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Coriolis coupling in two-quasiparticle rotational bands of deformed even-even nuclei
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The experimental data on two-quasiparticle rotational bands of doubly-even nuclei in the rare-earth
region are analyzed; both the K = ~Q, —Qz~ and many of the K+ =(Q, +Q, ) bands exhibit an odd-even

staggering in energy. A formalism for Coriolis coupling within the framework of the two-quasiparticle

plus axially symmetric rotor model is presented. A detailed application of the model is made to the 27
known two-quasiparticle bands in ' 'Er. The odd-even staggering in all the bands is reproduced very
well. A discussion of the mixing effects in some of the bands is also presented. The Coriolis mixing is

able to resolve the apparent violation of the Gallagher rule in the configuration [ 5~ [642]„Isl z [521]„].

PACS number(s): 21.10.Re, 21.60.Ev, 27.70.+q

I. INTRODUCTION

Rotational bands based on two-quasiparticle (2qp) in-
trinsic excitations in the deformed odd-odd nuclei have
recently been studied in great detail [1] and exhibit a
number of interesting features like odd-even staggering in
the E = ~Q~

—Q„~ bands and almost no staggering in
the K+ = ( Q~ +Q„) bands. In contrast the

E+ =(Q~+Q„) bands, which originate from the high-j
neutron-proton orbitals, are observed to exhibit a large
staggering and sometimes a signature inversion. Most of
these features can be understood within the framework of
a two-quasiparticle plus rotor model calculations [2,3].
Two-quasiparticle intrinsic excitations are also possible in
the even-even nuclei. Although the experimental data for
these states and the rotational bands based on them are
small in number as compared to the odd-odd nuclei, a re-
cent compilation [4] lists at least 50 Gallagher doublets
and in several cases the associated rotational bands.

The 2qp intrinsic states in the even-even nuclei differ
from those of the odd-odd nuclei in many ways: Firstly,
the residual n-p interaction splits the It +=(Q&+Qz)
states and puts the singlet member lower than the triplet
member which is just opposite to that in the odd-odd nu-
clei. Secondly the odd-even splitting of the K=0 bands
(the Newby shift) in the even-even nuclei is also expected
to be opposite in sign to that observed in the odd-odd nu-
clei. Moreover, the splitting energies are expected to be
quite large in magnitude in the even-even nuclei. The re-
sidual n -p interaction parameters are also different from
the parameters used in the odd-odd nuclei. These
features radically change the 2qp band structure of the
even-even nuclei as compared to the odd-odd nuclei. An
examination of the experimental data on 2qp rotational
bands of the even-even nuclei in the rare-earth region re-
veals a significant odd-even staggering in the
X =

~Q&
—

Qz~ bands; however, some odd-even stagger-
ing is also seen in many K+ =(Qt+Qz) bands in contrast
to the II + = (Q +Q„) bands in the odd-odd nuclei which
mostly exhibit a smooth behavior. Besides, the

E+ =(Q&+Qz) and the E =~Q, —Qz bands originat-

ing from the high-j orbitals are observed to exhibit many
additional features. In this paper, we present a model for
detailed Coriolis coupling of the 2qp rotational bands in
the even-even nuclei. A detailed application of this mod-
el has been made to ' Er where a large number of 2qp
rotational bands have been experimentally observed. The
model is able to explain the odd-even staggering in the
E+ =(Q, +Qz) and E =~Q& —

Qz~ bands very well. In
Sec. II we present an analysis of the empirical data on
2qp rotational bands in the even-even rare-earth nuclei
where we highlight some of the important and unusual
features observed by us. In Sec. III we give a brief
description of the model. In Sec. IV we present a detailed
application of the model to the 27 2qp rotational bands
seen in ' Er and also point out the mechanisms responsi-
ble for the odd-even staggering. We summarize the re-
sults in Sec. V.

