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We have previously used a cluster model, employing a square-well nuclear potential plus a surface-

charge Coulomb potential, to satisfactorily describe a-decay half-lives for more than 400 nuclei. Here,

we investigate a more realistic version of this cluster model, in which the square-well nuclear potential is

replaced by a "cosh" potential geometry having nonzero diffuseness, and the Coulomb potential by one

appropriate to a point charge a particle interacting with a uniformly charged spherical core. By varying

the adjustable parameters of this more realistic model, we find several potentials which give comparable

fits to the a-decay data, and select the one which best tallies with information from other areas of nu-

clear physics. In addition, we find that the a-particle preformation probability needed to describe

favored transitions in odd-mass nuclei is only 60% of the equivalent quantity required for the ground

state to ground state transitions of even-even nuclei.

PACS number(s): 23.60.+e, 21.60.Gx

I. INTRODUCTION

We have recently shown [1—3] that it is possible to de-
scribe satisfactorily the large body of data on favored u
decay using a simple cluster model. The u-core potential
used in this model consisted of a square-well nuclear po-
tential of depth Vz, fixed for all decays, and radius R
determined by the Q-value of each individual decay, com-
plemented by a surface charge Coulomb potential of the
same radius. With a fixed set of only three parameters we
were able to reproduce the half-lives for most of the
—150 ground state to ground state decays of even-even
nuclei [1,2] to within a factor of 2, and most of the -250
favored decays of odd-mass nuclei [3] to within a factor
of 3. Although we noted strongly correlated ambiguities
in the best-fit values of our parameters, we were neverthe-
less able to conclude convincingly that the a-core relative
motion wave function should contain a large number of
nodes (which remains constant while a major neutron
shell is being filled and increases sharply as the parent
neutron number goes up through the magic value of 126),
and that the a-particle preformation probability is very
similar in all the decays examined.

Having set a benchmark for the level of agreement to
be expected between calculation and experiment with
minimum use of parameter variation, and determined the
essential characteristics of a successful model, it is clear
that more realistic forms of the a-core potential should
be investigated. We thus replace the square-well nuclear
potential by a "cosh" geometry
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of depth Vo, nonzero diffuseness a, and radius R. This
form of the cluster-core potential has been very useful in
studies of clustering phenomena in light nuclei [4], and
becomes closely similar to the commonly used Woods-
Saxon potential for large values of R /a. We also replace
the surface-charge Coulomb potential by a form ap-
propriate to a point a particle interacting with a uniform-
ly charged spherical core of radius R:
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for r ~R,
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Vc(r) =

ze

2R
r3—
R

'2

for r +R,
(1.2)

where Z, and Z2 are the charges of the a particle and the
core, respectively. There is no a priori reason to tie the
Coulomb and nuclear radii together as we have done in
Eqs. (1.1) and (1.2), but we impose this constraint so as to
minimize the number of free parameters.

The use of a nuclear potential with a nonzero
diffuseness enables us to show that the level of agreement
with the data we obtained previously was not an artifact
generated by the unphysical square-well geometry em-
ployed. Also, it allows us to make direct comparison
with the more realistic potentials used in related areas of
nuclear physics.

In Sec. II we outline the modified version of the cluster
model, taking into account the changes in the nuclear
and Coulomb potentials. In Sec. III we describe our
searches for the best set of parameters to reproduce a-
decay half-lives. We discuss our results in Sec. IV and
draw our conclusions in Sec. V.
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II. MODIFIED CLUSTER MODEI.
WITH A REALISTIC POTENTIAL

The method of calculating an a-decay half-life with a
more realistic form of the e-core potential is similar to
that presented previously [1—3], with the various manip-
ulations carried out numerically instead of analytically.
We write the cluster-care potential V(r) as the sum of a
realistic nuclear term [see Eq. (1.1)], a realistic Coulomb
term [see Eq. (1.2)], and a Langer modified centrifugal
barrier [in which L(L+1) is replaced by (L+ —,') ].
Thus we put

