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Spectroscopy of samarium isotopes in the sdg interacting boson model
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Successful spectroscopic calculations for the 0,+, 2,+, and 4l+ levels in ' "Sm are carried out in sdg
boson space with the restriction that the s-boson number n, ~ 2 and the g-boson number n~ ~ 2. Ob-
served energies, quadrupole and magnetic moments, E2 and E4 transition strengths, nuclear radii, and

two-nucleon transfer intensities are reproduced with a simple two-parameter Hamiltonian. For a good
simultaneous description of ground, P, and y bands, a Hamiltonian interpolating the dynamical sym-

metries in the sdg model is employed. Using the resulting wave functions, in '""Sm, the observed

B(E4;0,+~4~ ) values are well reproduced and E4 strength distributions are predicted. Moreover, a

particular ratio J7 involving two-nucleon transfer strengths showing a peak at neutron number 90 is well

described by the calculations.

PACS number(s): 21.60.Ev, 21.60.Fw, 27.70.+q, 21.10.Re

I. INTRODUCTION

In the past few years considerable experimental data
on E4 matrix elements [1—3] and strength distributions
[4—6] has accumulated and their theoretical understand-
ing (using models or microscopic theories) is a challeng-
ing problem. One of the models well suited for this pur-
pose is the sdg interacting boson model (sdgIBM or sim-

ply gIBM); here the IBM with s(1=0) and d(1=2) bo-
sons is extended to include g (1 =4) bosons. An up-to-
date survey of the gIBM and its success has been docu-
mented recently [7]. Some of the growth points in this
model are (i) selection rules [8,9] in E2 data involving
/~=4+ and 3+ bands in ' Gd and ' Hf, E1 data in

' Ra; (ii) identification of dynamical symmetries [10] and
the study of the corresponding geometric shapes [11],oc-
currence of low-lying K =1+, 3+ bands and two types
(two phonon, hexadecupole) of K =4+ rotational bands

[12]; (iii) good description of the variety of rotational
bands [13] in ' Er, two-particle transfer data [14] in

Er(t,p)' Er; (iv) the I/N expansion technique and its
application [15] in explaining g-factor variation with
respect to L in ' Er; (v) quantitative description [4] of
E4 strength distributions in ' Gd and ' Nd; (vi) simple
description [16]of spherical-deformed phase transition in

Sm isotopes as a boson number effect; and (vii) prelimi-
nary work [7,17] on interactions in sdg space. In spite of
all these new results, the progress in applying gIBM in a
wide variety of situations is slow because (i) the general
gIBM Harniltonian contains too many parameters, three
single-particle energies (SPE), and 32 two-body matrix
elements (TBME), (ii) the matrix dimensions in sdg space
are very large (see Table I in Sec. II), and (iii) except for
the SU(3) and U(6)eU(9) limits, the applicability of the
other gIBM dynamical symmetries [10] [SU(5), SU(6),
O(15), U(1)@U(14),U(5)@U(10)] is not clear. Most of the
calculations to date are confined to variational methods,
truncations based on sdg SU(3) or coupling a single g bo-
son to sdIBM core nucleus. However, with the develop-
ment of the package SDGIBM1 [7] which allows one to

construct and diagonalize gIBM matrices in spherical
(n, ndn~) basis and produce occupancies, two-nucleon
transfer strengths, and E2, M1, and E4 matrix elements,
it is feasible to explore and apply this model in detail.
This coupled with the fact that a simple Hamiltonian
based on gIBM symmetries (with 6—8 free parameters)
appears to reproduce the experimental data makes the
sdg model a powerful tool for analyzing E4 properties in
nuclei. It is our purpose here to demonstrate the same
and to this end we choose Sm isotopes as they are
sufficiently complex.