II. ODD-EVEN STAGGERING IN THE 2qp
ROTATIONAL BANDS

Figures 1 and 2 present some of the experimental data
for odd-even staggering in the E =~Qt —

Qz~ and the
E+ =(Q, +Qz) rotational bands of the even-even rare-
earth nuclei, respectively. Varying degree of odd-even
staggering is observed in both the K and E+ bands. It
is rather interesting to note that the K+ bands, which
originate from the high-j configuration, exhibit a greater
odd-even staggering although E is very large; for exam-
ple, the IC+ =4, [

—', [633]„ —,
' [521]„] band in ' Yb

shows a greater odd-even effect than the
=3, [ 7[633]„g—,'[521]„]band. Moreover, the sig-

nature dependence in the E+ =4 band is quite irregular.
Even more interesting is the observation that the K =3
and K+ =4 bands have an opposite phase of staggering,
while normally one would expect the same
phase. Large irregularities are also seen in the
E+ =7, [

7 [633]„Ig—', [514]„]band of ' Os.
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III. THE MODEL AND THE METHODOLOGY

A. The model

We have used a two-quasiparticle plus rotor model
(TQPRM) where a nearly complete Coriolis mixing of all
the known and unknown bands may be carried out. The
model is developed on a line similar to the one recently
developed for the odd-odd nuclei [1]; some differences
arise because of the antisymmetric nature of the intrinsic
wave function in an even-even nucleus. In brief, the
TQPRM Hamiltonian is

where the first term is the intrinsic part and the second
term is the rotational part of the Hamiltonian. The in-

trinsic part consists of a deformed axially symmetric
average field H,„,a short-range residual interaction H „„
and a short-range neutron-neutron/proton-proton residu-
al interaction V&z so that

Hintr ~av +~pair + ~12

Here, we have assumed that the core is always in its vi-
brational ground state and therefore the long-range vi-
brational interaction has been neglected. Since the 2qp
states in the even-even nuclei occur above the pairing
gap, a coupling with vibrational phonons is more prob-
able than in the odd-odd nuclei. This assumption there-
fore requires that we must confine our calculations to
only those 2qp bands where vibrational admixture is
known to be very small. For an axially symmetric rotor,
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The data are taken from Sood et al. [4].
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we can write H,„„=(A'/22)[(j,—j„)+(j~—j'„)] . (4c)

H„,=[Pi /22](I I,—)+H„,+Hpp, +H;„„,
where

H„,=( fi /2—2)[I+j +I j+ ],
H, =(A'/22)[j, +j +j, j,+ ],

(3)

(4a)

(4b)

Here, 2 is the moment of inertia with respect to the rota-
tion axis. In Eqs. (4) the subscripts 1 and 2 represent the
particle 1 and the particle 2, respectively, both of which
may be either neutron or proton. Other terms have their
usual meaning.

The basis eigenfunctions may be written as

[DMx(l«& —IE "&"&)+(—1} +
DM x&;(I«&—IE "~"&)j,(2I + 1)

32m (1+5xo)

I«) = lpga(1)ki(1} & lp2(2)kp(2) &,

E "u") = Ipi(2)ki(2) ) Ip2(1)k2(1) ),
(6a)

(6b)

where the index a ( =p,p2) characterizes the configuration of the two neutrons or the two protons. E is the projection
of the intrinsic angular momentum on the symmetry axis.

For the K =0 band, the intrinsic wave function for the even-even nucleus may be written as

[IE=0+& —IE "=oa"
& j =(1/2)' [I Ip, (1)k(1)) Ip,(2)—k(2) ) —j Ip, (1)—k(1)) Ip,(2)k(2) & j

j Ip, (2)k (2) ) Ipp(1) —k (1)) j Ip, (2)—k (2) ) Ip2(1)k (1)) j ] .

This may be compared with the K =0 band wave function in the odd-odd nucleus which has the fo11owing form:

IE =0iz& =(1/2)'"[Ipi(l }k(1)& IP2(2) —k (2}&
—j.Ipi( 1)—k(1}& Ip2(2}k(2) &] .

