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Hot nuclear and neutron matter with a density-dependent interaction
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The temperature dependence of the different thermodynamic quantities like entropy, equation of state,
free energy, internal energy, effective mass, chemical potential, etc. are calculated for nuclear and neu-

tron matter within a fully self-consistent model and compared with the results obtained by others. An

effective interaction consisting of Sussex interaction plus an empirical density-dependent interaction is

taken in the calculation. The latter is added so as to correctly reproduce the saturation property of nu-

clear matter. The calculated entropy is in excellent agreement with experiment.

PACS number(s): 21.65.+f, 21.30.+y, 25.75.+r, 97.603d

I. INTRODUCTION

Over the last few years, there has been an increased in-
terest in the studies of excited nuclear matter because of
the hope that such a hot and dense nuclear matter is like-

ly to be produced (though for a very short time, (10
sec) during the relativistic heavy-ion collisions. The stud-
ies of such matter under unusual conditions of densities
and temperatures would also be useful in the understand-
ing of stellar collapse, supernova explosions, neutron
stars, etc. For the description of the bulk properties of
such excited nuclear and neutron matter, a reliable equa-
tion of state is crucial. Entropy is one of the most impor-
tant thermodynamical variables since it can provide in-
formation on the equation of state and phase transitions
in nuclear matter. In the heavy-ion collisions, entropy is
mainly produced during the formation of the fire ball.
Since it does not change significantly during the expan-
sion stage, it can provide information about the hot and
compressed stage of collision. Experimentally it can be
extracted with good accuracy from fragment yields in
contrast to quantities like breakup temperature and den-
sities. In addition, other thermodynamical quantities like
chemical potential, free energy, effective mass, etc., also
play an important role in the understanding of the hot
matter. Hence a good theory should be capable of giving
an accurate description of the equation of state, entropy,
and other thermodynamic variables of hot nuclear and
neutron matter.

Recently we [1] have successfully explained the experi-
mental observations regarding entropy production in
heavy-ion collisions within a fully self-consistent model.
This model is a generalization of the Brueckner theory to
low finite temperatures in which scattering to intermedi-
ate states is taken into account and the degeneracy and
the single-particle potential are calculated self-
consistently. The equation of state thus obtained is ex-

pected to be valid up to densities much higher than the
nuclear matter densities. The entropy calculated using
this model is in excellent agreement with recent experi-
mental data. However, in the above calculation, Sussex
interaction has been used which gives insuScient binding
by about 3 MeV/nucleon and does not saturate correctly
in nuclear matter. Hence Tripathi et al. [2] have sug-
gested the addition of a density-dependent term to the
original Sussex interaction matrix elements. The parame-
ters of this density-dependent term are fixed empirically
by fitting the binding energies and densities of nuclear
matter and ' O. The main aim of this paper is to study
entropy, single-particle potential, internal energy, chemi-
cal potential, effective mass, etc. of nuclear and neutron
rnatter at different temperatures. The organization of
this paper is as follows: In Sec. II, the details of our mod-
el are given. Results of our calculation are discussed in
Sec. III. Finally, Sec. IV contains the conclusions of our
study.

II. THK DETAILS OF THK MODEL

where H, P, T, p, and n are the Hamiltonian, pressure,
temperature, chemical potential, and number density, re-
spectively. This thermodynamic potential can be ex-
pressed as linked cluster expansion analogous to zero-
ternperature Brueckner-Czoldstone expansion, i.e.,

Q=Q +Q +Q + (2)

where Qo, Q„Qz, . . . are the contributions to the thermo-
dynamic potential due to the unperturbed part, one-body

The details of the formalism have already been dis-
cussed [1,3,4]. For completeness, we give a few impor-
tant steps. The grand thermodynamic potential per unit
volume is given by

0= P= —T ln tr exp—[ (H —p„)/T—],
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part (single-particle potential), and two-body part (binary
collision) of the Hamiltonian. Our formalism is limited
up to Q2. In this formalism we have used the Brueckner
reaction matrix instead of the bare XN force. The num-
ber density n is given by