Recently Otsuka and Sugita (OS) analyzed [16] the en-

ergies and E2 properties of 0&+, 2,+, and 4&+ levels of Sm
isotopes in sdg framework employing variational (with
projection) method. They demonstrated that the ob-
served spherical-deformed shape phase transition (with
respect to neutron number) in these isotopes is due to bo-
son number 1V. In the sdIBM calculations of Scholten et
al. [18] boson-number-dependent d-boson energy had to
be used. However, it is seen that the variational calcula-
tions do not reproduce [19] the P- and y-band energies
and other related properties with the same simple Hamil-
tonian that reproduced the phase transition (see Sec. III).
Thus a good description of the excited bands calls for de-
tailed gIBM calculations and with this one can predict re-
liably the E4 properties of Sm isotopes. It should be
pointed out that sdIBM calculations necessarily fail in
describing E4 properties (see, for example, Refs. [1,4]).
Keeping these in mind, first we repeated OS calculations
in the spherical basis to establish that the variational re-
sults are essentially kept intact in the matrix diagonaliza-
tion approach and also extend the calculations to other
observables such as B (E4$ )'s, g factors, nuclear radii,
and two-nucleon transfer strengths. The results are de-
scribed in Sec II. Having shown that a truncated spheri-
cal basis is meaningful we employ a Hamiltonian based
on gIBM dynamical symmetries (with six free parame-
ters) to reproduce f3 and y-band energi-es and related
properties. In Sec. III detailed calculations for ' Sm,

Sm, ' Sm, and ' Sm are reported. For ' ' Sm iso-
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topes B(E4) data (0,+~4,+,0,+~4+) exists [3] and the
effective charge that is used to reproduce the
B (E4;0,+~4,+ ) predicts the B (E4;0,+ —~4+ ) values
close to the data. With this agreement, reliable predic-
tions for E4 distributions in ' ' Sm are made. More-
over, a particular ratio % (see Sec. III) involving two-
nucleon transfer (TNT) strengths which shows a peak at
neutron number 90 is well described by the calculations.
These results and the predictions for the properties of 1,+

levels in ' ' Sm are also given in Sec. III. Finally, Sec.
IV gives some concluding remarks.

H=F[sdnd+ssng+vQ Q ],
where

Q2=(dies+std

)2 — (dtd )2
28

+—(d'-+ 'd)'+' "( '-)'.
7 g g 14 gg (2)

In (1), F is the parameter which scales the spectrum, x. is
the strength of the quadrupole-quadrupole force, and cd
and eg are d- and g-boson energies, respectively. In the
calculations reported later cd and c are taken to be the
same for all Sm isotopes and hence I and ~ are the only
two free parameters in (1). In (1) and (2) Q is the gIBM
SU(3) quadrupole operator. The Hamiltonian (1) is diag-
onalized (using the package sDGIBMI) in a truncated set
of spherical basis states

~ n, ; nkvd a&Ld, ns vsa Ls;Lf ),
where nd and n are boson numbers, vd and v seniority
quantum numbers, and Ld and Lg are angular momen-
turn quantum numbers for d and g bosons, respectively.
The labels ad and a are used to specify the states com-
pletely and the final angular momentum Lf =Ld +Lg.
With n, being the s-boson number, N=n, +nd+ng,
where N is the total number ofbosons. For ' ' Sm, N
takes values 7—13 (N =6 and N„= 1 —7 where n. and v
stand for proton and neutron bosons). In all the calcula-
tions the basis states are restricted such that n, ~ 2 and

ng 2. This truncation scheme is adopted based on the
following facts: (i) in sdIBM vibrational [SU(5)] limit the
ground state (g.s.) s-boson occupancy (8', )s ' =N and in

II. SPECTROSCOPY OF LOW-LYING LEVELS IN Sm
ISOTOPES: SIMPLE gIBM CALCULATIONS

The 0&+, 2&+, and 4&+ levels of doubly even Sm isotopes
Sm are studied employing a simple two-parameter

Hamiltonian

the rotational [SU(3)] limit (6;) '=N/3=3 —4, and (ii)
the microscopic theory (based on Hartree-Fock-
Bogoliubov intrinsic states) of Pannert et al. [20] shows
that even for a well-deformed nucleus "Sm ng takes a
maximum value of 2 (ns ~ 2). Moreover, calculations re-
laxing the above restrictions (allowing for n, ~0 or 1,
n 3 or 4) showed negligible improvements in energies
and B(E2) values. Table I gives the matrix dimensions
for L &6. The results of the calculations for energies,
E2, M1, and E4 properties, isomer and isotope shifts,
and TNT are described in Secs. II A —II F and a summary
with comments is given in Sec. II G.