Once the value of R has been determined, we ean cal-
culate the width I of the quasibound state, in semiclassi-
cal approximation, by following the procedure of Gurvitz
and Kalbermann [6]. Thus

$2
I =PF exp —2 drk r

4p r~
(2.4)

Ff dr cos J dr'k(r') ——=1,
r, k(r) '( 4

(2.5)

where P is the a-particle preformation probability. The
normalization factor F is given by

V(r) = V~(r)+ Vc(r)+ (L + —,
'

)
2pr

(2.1)

Q = E +(65.3Z —SO. OZ )10 MeV,a —4

(2.2)

where Z and A are the charge and mass numbers, re-

spectively, of the parent nucleus. It is worth noting that
for small L the value of r, is close to zero. Also, the nu-

clear term V~(r) can be neglected in the asymptotic re-

gion, and r 3 can be found by solving the resulting quadra-
tic equation.

We next choose a value (see Sec. III) for the orbit glo-
bal quantum number 6 =2n+L, where n is the number
of nodes in the radial wave function, and L =0 for the
favored s-wave transitions considered here. The radius
parameter R, which appears in both V~(r) and Vc(r),
can then be evaluated separately for each decay by apply-
ing the Bohr-Sommerfeld quantization condition to place
the quasibound state of relative motion with n nodes at
the energy Q. Hence,

' 1/2

J dr [Q —V~(r) Vc(r)]——
I r

=(2n+ I)—=(G L+1)—. (2.3—)
2 2

'

This system of equations for R, involving the turning
points and the Bohr-Sommerfeld condition, is readily
solved to an acceptable level of accuracy by a few itera-
tions of the Newton-Raphson method. For small values
of the diffuseness the radius obtained from the earlier
square-well treatment [1—3] provides a good starting
value.

where p is the reduced mass of the cluster-core system.
The nuclear potential depth Va and diffuseness a are fixed
for all decays (see Sec. III), so that the radius R is the
only unknown in this expression.

The classical turning points (r„rz, and r, in order of
increasing distance from the origin) are found by numeri-
cal solution of the equation V(r) = Q, where Q is the en-

ergy appropriate to the decay under consideration. We
deduce Q from the measured a-particle kinetic energy E,
by applying a standard recoil correction, as well as an
electron shielding correction in the systematic manner
suggested by Perlman and Rasmussen [5]:

where the squared cosine term may be replaced by its
average value of —,

' without significant loss of accuracy, so
that

f' 2 dr
"~) 2k(r)

with the wave number k (r) given by
' 1/2

k(r)= IQ
—V{r)l2p

f2

(2.6)

(2.7)

The a-decay half-life is then related to the width by
T, /2

=A' ln2/'I .
The relevant charges, masses, and Q-value are defined

by the decay under consideration. The radius R ap-
propriate to the decay is determined by the procedure
outlined above. This leaves four free parameters (to be
determined by a best fit to the available data): the a-
particle preformation probability P, the nuclear potential
depth and diffuseness, Va and a, and the global quantum
number G.

III. CHOICE OF MODEL PARAMETERS

In this section we describe how we assigned values to
the parameters P, VD, a, and G so as to best reproduce
the measured half-lives of ground state to ground state a
decays in even-even nuclei. We include neither the very
lightest nor the very heaviest of these nuclei in our fit,
since their production and measurement is at the limits of
present experimental capabilities, and their half-lives are
significantly less well known than is typically the case.
We therefore include in our fitting exercise only the de-
cays of even-even nuclei listed in Tables 1 —3 of Ref. [2]
which have been measured to good accuracy and do not
contain a magic or near-magic number of neutrons.

We have restricted attention to even-even parent +-
decay data for two main reasons. On the one hand, we
can be sure that we are dealing with pure L =0 transi-
tions. On the other hand, the ground state of the
daughter nucleus is always the most heavily populated
following the decay, and is a natural candidate for the
core in our model. Both these simplifieations are absent
when considering the decays of odd-mass nuclei, making
the choice of which odd-A decay data to include in a set
for fitting much more ambiguous.