(3)

respect to the single-particle potential and chemical po-
tential. The entropy and the internal energy are calculat-
ed using the formulas

S = ——g f d k [n,(k) inn, (k)
1 2

, (2~)'

+ [1—n, (k) ] in[1 n—,( k) ]],
where n, is the number density of nucleons with isospin r
(+ for protons and —for neutrons). The proton to neu-
tron ratio is defined as y=n+ /n . The single-particle
energy is given by

u 1 2 3
A2k2 1f d k n, (k) +—U, (k) . (12)

A n, (2~)3 ' 2m„2
Ak

e,= + U, (k),
2m~

(4)
The pressure, the effective mass, and free energy are cal-
culated using the formulas

where k is the momentum, and m, is the nucleon mass.
The single-particle potential U, (k) is defined by

dE~
P = g f dk k n, (k) —k '+ —U, (k)

0
' 3 dk 2

(13)

a)

U+(k, )=
~ dk~[n+(kz)g++(E„k„kz)

2m

+n (k~)g +(E k, , k )], (5)

where n, (k) is the Fermi distribution function given by
and

2m, dU,
1+

dk

F=0 —TS .

(14)

n, (k)={1+exp[[e,(k) p, ,]/T] )— (6)

Here p, is the chemical potential of the nucleons with
isospin ~. We have put the Boltzmann constant equal to
1. The number density n, is obtained by integrating the
distribution function n, (k) over all momenta and weight-

ing it with spin degeneracy. The g's are the interaction
matrices

tan [m'PE Q„K„(E,) ]
g„(E„k„k~) =

'trPE

As has been mentioned earlier, the Sussex interaction
does not saturate correctly in nuclear matter. It gives
insufficient binding energy by about 3 MeV/nucleon.
Hence Tripathi et al. [2] have added an empirical
density-dependent interaction to the original Sussex in-
teraction so as to reproduce the saturation properties. If
VsME denotes the original tabulated Sussex interaction

where pE is the single-particle level density and the E
matrix satisfies the integral equation

K„(E,)= V„+V„K„.
s 0

Here V„ is the realistic nuclear interaction, Q„ is the
Pauli operator

Q„=[1—n, (k, ) ][1—n, (kz )],
and E, is the starting energy of the two particles and is
given by

OJ

0-
'X
o
LLJ

E, =
2fll

(k, +k~)+U, (k, )+U, (k~) . (10)
X,

o-10—
K
CQ

It may be noted that the single-particle potential is need-
ed in calculating n, (k) [Eq. (6)] which is in turn required
to calculate the single-particle potential itself. Hence the
single-particle potential is calculated by iteration. Be-
cause of this self-consistency of the single-particle poten-
tial, the scattering to intermediate states are taken into
account properly through the Pauli operator. The chemi-
cal potential p is determined by the number density con-
straint (3). It should be noticed that Eqs. (3) and (5) war-
rant double self-consistency which must be satisfied with
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FIG. 1. Binding energy per nucleon versus density at T = 10
and 15 MeV calculated with the Sussex and density-dependent
interaction. The broken lines represent the result calculated
only with the Sussex interaction.
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FIG. 2. The single-particle potential versus momentum for nuclear matter at T = 10, 20, and 30 MeV. (a) p =0.1 fm, (b) p =0.2
fm ', (c) p=0. 3 fm, and (d) p=0.4 fm
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matrix elements, they define an effective interaction W= g I A5(r)p (R)

~,a= MME+ ~ (16) + ,'[B—(1+P,)+"C(1 P—, )]"exp( —r /a )I,
where 8' is a simple density-dependent addition, whose
parameters are fixed empirically by fitting the binding en-
ergies and densities of nuclear matter and ' O.
Specifically

(17)

where r =r; —r, R =
—,'(r, +r ), p is the density, and P,

the space exchange operator. The values of the different
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FIG. 3. The single-particle potential versus momentum for neutron matter at T =10, 20, and 30 MeV. (a) p=0. 1 fm, (b) p=0. 2
—3
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parameters of this equation are taken from Ref. [6] and
are A =568 MeVfm +, 8 = —101.7 MeV, C=90.6
MeV, and a= —,'.