A. Energies

The parameters in the Hamiltonian (1) are chosen to be
cd=1.3 MeV, c, =1.8 MeV, F=1.0, and ~= —0.0375
MeV for ' ' Sm, and the values of (F,a) are changed
to I'=0.7 and a= —0.04875 MeV for ' '5 Sm. With
these two sets of parameters, properties of ' ' Sm are
calculated. The set used for ' ' Sm was employed be-
fore by OS in their variational calculations (see also Sec.
II G). Excitation energies (E„)of 2&+ and 4&+ levels are
shown in Fig. 1(a) and the ratio R =E„(4,+)/E„(2&+) is
shown in Fig. 1(b). The vibration-rotation phase transi-
tion is clearly seen in theory and experiment in both the
energies and the ratio R; the ratio R changes from vibra-
tional R =2 to rotational R =10/3 values as we move
from ' ' Sm to ' ' Sm. In gIBM one can also cal-
culate binding energies. For a fixed proton-boson num-
ber N, the two-nucleon separation energies are given by
[16,18]

S2„=AD+ A)N„+Es, (N, N„) Es, (N, N—„+1),
(3)

where E, is the ground-state energy calculated with the
Hamiltonian (1) and A's are free parameters. The calcu-
lated separation energies are shown in Fig. 1(c). The
values of the parameters obtained from a fit to data are
AD=15.23 MeV and A&= 0.614 MeV. The sudden
discontinuity from the straight-line behavior in the
phase-transition domain is well reproduced by the calcu-
lations and the parameters A's are consistent with those
of Refs. [16,18].

B. E2 transitions and quadrupole moments

Following OS, the E2 transition operator is chosen to
be

TABLE I. Dimensionalities in sdg space with the restriction n, 2 and n~ 2.

Nucleus

146S

148S

150S

152S

154S

156S

158S

E/L

7
8
9

10
11
12
13

0+

18
29
41
58
77

100
125

14
26

67
97

132
174

2+

43
73

114
167
231
309
398

34
63

105
160
23l
315
416

53
95

153
231
328
447
586

38
73

127
200
295
413
555

46
88

149
235
347
487
656
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FIG. 1. Comparison of properties of 0&+, 2&+, and 4&+ states, between calculated (full line) and experimental (points): (a) excitation
energies (E„)of 2,+ and 4,+ states [21]; (b) ratio R =E„(4,+ )/E„(2,+ ); (c) two-neutron separation energies [22] S2„; (d) transition mo-

ments of 0,+ ~2~+ (closed circles) [23]; and static moments of 2,+ states (open circles) [23,24]; (e) g factors [25]; (f)

B(E4$)=B(E4;0,+~4,+) values [26]; (g) isomer shifts [27]; (h) isotope shifts [28]; (i) 0,+~0,+ (t,p) transfer cross sections [31]; (j)

0,+ ~02+ (t,p) transfer cross sections [31];(k) 0,+~0,+ (p, t) transfer cross sections [32]; (1) 0,+~0&+ (p, t) transfer cross sections [32].

TE2 e Q2 (4)

where Q is the gIBM SU(3) quadrupole operator defined
in Eq. (2) and e2 is the effective charge. Figure l(d)
shows the transition moments Q (Oi+ ~2i+ )

=[(16~/5)B(E2;0&+~2,+)]'~ and the static moments

Q(2,+). The value of the effective charge obtained from
the fit to Q(2i+) is ez=0. 113 e b. The phase transition
here manifests itself in a sharp increase in the value of the
transition moment Q(0&+~2,+) which is reproduced by
the calculation.

