton optical potentials around the diproton
center of mass causes large asymmetries in the angular
distributions due to an overestimation of distortions at
large scattering angles. For the kinematic coupling ap-
proximation it was shown that for an exactly solvable test
case [8] there exist differences of up to an order of magni-
tude in cross sections in addition to large variations in
the shape of the energy sharing distribution. In the po-
tential coupling approximation, however, a spurious
asymmetry is introduced in the very beginning, which is
clearly evident in an otherwise symmetric case.

In the present paper a new symmetric three-body equa-
tion has been described, for the three-body final state of
knockout reactions, which overcomes many of the objec-
tions raised for the earlier three-body models. In this
model, which is to be described in the next section, an ex-
act solution of the three-body final state of knockout re-
action is obtained (the reaction is being described in
terms of the impulse approximation [11])when either one
or both of the distorting optical potentials vanish. The
model may be called the peripheral three-body coupling
model (PTBCM) because, with the normal kinematic con-
ditions, a knockout reaction is localized in the nuclear
peripheral region [7,13,15], where the infiuence of at least
one of the optical potentials becomes small as the impact
parameter is large in at least one of the two relative
motions of the three-body system (see Fig. 1). The
PTBCM will be seen to be applicable for the symmetric
[reactions such as (p, 2p), (a,2a), (d, 2d), etc.] as well as
the nonsymmetric [reactions such as (e, e'p), (p,pa),
(d, da), (a, ap), etc.] final state of the system. Section II
outlines the formalism of PTBCM and general results
and discussion using this formalism for H(a, ap)n and
' O(a, 2a)' C reactions are presented in Sec. III. General
conclusions for the DWIA analyses of knockout reac-
tions following the PTBCM constitute Sec. IV.

II. PTBCM FORMALISM

The three-body final-state Hamiltonian Af for a
knockout reaction A (a, ab)B, which is usually described
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(a+

FIG. 1. Schematic trajectories for knockout reactions in the
peripheral region. The central shaded region represents the
strong absorption zone in the target nucleus.

= (b+ B)

FIG. 2. The two combinations of relative coordinates
(r, &,rbz) and (rb„-+~),r,&) used in the formulation of the
PTBCM.

in terms of impulse approximation, is
k, ,

(m, +mb+mB)
(4)

mb
kbB kb k, ,

(m, +mb+mB)
where k, is the incident wave vector of projectile a and
k,', kb, and kz are the Anal-state wave vectors of a, b, and
8, respectively, in the laboratory frame.

Now consider another set of relative coordinates r, ~
and rbB (see Fig. 2). The &f expressed in terms of
operators conjugate to these relative coordinates [11,13]
reads as

&f=H +Hb+HB+ T + Tb+ TB

+V 8( 8 +VbB( bB)

V'aa — VbB+ VaB(raB )
2Pt2g 2I bg

+ VbB(rbB ) '

In this representation the three-body coupling mani-
fests itself through the interaction V,B(r,B), which is
function of r,B and not or r, „(the coordinate corre-
sponding to r, „appears in the kinetic energy operator)
[11). When V,B(r,B) vanishes, one obtains the exact
solution of Eq. (5) in this so-called potential coupling for-
malism as [8]

VaB
— VbB VaB VbB'

2P g 2Pbg mg

Here H and T, are, respectively, the internal Hamiltoni-
an and kinetic energy operators for particle x and
V,~(r„~ ) is the distorting optical potential for the x-y rela-
tive motion. The impulse approximation takes care of
the knockout interaction V,b and is thus not included as
part of this .Pf. The interaction V,b forms part of the
factorization approximation. In this approximation the
matrix element of this interaction between the initial and
final a-b scattering states is separated from the rest of the
matrix element [11,16], which is subsequently expressed
in terms of the on-shell free a-b scattering cross section.
Reexpressing &f in Eq. (1) in terms of relative coordi-
nates r,B and rbB (see Fig. 2) and suppressing the center
of mass and intrinsic Hamiltonians, we have

+ VaB(raB )+ VbB(rbB ) (2)
Pf ( PCM )(r,z, r„B ) = exp( ik', „r,„)y3 ( kbB rbB )

In the conventional DWIA calculations the three-body
coupling term —(R /mB)V, B VbB is approximated by its
asymptotic plane-wave limit [7,13], (A /mB )k,B kbB. .
This so-called kinematic coupling approximation [8]
(KCA) includes only the kinematic part of the coupling,
while the dynamic component in it, arising due to the dis-
torting optical potentials, V,~ and Vbz, is neglected here.
The KCA formalism leads to a three-body Anal-state
wave function which is factorizable into two two-body
scattering-state wave functions with their respective
boundary conditions [11,12]:

where

ma
k, ,

(m, +mb+mB)