III. RESULTS AND DISCUSSIONS

The calculations are performed taking the effective in-
teraction given by Eq. (16). As has been mentioned
above, this effective interaction is obtained by adding a
density-dependent term to the original Sussex interaction
so as to correctly reproduce the saturation properties of
nuclear matter. We restrict ourselves to symmetric nu-
clear matter. We have calculated the binding energy per
nucleon at different densities and temperatures with the
help of Eq. (12). In Fig. 1, we plot the binding energy per
nucleon versus density at T =10 and 15 MeV. This is
represented by the solid curve in the figure. For compar-
ison, we also plot the binding energy per nucleon versus
density at these two temperatures using only the original
Sussex interaction (represented by the dashed lines). As
expected, the binding energy per nucleon increases with
the increase of temperature for both the interactions.
However, the Sussex interaction gives more binding. Le-
jeune et al. [5] have studied the properties of cold and
hot nuclear matter in the framework of the Brueckner
theory extended to finite temperature. They have used
the Paris potential supplemented by the introduction of a
three-body force. For reproducing the correct saturation

effect at T=O, they have added a phenomenological
term. They have calculated the binding energy per nu-
cleon versus density at T =10 MeV. At p=0. 17 fm
they find the binding energy per nucleon to be around
—12 MeV which agrees quite well with our calculation
with density-dependent interaction. However, for large
densities, the binding energy per nucleon increases rather
sharply in our case.

In Fig. 2, we plot the single-particle potential versus
momentum for nuclear matter at different temperatures
and densities. We have varied density from p=0. 1 to 0.4
fm and temperature from T =10 to 30 MeV. We find
that for a given density, single-particle potential curves
corresponding to difFerent temperatures almost meet at a
point. Using the relation p=2kF/(3m. ), we find that this
point almost corresponds to the Fermi momentum of the
system. Below this point, the attractive mean field de-
creases as the temperature increases. However, at higher
momentum, the reverse is the case. Again the depth of
the potential increases with density for low momentum.
Lejeune et al. [5] have calculated the single-particle po-
tential at different densities and temperatures. At normal
nuclear density and at T = 10 MeV, they find the depth of
the potential at low momentum to be around —75 MeV
which agrees quite well with our result. They also find
the depth of the potential increasing with density for low
momentum. However, in our case, the increase in the
depth of the potential with density is relatively smaller.
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FIG. 4. Free energy versus density for nuclear and neutron matter at T = 10, 20, and 30 MeV.
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Again at high momentum, the single-particle potential is
much more repulsive in our case. Baldo et al. [7] have
studied the symmetrical nuclear matter at finite tempera-
ture in the framework of the Brueckner-Hartree-Fock ap-
proximation extended to include single-particle correla-
tions. They have calculated the single-particle potential
at T =0, 10, and 18 MeV at p =0.2 fm . As in our case,
they also find that the single-particle potential graphs for
these three temperatures meet at a point which almost
corresponds to the Fermi momentum. However, they
find the depth of the potential to increase with tempera-
ture at low momentum.

In Fig. 3, we plot the single-particle potential versus
momentum for neutron matter at T=10, 20, and 30
MeV and p=0. 1, 0.2, and 0.3 fm . Since in neutron
matter, only T = 1 part of the nuclear force operates, the
single-particle potential is more repulsive than the nu-
clear matter case. Otherwise, the behavior of the curves
is almost similar to the nuclear matter case.

The free energy for nuclear and neutron matter are cal-
culated using Eq. (15). The results are plotted in Fig. 4
for T =10, 20, and 30 MeV. From these graphs, we find
that at constant density, the free energy decreases with
the increase of temperature. Again with the increase of

density, the free energy shows an increasing trend for a
given temperature. Friedman and Pandharipande [8]
have calculated the free energy at different temperatures
and densities and tabulated their values for both the nu-
clear matter and neutron matter. There is an overall
agreement between our values and the values reported by
them. Our results also agree more or less with those of
Baldo et ai. [7] and of Lejeune et al. [5] for nuclear
matter.