C. Magnetic g factors

In gIBM, the general one-body M1 operator is

T '=&3/4~&10[a(dfd )'+&6P(g g )'] . (5)

In terms of the parameters a and p, the effective g factor
for the 2,+ level (g'+ ) is

I

g'+ =a+&60[P a] + —, —a- — G
1

(6)

In (6) (:::) stands for the Wigner's 3-j symbol. The pa-
rameters a and P are determined by fitting the g-factor
data for the 2,+ states and the values obtained are
a=0.21pz and P=0.45p&. These values of (a,P) are
quite different from (0.55pN, 0.13piv) and ( —lpga,

—

lpga)

determined for ' Er [13] and ' Gd [4]. It is worth men-
tioning that due to large scatter in the g-factor data for
Sm isoptoes [see Fig. 1(e)] the (a,P) values given above
are not unique (a=p=0. 28pz also gives a good fit} and
the real test for them comes from B (M 1;1,+ —+0&+ ) data
which is not yet available (note that 1,+ is a gIBM sym-
metric 1+ level but not a scissors 1+ level). The results
for g factors calculated with the above set (a=0.21p~,
p=0.45pN) are shown in Fig. 1(e). Here the data show

large deviations from the linear behavior of the "stan-
dard" value of Z/A and the calculations reproduce the
observed trend. In the sdIBM calculations a two-body
M 1 operator has to be employed [18] to obtain agreement
with data.

D. E4 transitions

The general E4 operator in gIBM can be written as

T =e4[(s g+g s) +r), (dtd)

+r)2(d g+g d) +r)3(g g) } . (7)

In the present calculations the g's in (7) are taken to be
equal to the matrix elements of the r Y' ' operator in the
sdg harmonic oscillator basis [4] and the only free param-
eter is e4. Thus q, =19&5/28, g2= —5&11/14, and

q3 3v'143/28. Th——e B (E4$ ) for 0,+ ~4,+ determine the
value of the effective charge e4 to be e4=0.034 e b; the
results for B (E4$ ) are shown in Fig. 1(f}. It can be seen
that there is a marked rise in the B(E4$) values in the
phase-transition domain from vanishing values at the vi-
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brational end to fairly large values for the rotational nu-
clei. The operator in (7) with the above value for e4
effective charge predicts 8 (E4;0,+~4r+) in close agree-
ment with data [3];see Sec. III.

E. Nuclear radii: Isomer and isotope shifts

In the sdg space the most general one-body rank-zero
operator can be written as

T' '=ao+a)A'+a26'd+a3hg . (8)

The structure of T' ' can be used to calculate nuclear ra-
dii [18],

&W'&,(",) =
& r,' &„,+yP+y, (e, &,'",'+y, & e, &,'.',I I I

(9)

where (r )' + represents the mean square radius of a nu-
I

cleus with N bosons in the state Lt+, ( r 0 )(,) is a constant
term which represents the contribution due to the closed
shells, and (ltd ) and (hg ) are the expectation values of
the d- and g-boson number operators &d and Sg, respec-
tively. The isomer shift 5(r ) is defined to be the
difference in the mean square radii of 2&+ and the ground
0,+ states,

5( 2) (p2)(N) (p2)(N)
2)+ 0)+

(10)

The values of y„y2, and y3 in Eqs. (10) and (11) are
determined by simultaneously fitting to the 5(r ) and
b, (r ) data and they are found to be y)=0. 3 fm,
y2 =0.025 fm, and y3 =0 frn . The results obtained with
this parameter set for the isomer shift 5(r ) and isotope
shift h(r ) are shown in Figs. 1(g) and 1(h), respectively.
The present calculations reproduce the observed trends,
i.e., the sudden drop in isomer shift and a rise followed by
a drop of the isotope shifts in the phase-transition
domain.

F. Two-nucleon transfer intensities

The first study of TNT, in gIBM framework, was by
Akiyama et al. [14]. In this paper, TNT intensities are
calculated using the stripping and pickup operators [29]
(for 1 =0 transfer) P(+0', where

1/2

(12)

Similarly, the isotope shift t)).(r ) is defined as the
difference in the mean square radii of the ground states of
the two neighboring even-even nuclei,

g( 2) (p )(2N+) )(p2)(N)
0(+ 0)+

[(g )(N+1) (p )(N)]
d 0 d p

1/2

P",'=a, n, —8,'—'(e, +fi, ) sag, /g. (13)