Although we fit the parameters of our more realistic
model to the same data set as was used for the square-
well fit [2], we have modified our fitting criterion some-
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what. Previously, in the square-well fit, we minimized
the quantity

SE=
log &OTV/2

—log iOT1/2

5(logioT;f2 )
(3.1)

thus weighting the sum of the squared deviations of the
logarithms of the calculated and measured half-lives by
the experimental errors in the logarithms of the half-lives.

This is certainly the generally adopted procedure in pa-
rameter fitting exercises, but is not entirely appropriate in
our case. For example, although we find strong evidence
for rather similar a-preformation factors P, these are un-
likely to be exactly the same in all cases, and the conse-
quent scatter limits the best fit that can be achieved by
optimizing the potential parameters alone. From the
internal evidence, e.g. , Geiger-Nuttall linear fits to series
of isotopes, this scatter is at the level of a factor of about
1.5. It is therefore unreasonable to weight the deviations
with 6(log, oT', )z), when 6(log, oT;/2)=0. 2 is typically
much larger. Also, a relatively small number of nuclei
which are especially amenable to precise measurement,
including ' ' ' ' Po ' Rn and ' ' Ra dominate
the expression in Eq. (3.1) because of the extremely small
experimental errors on their measured half-lives. These
values certainly provide valuable information, but should
not be allowed to overwhelm the fit, virtually excluding
contributions from all other data.

We thus replace Sz by the quantity

Sc= log io T i")z —log io T 1 /2

b(logioT
(3.2)

where we take b, (log, oT;/'2) to be equal for all nuclei in-
cluded in the fit. Since we shall not try to draw any con-
clusions from the absolute value of Sc, the precise value
that we attach to b, (log, oT /2) is not important. Given
that it is equal in all cases, it may be simply factored out
of the expression for Sc.

There are certain features of the earlier square-well
fitting exercise [1,2] which we also encounter here. The
a-preformation parameter P remains essentially undeter-
mined by our fits; we again eliminate it at the outset by
taking the limiting value P=1 for convenience, in line
with previous treatments [2,7]. We can make no state-
ment about the absolute value of P since whatever value
we choose, provided it is ~0.001, can be readily accom-
modated by compensatory changes in the other parame-
ters. However, whatever value for P is adopted, it can be
maintained essentially fixed (to within about a factor of 2)
for all the decays we have examined.

Apart from the difficulty of fixing P, we again find that
several families of parameter values are capable of giving
equally good descriptions of the a-decay data. The only
unchanging feature of the fits is that the global quantum
number G should be large (in the range 18—24), and in-
crease by two units as N increases from below the magic
number of 126 to above it. Thus, although we cannot
uniquely fix a value for G appropriate to N ) 126 (G)
say) we can certainly affirm that the corresponding value
of G for 82 (N ( 126 (G ( say) should be given by

S= g (logioT&/2 —log&OT&'/2) (3.3)

Keeping G& fixed, we increased a by 0.05 fm and opti-
mized Vo again. The incremental increases in a and op-
timizations of Vo were continued and the least of these
minima of S, and corresponding values of a and Vo,
determined. Once these had been established, G& was
changed, and the sequence of stepping through a and op-
timizing Vo repeated for this new global quantum num-

ber. Reducing G& below 18 or increasing it above 24
leads to worse fits, as manifested by progressively larger
values of S.