The influence of temperature (T =10, 15, 20, and 30
MeV) on the energy per nucleon is shown in Fig. 5 for
nuclear and neutron matter. The differences at different
temperatures are largest at small densities for neutron
matter. Our results agree quite well with those of Weber
and Weigel [9] for neutron matter.

In Fig. 6, we have plotted entropy per nucleon as a
function of density for different temperatures for nuclear
matter. The experimental results of Ref. [10] are shown
by the shaded areas. The negatively sloped, positively
sloped, and vertical lines are for T =18, 25, and 35 MeV.
Our results are in good agreement with experiment. In
Ref. [1], we had calculated the entropy per nucleon tak-
ing only the Sussex interaction. Introduction of the
density-dependent term in the present calculation in-
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FIG. 5. Energy per nucleon for nuclear and neutron matter at T = 10, 20, and 30 MeV.
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range, we have a mixture of two phases. The chemical
potential and single-particle potential in the two phases
may be different. Hence when we tried to calculate them
self-consistently assuming that there exists only one
phase, we failed. That our above interpretation is correct
can be seen from the study of asymmetric nuclear matter
[14j. As discussed above, for symmetric nuclear matter
(@=1),the highest temperature at which we start facing
the convergence problem is T=9 MeV. However, we
found that as the proton to neutron ratio y decreases,
this temperature goes on decreasing and finally for pure
neutron matter (y=O), this temperature is zero. Hence
it seems that the lack of convergence in the calculation

fjoi
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40-

points to the occurrence of phase transition. The critical
temperature decreases from T =9 MeV as the proton to
neutron ratio y decreases. Finally, for neutron matter
this critical temperature is zero, implying the nonex-
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correct, then we predict the existence of liquid-vapor
two-phase equilibrium below T = 10 MeV and around

3 po in symmetric nuc lear matter. Our value of critical
temperature is far below the values reported by Friedman
and Pandharipande [8], Satpathy et al. [11],Baldo et al.
[7], etc. However, Haar and Malfliet [12,13] had per-
formed a fully self-consistent Dirac-Brueckner calcula-
tion and found the critical temperature to be below 10
MeV. We had also obtained a similar value for critical
temperature using only the Sussex interaction [1].

The temperature dependence of the effective mass is in-
vestigated for nuclear matter and neutron matter in Figs.
9(a) and 9(b). In calculating the effective mass we have
made use of Eq. (14). For nuclear matter, our results are
in fairly good agreement with the ones reported in Ref.
[11].

In Fig. 10, we plot the chemical potential for nuclear
matter and neutron matter.

IV. CONCLUSION

We have tried to calculate different thermodynamic
properties of nuclear and neutron matter within a fully
self-consistent model. The effective interaction consists

of the original Sussex interaction plus a density-
dependent term. The latter is added to correctly repro-
duce the saturation properties of nuclear matter. We
have calculated the single-particle potential for both nu-
clear and neutron matter at different temperatures and
densities. Our results at low momentum agree quite well
with those of Lejeune et al. [5] for nuclear matter. The
calculated free energy for nuclear and neutron matter
agrees with the results reported by Friedman and
Pandharipande [8]. Without assuming breakup into two
phases, our model is able to reproduce correctly the ex-
perimental value of entropy. We do not observe any
phase transition for neutron matter. However, for nu-
clear matter, we feel that a phase transition occurs at
T =9 MeV. This value of critical temperature is substan-
tially smaller than the values reported by other calcula-
tions [7,8, 11]. However, Haar and Malfliet [12,13] found
a phase transition for nuclear matter below T =10 MeV
within their self-consistent Dirac-Brueckner calculation.
We have also studied the temperature dependence of
effective mass and chemical potential.

The authors are thankful to Professor S. P. Misra for
many useful discussions.
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