Here p=m (v) for protons (neutrons) and Q&„) is the pro-
ton (neutron) pair degeneracy. In the present calcula-
tions 0„ is taken to be (126—82)/2 =22 and
II =(82—50)/2=16. The factor 8'„( )/8' counts the
fraction of neutrons (protons) and a+ are the free pa-
rameters. The cutoff factors in the transfer operators
P'+' in (12) and (13) are derived using the Otsuka-Arima-
Iachello (OAI) mapping [30] procedure. Following
Scholten et al. [18], the calculated two-nucleon transfer
intensities are assumed to be proportional to the transfer
cross sections,

a+.= (0+.) l & II«*,) 'P+.'ll & I' (14)

The parameters g+„are determined to be g+,=0.01
mb/sr and (,=0.02 mb/sr, by fitting to the data.
These parameters are consistent with those of Scholten
et al. [18]. It is to be noted that in general the knowledge
of the kinematic factors is required to deduce the values
of a+„ in Eqs. (12) and (13) from g+„parameters in Eq.
(14). The comparison with experimental (t,p) and (p, t)
cross sections for the transfer to ground state 0,+ and the
excited 02+ states are shown in Figs. 1(i)—1(l). In both
theory and experiment the transition is manifested as a
drop in the ground-state transition and the corresponding
increase in the 0,+~02+ transition strength (see also Fig.
4).

G. Summary and comments

Some cornrnents on the results given in Secs. II A —II F
are in order.

(i) The agreements shown in Figs. 1(a)—1(1) demon-
strate that matrix diagonalization in a truncated sdg
spherical basis is well suited for describing the structure
of complex nuclei.

(ii) Scholten et al. [18] calculated in sd space, with
neutron-number-dependent d-boson energies, all the ob-
servables given in Figs. 1(a)—1(1); the sdg results are ob-
tained with comparatively less free parameters and the
agreements are, in general, better.

(iii) The results show that the agreements obtained by
OS in their sdg studies (with variational methods) for en-
ergies and E2's extend to all other observables. The
spherical basis calculations of all the observables is equal-
ly easy, which may not be the case with variational
methods.

(iv) In all the calculations two sets of (F,x)are em-.
ployed, while OS employed only one fixed set. This need
not be considered a drawback of the spherical basis be-
cause of (i) above and the fact that neither calculation
reproduces the P- and y-band energies and other related
properties; see below.

(v) The simple Hamiltonian given in (1) produces P-
and y-band energies —1 MeV higher than the data and
that is also the case with OS calculations [19]. This calls
for a more elaborate Hamiltonian and, with this, reliable
predictions for E4 distributions and other detailed prop-
erties can be made. The results of these calculations are
discussed below.
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III. EXTENDED CALCULATIONS

In order to obtain a consistently good description of
the ground-state, P, and y bands in Sm isotopes calcula-

tions in the spherical basis are carried out employing a
Hamiltonian that interpolates various gIBM dynamical
symmetries [SU(3), SU(5), SU(6) and O(15)] [7,10],

H= sdRd'+s~h'&+a, [ H(SU(3))]+a2[H(SU(5))]+a3[H(SU(6))]+a4[H(O(15))]+a5[H(O(3))],

H(SU(3) ) = ——", Q Q, H(SU(5) ) = —4[ G G +G G j,
G =Q —,

' j(std+dts) ——'&5(dtd) +—'(dtg+gtd) +—'&110( ) j

G =Q —,'[(s g+gts) + —,'&5(dtd) +—,'Q —", (dtg+gtd) + —,', &143(g g) j,
H(SU(6)}=—4[h .h +h h (15)

h = — (std+dts) + (dtd) — (dtg+gtd) ——'&33(gtg)v'6 7v 6 14v 2

h4= — (stg+gtr) —
—,', Q —,'(dtd) —

—,', Q —", (d g+g d) + —,', Q—",'(g g)

H(O(15)}=I I +I I, I =(s d+d s), I =(s g+g s)

H(O(3))=L L, L=&10[(dtd)'+&6(gtg)'j .