(~8kb mbkB )
~ba =

(mb+mB )

(7)

It is to be inferred frotn Eqs. (4) and (7) that k,'„=k,B
and from Fig. 2 that

f(K A)(cBrrbB ) +1 (k 8 r 8 )+2 (kb8 rb8 )

mb
rag raB

( + )
bB (8)

where
With this the wave function qlf pcM(lag IbB) of Eq. (6)

l

can be written exactly as

( —) mb
'pf, ( Mp~(czrrb8)=ex (pik, Br,8) exp —i k,B rbB y3 (kbB r„B. ) .

(mb+m8 )
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From here one gets the rbB dependent factor of the
final-state wave function (when V,B =0) as

m
+bB ( bB) p + k 8 bB X3 (kbB bB)

mb+mB

(10)

manner as outlined above for the case where V,B van-

ishes. The solution 4f (PCM) with the required boundary
2

conditions is [8]

an( —)~f2 ( PCM ) [raB & rb( a +8 ) ]

=exp[i "b(a+8) rb(a+8) j+4 (kaB, raB ) & (11)

This is the exact wave function of the b-B relative motion
when the a-8 interaction potential, V,B in Eq. (2), van-
ishes. In the KCA the corresponding b-B relative motion
wave function is, however, given by yz '(kbB, rbB ) of Eq.
(3). The wave function %'(bB)(rbB) of Eq. (10) has been
found [9] to be the solution of a Schrodinger equation
with local potentials which have sharp kinks and which
vary strongly with orbital angular momentum, i, as well
as with its azimuthal projection, m. The wave function
4'bB '(rbB ) has the required feature that it represents the
b-B solution of the three-body final state when the poten-
tial between a and 8 vanishes [8].

Consider now a situation where, instead of the interac-
tion between a and B, the interaction between b and B
vanishes. The eigenfunction of the final-state Hamiltoni-
an for this situation can be obtained in terms of the rela-
tive coordinates r,B and rb(, +8) (see Fig. 2) in the same

I

where

mbI kb(a+8) b ()n +m + )n )
a

(mBk,' —m, kB )
k,'B =

(m, +mB)

Now from Fig. 2 it can be seen that

ma
b(a+8) bB

( + )
aBm, mB

so that the wave function

qy(
—)

f&(PCM)[raB~ b(a+8)]

of Eq. (11)can be written exactly as

(12)

(13)

m,
qy(,),[r, ,r, , ]=exp(ikbB rbB ) exp[ —i

'
kbB raB ]X4 '(k,B r,B ) .

tPl a +mB
(14)

From here the raB-dependent factor of the final-state
wave function (when VbB =0) becomes

2PaB

fi2
VaB i )TaB kbB+ VaB.(raB )

mB

m,
(p,'8'(r, B)=exp i —

kbB r,B y4 '(k,'B,r,B) .
(m, +mB)

and

E,B+ k,B kbB qi(,8)(r,B)=0 (16)
mB

VbB i VbB k,B+VbB(rbB)
2pbB mB

This 'p,'8 '(r,B) represents the exact a-B relative motion
of the three-body final state when the b-B interaction,
V,B, vanishes. In the KCA, however, the corresponding
wave function is represented by yI '(k,B,r,B).

It is obvious that )Iia'8'(raB) and q''bB'(raB) [of Eqs. (15)
and (10)] are the solutions of

( )EbB+ k 8 kbB +bB (rbB )
mB

respectively. Here E„B= (fi l2p„B )k„B,)M„B is the x-8 re-
duced mass, and k B are the wave vectors given in Eq.
(4). The product 0",8 '( r,B )4'bB '(rbB ) represents the solu-
tion of the following equation:

2PaB

g2 g2 g2 g2 g2
VaB VbB l VaB kbB l VbB-kaB kaB kbB

2PbB mB mB mB

+ V.B(r.B)+VbB()'bB) E 8+EbB+ kaB kbB
mB

% ',8 '(r,B )0 'bB '(rbB ) =0 . (18)

It is to be remarked here that this equation corre-
sponds to a three-body Hamiltonian of the type of Eq. (2)
with the difference that the coupling term

[T„„P= —())i /mB )V,B V bB ] is replaced by the following

I

term:

Tcoup l VaB kbB kaB ~bB aB bB
B mB mB

(19)
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With this replacement the coupling between the relative
coordinates r,~ and r&~ in the final-state wave function is
eliminated as the corresponding solution is the solution of
Eq. (18), i.e., the Product ~P',s '(r,s }4'bs '(rbs ).