On numerical grounds alone, we have no strong prefer-
ence for any particular parameter set given in Table I.
Nevertheless, we eventually chose to continue our
analysis with the values

V0=162.3 MeV, a =0.40 fm, 6& =22,

6( =20, P =1
(3.4)

for the following three physical reasons. A straightfor-
ward application of the Wildermuth condition to the
valence protons and neutrons outside a Pb core yields
6& =22. The real part of the global a-nucleus optical
potential of McFadden and Satchler [8] has a =0.52 fm,
and a depth of V0=185 MeV. This depth was subse-
quently updated, in a 1983 communication to the NEA,
to a value of V0=164.7 MeV (and the radius parameter
increased somewhat). Note that although this potential
has a Woods-Saxon geometry it is nearly identical to our
nuclear potential, Eq. (1.1). A calculation of the ground
state rotational band of Hg, treated as an a hole in a

Pb core, gives a good reproduction of the energies and
electromagnetic properties [9] of the 0+, 2+, 4+, and 6+
states using the potential prescription of Eq. (3.4). Thus,
although we cannot uniquely determine an a-nucleus po-
tential simply by its ability to reproduce a-decay data,
the parameter set of Eq. (3.4) does give an excellent
description of such data and is simultaneously compatible
with expectations from several other areas of nuclear
physics.

TABLE I. Values of V„, a, and G, which yield good fits to
o,-decay data. In all cases we take P = 1 and AG =G,—G =2. See text for details.

Vo

(MeV)
a

(fm)
G

(forN ) 126)
S

[see Eq. (3.3)j

141.9
152.5
162.3
172.0

0.70
0.55
0.40
0.25

18
20
22
24

1.11
1.07
1.11
1.21

G& —6( =66=2.
Adopting P = 1 and 56 =2, we obtain essentially iden-

tical quality fits to the half-life data with the four sets of
parameter values shown in Table I. Our strategy has
been to select a value for 6& and a small starting value
for the diffuseness a, and then to search for a value of Vo

to minimize the quantity S given by
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IV. CALCULATIONS OF a-DECAY HALF LIVES

Using the parameters of Eq. (3.4) we have calculated
the half-lives of all the 154 ground state to ground state
decays of even-even nuclei listed in Tables 1 —5 of Ref.
[2], where a square-well nuclear potential and a surface
charge Coulomb potential were employed. Our results
are qualitatively similar to those earlier ones, and in par-
ticular, the discussions given there of uncertainties and
difficulties in the interpretation of some of the data points
are still highly relevant. Rather than presenting our ex-
tensive results in tabular form, which we will supply to
the interested reader on request, we give them in graphi-
cal form. Figure 1 shows our results for those decays in
which the even-even parent nuclei contain more than 82
neutrons. We hasten to add that there is no problem in
applying our model to nuclei having N (82, though the
value of G must be reduced by a further two units [10] (to
18 in this case) to obtain agreement between measured
and calculated half-lives at the factor of 2 level. We omit
them here for convenience in choosing the horizontal
scale of our diagram.

Figure 1 shows log, o(T',")z/T z'z) as a function of
parent nucleus neutron number for 147 even-even nuclei.
Broken lines indicate that the deviation between experi-
mental and calculated half-lives is within a factor of 2 for
the great majority of decays. A few cases, such as 74 W92
and I04RfI5O, are not very well reproduced (as before [2]);
however, in general, an ability to predict closely a wide
range of a-decay half-lives with a simple four-parameter
model, given only the measured a-particle energy E, is
clearly demonstrated.

Apart from exhibiting the sheer proximity of a large
number of calculated and measured half-lives, Fig. 1 can
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FIG. l. Plots of (logipTi),' —log, pT&&2) as a function of
parent neutron number N for even-even nuclei. Results for indi-
vidual parent nuclei with Z& 82 and N~ 126 are labeled by
open circles, and the remainder by crosses. Lines are drawn
connecting each set of isotones. Factor of 2 deviations between
theory and experiment are indicated by broken lines. The mod-
el parameters are Vz = 162.3 MeV, G =22 (for N & 126),
G &

=20 (for ¹ 126), a =0.4 fm, and P = 1.