The quadrupole operator Q appearing in (15) is already
defined in (2). It is worth mentioning that Hamiltonians
H(G), G =SU(3), SU(5), SU(6), O(15), and O(3), are ex-
pressible in terms of the Casimir operators of the group 6
and the various subgroups that appear in the group chain
defined by G [10,11]. Moreover the operators (G,h, I )

and (G,h, I ) are the quadrupole and hexadecupole
generators of (SU(5), SU(6), O(15)) groups, respectively.
The geometric shapes that correspond to the various
dynamical symmetry groups of gIBM are studied [11]via
coherent state formalism and they show that the groups
SU(3) and SU(5) are relevant for deformed nuclei and
SU(6) and O(15) groups for y-unstable nuclei. Based on
this consideration, the strength a3 of H(SU(6) } is set to
0. Thus the Hamiltonian given in (15) has six free param-
eters and they are determined by least-square fit to the
spectra. The spectra for ' Sm, ' Sm, ' Sm, and ' Sm,
E4 strength distributions for ' ' Sm, Burke's [33] ratio
(defined below) A for TNT, and properties of 1&+ states in

Sm are given below.
The spectra for ' Sm, ' Sm, ' Sm, and ' Sm are

shown in Fig. 2, the rms deviation (from experiment) is
108, 74, 49, and 20 keV, respectively. The parameters ob-
tained from the fits are cd=0.9 MeV, can=1. 95 MeV,
a, =3.87 keV, a2=2 keV, a3=0 keV, a4=6. 17 keV, and
a~=8. 55 keV for ' Sm; cd=0. 62 MeV, c, =1.45 MeV,
a&=1.95 keV, a2=3.4 keV, a3=0 keV, a4=6. 52 keV,
and a~=2.41 keV for ' Sm; c.d=0. 7 MeV, v~=1.2
MeV, a, =3.44 keV, az = 16.68 keV, a3 =0 keV,
a4=30.24 keV, and a5=11.95 keV for ' Sm; cd=0. 7
MeV, c =1.2 MeV, a&=4.47 keV, a2=8.46 keV, a3=0
keV, a4=31.17 keV, and a5=9.75 keV for ' Sm. As the
H(G) in (15) are in multipole-multipole form they con-
tribute to the d and g boson energies. Adding this contri-
bution, the (sd, s ) values given above change to
(0.90,2.11), (0.58, 1.46), (0.48, 1.18), and (0.42, 1.10) MeV

for ' Sm, ' Sm, ' Sm, and ' Sm, respectively. These
(sd, ss) values show a gradual decrease as we go from

Sm to ' Sm and this is a characteristic feature of
spherical-deformed transition. The a s for the vibration-
al ' Sm and transitional ' Sm nuclei are somewhat
different from each other and they both are different (the
significant difference is in a2, a4 values) from those of the
rotational ' Sm and ' Sm nuclei; the parameters for the
latter two nuclei are close to each other as expected.

From the parameter sets given above, it appears that
the strength of H(O(15)) »H(SU(5)}»H(SU(3) } and
it leads to a misleading conclusion that SU(3) is not im-

portant for Sm isotopes while O(15) is more relevant; for
Sm the differences in the strengths are not very

large. The problem here is that the basic operators all do
not have the same normalization. In order to have a
proper comparison, a measure for the norm (size) of the
operator has to be used. One such measure is given by
French [34] and it is employed in this paper. Appendix
A gives the definition and expressions for the norms

~~H~~ in m-boson space. Equation (A9) gives the follow-

ing results:

[iH(SU(3 ) )i[~,0-—4.2iiH(SU(5) )ii~,o,

H(SU(3) )II„„=lollH(O(15

//H(SU(3 ) ) //z &o—-8[/H(SU(6) ) //&

N =10 corresponds to ' Sm. They clearly demonstrate
that the parameters a's are meaningful and all the in-
teractions a,H(SU(3)), azH(SU(5}), and a4H(O(15}}
are, globally, roughly of the same size. Similar results are
obtained for N=8, 9, and 11 appropriate for ' Sm,