It is not difficult to verify that, when at least one of the
distorting optical potentials vanishes in the &f of Eq. (2),
the approximate coupling term of Eq. (19) has the same
effect as the exact coupling term.

Although the solution q",tt '(r,s )%''bs '(re ) of Eq. (18) is

separable as functions of r,~ and rb~, it is seen that it in-
volves the product of two plane waves and two distorted
waves. Even with the presence of 5(r,b ), arising from the
factorization in the DWIA matrix element [7,11,16,17],
this can only be reduced to a product of three functions,
one plane wave and two distorted waves. This PTBCM
final state along with the initial-state wave function is
practically unmanageable when using partial-wave expan-
sions and subsequent angular momentum couplings
[7,11,17]. Therefore, all the functions are calculated ex-
plicitly as functions of the corresponding polar coordi-
nates, (r, O, C&). The DWIA matrix element [11,17] can
then be evaluated by using numerical quadrature tech-
niques [18].

III. DWIA RESULTS

A. H(a, ap )n reaction at 140 MeV

In order to examine the inhuence of the three-body
coupling in the final state, the reaction H(a, ap)n at 140
MeV [19] has been analyzed first. The small mass of the
residual neutron is expected to enhance the three-body
coupling term for this reaction [11]. Besides, the short-
range nature of the p-n interaction, treated as a distortion
in this calculation, makes one expect the approximations
of the PTBCM to be valid in the region most important
for this reaction. However, the distortion effects are not
expected to be very pronounced here because the distort-
ing optical potentials are not large. This is rejected in
the comparatively large ratio of about 0.3 between the re-
sults of conventional DWIA calculations and the corre-
sponding plane-wave results for this reaction [11].

The PTBCM, KCA, and PW results (normalized to the
experimental data at the peak position) are compared
with the observed energy sharing distribution in Fig. 3.
It is to be remarked here that, in comparison with the
KCA calculation, the overall shape is better reproduced
by the PTBCM calculation. The plane-wave predictions
are, of course, seen to deviate very much from the ob-
served shape of the spectrum.

In Table I the magnitudes of the cross sections are
compared. It is seen that the PW cross section is about a
factor of 6.5 too large, while the KCA and the PTBCM
predictions are larger by factors of about 2.8 and 2.2, re-
spectively. It is to be kept in mind that there is an addi-
tional factor of about 2 between our calculated cross sec-
tions and that of Nadasen et al. [19] which appears to
arise from the difference in the normalization of the
bound deuteron wave function. In the present work we
have used a Hulthen wave function with parameters from
Ref. [20]. Based on these comparisons of the shape and
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FIG. 3. Coinparison of 140 MeV 'H(a, a'p)n reaction [19]
data and PTBCM calculations ( ), KCA calculations
( ———), and plane-wave (PW) calculations ( ). The calcu-
lated results are normalized at the peak position of E ~ =108
MeV.

magnitude of the H(a, ap)n reaction at 140 MeV, it can
be concluded that in the DWIA formalism the PTBCM
description of the three-body final state provides a better
method than the conventional KCA description.

TABLE I. Comparison of peak cross sections for 140 MeV

H(a, ap )n reaction using various formalisms (experimental

value —=42 mb/sr MeV).

Formalism

Peak cross section
(mb/sr MeV)

PW

320.5

KCA

115.0

PTBCM

89.0

B. ' C(a, 2a)' C~, reaction at90MeV

Looking at Fig. 1 one gets the feeling that, as long as
one of the two emitted particles passes through the
strongly absorbing shaded region, the contributions from
the peripheral regions will also be suppressed. In accord
with this, our calculations show (see Fig. 4) that the use
of commonly employed strongly absorbing optical poten-
tials for a particles [7,21] gives rise to no appreciable
difference between the KCA and PTBCM results for the
90 MeV ' O(a, 2a)' C, reaction [22]. This behavior is

contrary to what is seen in Fig. 3 for the H(a, ap)n reac-
tion where the distortions are small and significant
changes are seen in the predictions of the KCA and
PTBCM prescriptions.