be used to search for systematic trends in the deviations
of these two quantities. There do not seem to be any
strong tendencies in evidence. However, there is an indi-
cation that our calculated half-lives are consistently lower
than the measured values for the lightest nuclei having
82 ~ N ~ 88. Also, we have plotted decays for parent nu-
clei having Z )82 and N ~ 126 by open circles and the
remainder by crosses. We hoped in this way to highlight
any effects of the Z =82 proton shell closure, which is
conspicuous by the absence of its inhuence on our half-
life calculations. There is a tendency for the calculated
half-lives to be larger than the measured values for those
nuclei having Z) 82 but N ~126, as manifested by the
number of circles below the logIp(TI)z/T &2)=0 line;
this might be a weak effect of the Z =82 proton shell clo-
sure [1].

a decays from odd-mass nuclei are not as straightfor-
ward to categorize as those between the ground states of
even-even nuclei. It is quite common for several states of
the daughter nucleus to be strongly populated as a result
of n decay, and the choice of favored state is not always
clear-cut. Furthermore, the orbital angular momentum
of the emitted a particle is not necessarily zero. Even
when the parent and daughter states have equal spin-
parity values, it is still generally possible for the cz parti-
cle to be emitted in a variety of L states, and in principle
a linear superposition of these states should be considered
in order to treat the process rigorously.

It is well known from the experimental investigation of
a decays in odd-mass nuclei that those decays which can
proceed by s-wave transitions, and have the odd nucleon
of both parent and daughter in the same orbital, proceed
at a rate compatible with that of the neighboring even-
even nuclei. It is conventional to introduce a hindrance
factor (HF), calculated from the spin-independent equa-
tions of Preston [11],to describe this similarity. By con-
vention HF =1 for the decays of even-even nuclei, and
low hindrance factors of 1—4 in odd-mass nuclei may be
taken to designate those transitions which we might
reasonably expect to predict to good accuracy, within our
model, without any further parameter adjustments. In
addition, the problem of L admixtures may not be too
serious, since preliminary estimates show that contribu-
tions from L ~ 4 only affect our calculated half-lives by
~ 10%%uo. The only serious competition may therefore be
expected from L =2, which we estimate to be capable of
making typically -30%%uo changes to T', zz. Thus, we cal-
culate the half-lives for a decays of odd-mass nuclei
which are characterized by low hindrance factors using
the unchanged parameter set of Eq. (3.4) and assuming
pure s-wave decays. We anticipate a slight reduction in
the quality of our fits with respect to those of the even-
even nuclei, but consider the exercise to be useful, since
we know [3] that our calculations can still correlate a
large number of half-life measurements at the level of
about a factor of 3.

We have therefore calculated 231 a-decay half-lives for
odd-A nuclei with our modified potential model and the
parameters of Eq. (3.4). The decays considered are those
listed in Tables 1 —6 of Ref. [3], and the same provisos
and reservations about the data selection discussed in
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FICx. 2. Plots of (log(oT;"),' —log, oT ~'z) as a function of
parent neutron number N for odd-mass nuclei. Results for indi-
vidual parent nuclei with Z&82 and N~126 are labeled by
open circles, and the remainder by crosses. Lines are drawn
connecting each set of isotones. Factor of 3 deviations between
theory and experiment are indicated by broken lines. The mod-
el parameters are V~ = 162.3 MeV, G +22 (for N & 126),
a =0.4 fm, and P=1.

Ref. [3] still hold well here. Figure 2 shows our results,
in the same format as for the even-even nuclei, except
that the broken lines indicate agreement between theory
and experiment at the factor of 3 level (instead of factor
of 2). Although a large majority of the decays fall within
these limits, it is immediately apparent that there is a
strong preponderance of points above the
log, o(T',")z/T;&z)=0 line. This indicates a systematic
underestimation of the half-lives of the favored a decays
in odd-mass nuclei.