A rotational band can be developed on each intrinsic state [ IEa ) —IE "a") j. Either a parallel or an antiparallel cou-

pling is possible giving rise to Gallagher doublets [5,6]

E+ = (k, +k, ) and E

The residual interaction V&2 splits the two members of the doublet and a rotational band can be built on each of the

members. We use the symbol 0.=+ to denote the two types of bands E+.
We further define the following quantities:

& + =e~ +e +I&pi(1)k(1)I&p~(2)k(2)IVi2lpi(1)k(1)&IP&(2)k(2)) j

—
& pi(2) k (2 }I & p2(1}k (1}I Vi2 I pi(1}k(1}& I pp(2) k (2) &+ &

«' IH;„., I
«' &,

E =E~ +8~ + [ & p, (1)k ( 1 }I & p2(2) —k (2) V&2 Ipi(1)k(1) & Ip2(2) k (2) ) j

—
[ & pi(1)k (1)l & p2(2) —k (2)

I V» Ipi(2)k (2) ) Ipp(1) —k (1)) j+ &Ea IH;„„IEa

(10a)

(lob)

C =
[ & pi(1)k I & p2(2) —k

I V(2 Ipi(1) —k & Ip2(2)k & j
—

[ & pi(1)kI & pq(2) —k
I Vi2 Ipi(2) —k & Ip2(1)k & j . (11)

Here E are the band energy parameters and C is the odd-even shift parameter (the Newby term). In the calculations

presented here, we neglect the e5'ect of nondiagonal matrix elements of V,2, although in principle they can be included.

With these definitions, the matrix elements of the total Hamiltonian & IMEao IHIIME'a'o') become nearly identical

to those of the odd-odd nuclei with appropriate change of notations in Eq. (10) of Jain et al. [1];the terms which differ

due to the difference in the wave function are given by

=5xK5 .5 [—,'5+05 (iri /2J)[( —1} '&p, (1)k(1)Ij,+Ip, (l) —k(l})&pz(2)k(2)Ijz+ Ipz(2) —k(2))5k»2

—
& pi(1)k (1)Iji+ Ip~(1)k (1)& & pi(2)k (2) Ij&+ Ip~(2) —k(2) &5k i/~ j ]

+5xx [5x 5. 5. —,'(&'/2»[ —&pi(1)klji+ Ipi(1}k'& &p~(2}klj&+ Ipz(2)k'&5kk+i

+( —1)"'& pi(1}k lii+ I
p2(1}k' & & p2(»k li~+ I p'i(2) k' &5kk + i

—
& p'~(1}k'Iji+

I pi(1)k & & p~(2)k'I j2+ Ip2(2)k &5k k+ i

(
—1) &pp(1)k II i+ Ipi(1)k &&pi(2)k lap+ Ip, (2)k &5„„+,

+( 1) &Pl(1)kIJ1+ Ipl(1} k &&P2(2}k ~J2+ IP2(2} k &5kl/2 k'I/2

—&pi(1)klIi+ Ip2(1) —k &&pi(2)k IJ2+ Ip2(» —k &5kl/25k'i/2] ] . (12)
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Some of these terms are seen to connect the E =0 bands
having configurations [k, k] and [k+ 1,k+1].

Diagonalization of the total Hamiltonian matrix for
each value of the angular momentum I gives us the ener-
gies E,&,(I,ctcr ) for all the bands built on the two-

quasiparticle configuration ~Kao ) present in the basis set
of eigenfunctions. The Nilsson model single-particle
Hamiltonian [7,8] has been used for the average field 0,„.
The Nilsson model parameters used in the calculations
are ~p 0 0637 pp 0 60 and K 0 0637 p 0 42.
The pairing interaction appears only through the
modification of the single-particle energies into the quasi-
particle energies c, and c . It is known that the pairing

P) P2

correlations do not contribute to either the Gallagher-
Moszkowski (GM) splittings or the Newby shift of odd-
odd nuclei [9]; likewise we have assumed their contribu-
tion to be absent in the even-even nuclei.