Sm, and ' Sm.
The Hamiltonian in (15), with the parameters given

above, not only provides a good description of ground-
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FIG. 2. Comparison between calculated (theory) and experimental (expt) low-lying energy levels [18,21] in g.s., P-, and y-bands in
'4'Sm, " Sm, '"Sm, and "Sm; note that GS in the figures stands for g.s. As the nuclei ' '" Sm are not deformed, the g.s., p, and y
bands in these nuclei are labeled quasi-g. s., quasi-P, and quasi-y bands, respectively. See text (Sec. III) for the Hamiltonian and the
corresponding parameters. The matrix dimensions are given in Table I.

state, P, and y bands but also keeps intact all the results
reported in Sec. II. It should be mentioned here that the
8(E2)'s from P- and y-band members to ground state
0, which are smaller (see Ref. [18]) by a factor of 100
compared to 8(E2;2,+~0,+), are well described by the
calculations.

More strikingly, using the E4 operator given in (7}
with the effective charge e4 =0.034 e b as determined by
fitting 8(E4;0&+~4&+) data, the predicted values for
8 (E4;0,+ ~4„)are 0.014 e b for "Sm and 0.014 e b
for ' Sm [note that ' ' Sm are not dealt with as 8 (E4)
data for these nuclei are not available]. They are in excel-

lent agreement with the recent' 8(IS4) data (0.011 and
0.012 e b } of Ichihara et al. [3]. With this agreement,
E4 distributions in ' ' Sm are predicted and the results
are given in Fig. 3. The distributions given in the figure

8(IS4) is isoscalar hexadecupole transition strength and in
Ref. [3] their values are determined from the analysis of data
from inelastic scattering experiments with 65 MeV polarized
protons. As in Ref. [2] and elsewhere, in the present paper
8(IS4)'s are taken to be the same as 8 (E4)'s and compared with

gIBM predictions.
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are quite similar to the ones (both data and theory) in
' oNd and ' Gd reported by Wu et al. [4]; experimental
data for Sm isotopes are not yet available.

Recently Burke [33] argued that the ratio % of the sum
of the TNT cross sections to excited 0+ states to that of
the ground state 0+ provides a good test of nuclear mod-
els. Moreover, the cross-section ratio can be approximat-
ed by the corresponding ratio involving TNT strengths:

I.4—

1.2—

I.O-

0.4—

l.2—

I.O—

0.8—

0.6—

X I&o;..IIP .Ilo,', &I'
exc&g. s.

I &o,+, IIP., llo,', & I'
(16)

0.2—

I46 l48 I50 I 52 I54 I56

0.2—

0 0
l46 l48 l50 l52 l54 l56

The (t,p) and (p, t) data for A in the entire rare-earth re-
gion is compiled [33,35]. The (t,p) data show prominent
peaks at neutron numbers 90, 108, and (p, t) data at 88.
Dynamical symmetries of gIBM explain [29,35] the aver-
age % value reasonably well all across the JV= 82 —126 re-
gion but they fail to predict the peaks. In Sm isotopes
the peak at neutron number 90 is due to spherical-
deformed phase transition; the value of % changes from
vibrational [SU,& ( 5 )] % =0 to rotational [SU,&s ( 3 )]

FIG. 4. Comparison of the ratio A of the sum of the cross
sections to the excited 0+ states to that of the ground state 0
for (t,p) and {p,t) reactions. The circles are calculated values
and boxes are from experimental data [33,35]. The ratio .8 is

given for the final nucleus A. All the gIBM results (except for"Sm~~" Sm) are obtained using the simple two-parameter in-

terpolating Hamiltonian (1) of Sec. II. For "Sm~~" Sm the
wave functions obtained by diagonalizing a more general gIBM
Hamiltonian (see Sec. III) are used.

~ zo-
IO

IO—

CQ

0
0

ct~
OJ~ zo-
IO

'X6

I

0.5

X8

l52

E (MeV)

I54
Sm

. ). l ..
I I

2 2.5

A =4/%=0. 3 value. The Hamiltonian in (1) predicts the
peak very well [as it interpolates SU,&(5) and SU,&z(3)],
but the values for ' Sm~~' Sm are much smaller than
the experimental values. For these transitions, the value
of A is recalculated using the wave functions given by the
Hamiltonian (15) and the results are shown in Fig. 4. In
using (16), the cutoff factors appearing in P+„[see (12),
(13)] are ignored as we are dealing with a ratio. One sees
that the detailed numerical calculations reproduce the
observed variation in R very well; for (p, t) the predicted
peak value is somewhat smaller.