One possible explanation for this deviation is that the
effective u-particle preformation probability in odd-mass
nuclei, Poz, may be smaller than the equivalent quantity
for even-even nuclei PEE. To consider this further, we
leave all other parameters unchanged, but adjust POF so
that the average of log, o(T;fz/T;z2) for the odd-A nu-

clei considered in Fig. 2 becomes zero. We find that we
need a value of POE=0. 6PFF to achieve this. We then
obtain the results shown in Fig. 3. The suggestion that
POF should be smaller than Pzz is in line with the work
of Blendowske et al. [12,13] who take PoF =0.5PFE. We
remain a little cautious about this explanation, since our
systematic underestimates of the odd-A half-lives using
P = 1 may be a reflection of some other neglected
phenomenon, such as the contributions to T', &z from em-
itted a particles having L ~ 2.

The overall description of the favored odd-A cz-decay
half-lives, although inferior to that of the even-even nu-
clei, is still very satisfactory. It is also noticeable that the
two weak trends discussed above in connection with the
even-even decays of Fig. 1 are also present for the odd-A
decays of Fig. 3. Thus there appears to be a weak (but
systematic) underestimate of the a-decay half-lives as the
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FIG. 3. Plots of (log(oTt")z —log, oTt&'z ) as a function of
parent neutron number N for odd-mass nuclei. Results for indi-
vidual parent nuclei with Z&82 and N~126 are labeled by
open circles, and the remainder by crosses. Lines are drawn
connecting each set of isotones. Factor of 3 deviations between
theory and experiment are indicated by broken lines. The mod-
el parameters are V&=162.3 MeV, G, =22 (for N&126),
G, =20 (for N 126), a =0.4 fm, and P=0.6.

N =82 shell closure is approached and a similar overesti-
mate for parents with Z ) 82 and N ~ 126.

V. CONCLUSIONS

Our original applications [1—3,10] of the cluster model
discussed above, utilizing a square-well nuclear potential
and a surface-charge Coulomb potential, examined 409
unhindered (or favored) a decays in both even-even and
odd-mass nuclei with a set of three fixed parameters and
were able to reproduce the half-lives of 363 of them to
within a factor of 3. In view of the lack of detailed input
specific to any given nucleus (just the charge, mass, and
Q-value are required), this broad level of agreement with
an extensive database is remarkable.

There are two fundamental features of our model
which are responsible for its success. Firstly, we assume
that the a-core relative motion wave function contains
many nodes, so that the motion is characterized by a
large value of the global quantum number G. This is not
a particularly new idea, and is suggested by elementary
considerations of how an o. cluster could be formed at the
nuclear surface by correlated motions of the underlying
valence nucleons in shell model orbitals. Indeed, this is
an assumption often made in analyzing e-transfer reac-
tions onto heavy targets [14] and has even been applied to
a decay itself in earlier studies [15]. We do not fix G
a priori by appeal to any particular nuclear structure
model, but rather treat it as a free parameter and find
that several values in the range 18—24 are admissible if
appropriate changes are made in the other parameters.
Secondly, we fix the potential depth throughout, and ad-
just the radius of our potential so as to produce a quasi-
bound state at the Q-value of each individual decay. This
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radius is determined quite independently of any reference
to the half-life, yet its subsequent use in Eqs. (2.4) —(2.7)
leads to an excellent estimate for the half-life.

We can summarize by saying that the square-well fits
provide a very useful benchmark for the level of agree-
ment that can be obtained between calculated and mea-
sured a-decay half-lives with no more explicit nuclear
structure information than that contained in a knowledge
of the Q-value for each individual decay. In fact, the Q-
value alone contains a lot, but by no means all, of the
essential nuclear structure physics relevant to the decay.

Despite the successes of the square-well version of the
cluster model treatment of a decay, it is open to the criti-
cism that the potential is unrealistic, and, that the half-
lives deduced from it may somehow be an artifact of the
simplified geometry employed. To counter this criticism,
we have reexamined our model, replacing the square-well
nuclear potential by a realistic "cosh" potential
geometry, which has been widely used in a-clustering
studies of light nuclei [4], and replacing the surface
charge Coulomb potential by a form appropriate to the
interaction of a point a particle with a spherical uniform-
ly charged core. We have taken the nuclear and
Coulomb radii to be equal to keep the number of free pa-
rameters to a minimum, but this is not an essential re-
quirement.