In order to investigate the inAuence of the three-body
coupling in the final state of the 90 MeV ' O(a, 2a}' C,
reaction calculations of the KCA and PTBCM prescrip-
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FIG. 4. Comparison of 90 MeV ' O(a, 2a)' C~, reaction
data and PTBCM calculations, with all imaginary potentials
zero (8'=0) ( ), with fu11 optical potentials (—.——.);
KCA calculations with all imaginary potentials zero {8'=0)
( ———), with full optical potentials (—~ ~ —~ ~ —"); and plane-
wave (PW) calculations ( . ).

tions are compared when the imaginary parts of all the
optical potentials are taken to be zero. Although this
choice was made ad hoc, it provides us with an insight
into the influence of three-body coupling for the
knockout reactions in the D%IA framework. %ith this
choice it is seen in Fig. 4 that the energy sharing spec-
trum, which should have peaked at recoil momentum
zero,

q=0 (E =E -=41.42 MeV),

has very pronounced minima for both PTBCM and KCA
calculations. Moreover, the PTBCM spectrum (normal-
ized to the experimental peak position at E =41.42
MeV) varies more sharply than the KCA spectrum. In
fact, the calculated shapes of the spectra look more like
l&0 distributions, which normally have dips at q=-0.
Besides, at q =0 the absolute cross sections (in
mb/sr MeV) produced by the KCA and PTBCM are
0.076 and 0.00156, respectively, while the experimental
value is -0.07. Calculations with the commonly em-
ployed optical potentials, however, give cross-section
values of 0.006 and 0.0066 for KCA and PTBCM, respec-
tively. These are much lower than the observations. Be-
sides this the DWIA prediction, in both the prescrip-
tions, of the shape of the spectrum is also much too
sharp. In comparison to these frustrating results, the
plane-wave (PW) results are in fact much closer to the ob-
servations: at least the shape of the spectrum is well
reproduced, although the absolute cross section is pre-

dieted to be more than two orders of magnitude too
large.

Although it is diScult to arrive at any general con-
clusions from these analyses, one gets the feeling that a
scaling down of the effects of the complete distorting po-
tentials can bridge the large gap between the DWIA cal-
culations and the experimental data. A justification and
understanding of such a scaling down of the optical po-
tentials by the decoupling of the three-body system into
two two-body systems are yet to be obtained. An indica-
tion to the effect that the decoupling of relative coordi-
nates in a coupled three-body system leads to a new set of
effective potentials (called effective decoupling potentials)
has already been found in the special case when one of
the optical potentials vanishes. In that case the effective
decoupling potentials have been found to depend strongly
on the partial-wave angular momentum and on its corn-
ponent in the z direction. These effective decoupling po-
tentials were also shown to have sharp kinks and large
variations as functions of the separation distance. For a
realistic case the influence of the three-body coupling on
the decoupling potentials can only be expected to be
much more dramatic.

IV. CONCLUSIONS

A new description, called the peripheral three-body
coupling model (PTBCM), has been reported, which ex-
actly takes care of the three-body dynamic coupling term
in the final state of knockout reactions when one or both
of the outgoing particles are assumed not to interact with
the residual nucleus. Similarly to the kinematic coupling
model (KCA), the PTBCM is symmetric in the descrip-
tion of the two relative motions in the final state. The ap-
proximation in the PTBCM is in the treatment of the
three-body dynamic coupling when the trajectories of
both outgoing particles are strongly altered by their in-
teraction with the residual nucleus. This model is expect-
ed to provide a better understanding of (e, e'x) reactions,
where use of the KCA or the potential coupling model
(PCM) encounters some difficulties [23]. The PTBCM
prescription for the 140 MeV H( , apa)n reaction has
been seen to describe the shape as well as the magnitude
of the cross section better than the KCA prescription.
For the description of the 90 MeV ' O(a, 2a)' Cs, reac-
tion, however, both these prescriptions were found to be
in gross disagreement with the experimental data, in
shape as well as in magnitude. Large differences have
been found in the predictions of the two prescriptions
when the absorptive parts of the optical potentials were
not incorporated into the calculations. %ith this
prescription applied the shape agreement with experi-
ment is worsened further, and the KCA absolute cross
section at recoil momentum zero is almost 50 times larger
than the PTBCM prediction of 0.00156 mb/sr MeV.
This comparison therefore indicates that the absorptive
part of the optical potential is not the only one responsi-
ble for the disagreement [24] between the theory and the
experimental data for cluster knockout reactions. It indi-
cates further than an agreement between the DWIA pre-
diction and experiment can be achieved by some scaling
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down of the optical potential as a whole [25]. An indica-
tion that a modification of the optical potentials used in
the DWIA analyses is required has already been seen in
the decoupling potentials for the three-body final state in
the special case when one of the final-state optical poten-
tials is assumed to vanish. One can owly expect to find
the inhuence of the three-body dynamic coupling on the

respective decoupling potentials to be enhanced for a
realistic situation.
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