In gIBM one can generate 1+ levels, which is not pos-
sible with s and d bosons alone. With the Hamiltonian
(15), the 1,+ levels appearing at 1.91 and 2.01 MeV in the
rotational nuclei ' Sm and ' Sm, respectively, and the
B (M 1;0& ~1&+)=B(M11)value, with the Ml operator
and the corresponding g factors given in Sec. IIC, are
predicted to be 0. 10p& and 0. 15pz, respectively. In

Sm the scissors [36] 1+ level is observed at 3.2 MeV
with B (M11') =(0.8+0.2)pz, and obviously it cannot be
the gIBM 1&+ level. Therefore it mould be interesting to
1ook for 1&+ levels around 2 MeU in ' ' Sm; see also
Ref. [37].

IO-
UJ
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I

0.5
I I

l.5 2
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I
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FIG. 3. E4 strength distributions in "Sm and "Sm. The
B(E4 f ) =B(E4;0,+ ~4,+ ) values for the 4I+ level are to be mul-

tiplied by a factor of 6 for ' Sm and factor of 8 for ' Sm. The
E4 transition operator and the corresponding effective charges
are given in Sec. II D.

IV. CONCLUSIONS

First systematic calculations for a series of isotopes in
sdgIBM framework are presented in this article with Sm
isotopes, which exhibit spherical-deformed phase transi-
tion, as the example. It is clearly demonstrated that the
spherical basis with a symmetry-defined Hamiltonian
with few free parameters (not much more than what one
has in sdIBM) describes the spectroscopic data rather
well, the former is well confirmed in Sec. II, and the latter
(together with the former) by the results in Sec. III. Simi-
lar successful calculations for isotopes in the Os-Pt region
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(where good F.4 data are available [1]) are also carried
out and the results will appear elsewhere [38]. These
studies establish that gIBM is a simple yet powerful tool
in analyzing and predicting E4 properties in atomic nu-
clei. Finally we mention that the important problem of
understanding and derivation of parameters in the Ham-
iltonian and various transition operators is postponed to
a future publication.
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where ~ is the tensorial rank with respect to U(& group
which is U(15) in sdg case. Using the results of Ref. [39]
we have
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APPENDIX A

Let us start with a one- + two-body Hamiltonian:

H=h+V, (A 1)

r

V= g VI I ~ t (2L+1)
1) 12

yX,,e
h —1

+2

(A5)

where h =g&eI&1 is the one-body Hamiltonian and the
interaction V is defined in terms of the matrix elements
V( I I ( =((I,l2)LlVl(l314)L). In sdg boson space I' s

stand for s, d, and g. The Hamiltonain H can be decom-
posed into tensors with respect to the U(JV) group [39],
where JV=Q&JVI and JV& =1, 5, and 9 for s, d, and g, re-

I

Xl= +v~1 p (2L +1)(1+5@) (JV+1)v
(A6)

The A, &'s are known as traceless induced single-particle
energies. Finally the V is defined by VI I I &

for

I, l2, 13 ~ 14.

1.
VI) l~l3I4

—
VI) l~l3 l~

' V+ +2
(kl( + XI2

) 5I) I35l2I~ (A7)

The norm llOll of an operator 0 in m-particle space is defined as

lloll. =[&(o)'&-]'"=[& [o —&o).]'&.I'" (A8)

where the symbol ( ) stands for m-particle space average. The norms of various parts of the operator H can be written
down in the m-boson spaces using the following trace propagation [34,39] equations:

IIHII' =ll& ='ll'+IIH ='ll'

JV( V J1+)( V+J2)( V+J3)

«(v-=')')&'= y (v,'. . . )'(2L+1) .

I, 12

13 14,L

In (A9) gl(m)=el+[(m —I)/(JV+2)]A& and the symbol (( )) stands for the m-particle trace.
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