We have fitted the free parameters of our refined model
to the same set of half-lives for ground state to ground
state decays of even-even nuclei as were used in the origi-
nal square-well fitting exercise [2]. We have changed our
fitting criterion so that the deviations of all calculated
and measured values are treated on an equal footing and
no longer weighted by the corresponding experimental
errors. Two features of the square-well fit are again evi-
dent. The absolute value of the alpha-preformation fac-
tor P is poorly determined, but may be held fixed at some
arbitrary constant value, and, whatever large value is
chosen for G (within the limits of 18—24 indicated by our
fit), it should be increased by two units as the parent nu-
cleus neutron number rises up through the X =126 shell
closure.

We are unable to determine unique values for the free
parameters of our model by fitting considerations alone.
There are highly correlated ambiguities between them,
and the four parameter sets given in Table I are all able
to reproduce the even-even a decay data as well as, or
even better than, the original square-well prescription.
Although the parameter set of Eq. (3.4) is not rigorously
demanded by the fitting criterion, we express a preference
for it by appeal to physical arguments concerning the fol-
lowing: (i) The value of 6& expected from application
of the Wildermuth condition to the formation of an o.
cluster from the valence nucleons outside a Pb core; (ii)

proximity to the values of the depth Vo and diffuseness a
proposed by McFadden and Satchler [8] for the real part
of their global alpha-nucleus optical potential (even
though it is fitted to scattering data on nuclei predom-
inantly much lighter than those of interest to us here);
and (iii) the spectrum of Hg considered as an a hole in-
teracting with a Pb core, for which our potential
correctly reproduces the energies and electromagnetic
properties [9] of those states in Hg which are strongly
excited in the Pb(d, Li) Hg reaction [14]. Indeed,
the authors of [14] find spectroscopic factors close to uni-
ty. We conclude that we can find a realistic a-nucleus
potential which is able to generate a good fit to the o.-

decay data and is compatible with the constraints im-
posed by several other areas of nuclear physics.

The potential radii are determined separately for each
decay and exhibit the same general behavior that was
found for the square-well fits [1—3,10]. The value of R in-
creases rather slowly while a neutron shell is being filled,
jumps abruptly at the shell closure, and resumes its slow
increase as the next neutron shell is filled. Although the
average increase of R between the extremes of the mass
range is roughly proportional to 3 ', its value within a
given major neutron shell is nearly constant. Using the
parameters of Eq. (3.4), we find that R increases from 6.8
to 7.0 fm while the 82(%~126 shell is being filled,
jumps to about 7.5 fm at the shell closure, and then rises
from 7.5 to 7.7 fm for the largest values of 3 . If we
divide out a factor of 3 ', we find that our radii lie in
the range (1.2 —1.3)A ' . For comparison, the radii of
the Woods-Saxon optical potential of McFadden and
Satchler are taken as 1.4A ' . On the other hand, it has
been reported [14] that smaller values R = 1.2 3 ' ~'

significantly improve the fit to Pb(d, Li) a-pickup
data.

The final points to emerge from this study concern gen-
eral trends in the behavior of (T~'&& /T&")z) which may
reAect corresponding trends in the a-preformation factor
P. Although we can adequately describe the a decays of
odd- 3 nuclei with the same parameters as for even-even
nuclei, we underestimate their half-lives systematically.
This can be corrected by reducing P to 60% of its previ-
ous value, in agreement with the work of Blendowske
et al. [12,13]. In addition, there is an indication of a
small systematic increase in P as the X = 82 neutron shell
closure is approached and also some further indication of
a small systematic decrease in P at the Z =82 proton
shell closure, as manifested by the decay data for both
even-even and odd-3 nuclei in Figs. 1 and 3, respectively.
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