B. The choice of parameters in the calculations

A correct choice of the set of the basis functions is very
important as all the states which may couple together,
and influence each other's behavior, should be included
in the calculations. A nearly complete Coriolis coupling
calculation thus requires a knowledge of a large number
of 2qp states which are often unknown. We have there-
fore estimated the excitation energies of the important
unidentified bands by using a simple semiempirical for-
mulation [10]. In this formulation, the known properties
of the quasiparticle configurations involved are taken
from neighboring odd-A nuclei. The band energies, rota-
tional parameters, and sometimes the (j+ ) matrix ele-

ments as calculated from the Nilsson model were treated
as free parameters and were adjusted within physically
meaningful limits to fit the experimental data. A small
admixture of vibrational components may also be ab-
sorbed by a minor renormalization of the intrinsic matrix
elements of j&+ and j2+. The Newby shifts for the E=0
bands were also treated as free parameters as almost no
data exist on the Newby shift in even-even nuclei.

IV. RESULTS AND DISCUSSION

A. The application of the model to ' Er

We have applied this model to ' Er which is one of the
best studied well-deformed nucleus with almost 41 as-
signed rotational bands [4]. Almost 27 of these 41 bands
have been assigned a 2qp configuration. This nucleus
therefore becomes a natural testing ground for our model
calculations. We have succeeded in reproducing all the
27 rotational bands very we11. To facilitate the fitting of
the data, the calculations were done in three separate
parts: two-quasineutron bands having negative parity,
two-quasineutron bands having positive parity, and two-
quasiproton bands with both the parities. However, care
was taken so that the (j+ ) coupling matrix elements had
the same value in a11 the three subcalculations. In total
74 2qp rotational bands were fitted in the calculations of
which 27 rotational bands comprising 88 energy levels
were experimentally observed. A total of 23 (j+ )

single-particle matrix elements coupled these states and
were taken from the Nilsson model. Of these only nine
were changed during the calculations to fit the experi-
mental data. All the unidentified bands were initially
given a rotational parameter of fi /22=12. 0 keV which
was later adjusted if necessary. In Table I we list the cal-
culated parameters obtained from the fitting of the ener-

gy levels for all the known and some unknown bands
which are seen to interact rather strongly. Parameter
values for certain E=0 bands are also given. It is highly
interesting to note the very large magnitude of the New-

by shifts for most of the E=0 bands.
In Fig. 3 we show the quality of fit to those experimen-

tal bands which exhibit an odd-even staggering. A
correct reproduction of this odd-even shift, which varies
wildly in magnitude from very large in the E=1 bands to
very small in the E =2, 3 bands, is a significant outcome
of our calculations and also gives us some confidence in
the model. Although a large number of parameters are
involved in fitting the data, their choice is severely con-
strained by the physical considerations and the empirical
data. Only a small number of these parameters are actu-
ally adjusted during the fitting procedure. In the follow-
ing we discuss some of the bands individually.

B. The negative parity bands

The @[633]„g—,
' [521]„j and [

—', [523]z —,
' [411]zj

bands. Both these configurations give rise to E+ =4
and K =3 Gallagher doublets. Burke et al. [11,12]
have suggested a significant mixing between the two
E+ =4 bands. Experimental evidence of a mixing of
two-quasiproton and two-quasineutron components in
states with large E in doubly even deformed nuclei have
been analyzed by Sood and Sheline [13]. Recently Solo-
viev and Sushkov [14] have explored the role of high-
multipolarity (A, ~4) interactions in producing these mix-
ing effects; they calculate the 1094 keV,
E+ =4, [ —7[633]„ —,'[521]„j band to lie at 1.0 MeV
with an 18% admixture of @[523] —,'[411] j band.
For the 1905 keV, K+ =4, [ 7[523]~8—,'[411]~j band,
Soloviev et al. calculate an energy of 1.6 MeV and again
an 18% admixture of the j —,'[633]„ —,'[521]„jband. Our
model does not include any mixing between the two-
quasiproton and two-quasineutron states. However,
we do find a 10 to 15% Coriolis mixing of
E+ =5, [ 7[523] —,'[411] j in the two-quasiproton
E =4 band and a 5 —10% admixture of the
E =3, [ —,

' [642]„ —,
' [521]„j band in the two-

quasineutron E =4 band. Only five members of the
two-quasineutron E =4 band and three members of
the two-quasiproton E =4 band are known and no
odd-even shift can be definitely established from the data.
No proton-neutron mixing is suggested in the two-
quasineutron and two-quasiproton K =3 bands ly-
ing at 1541 and 1999 keV, respectively. How-
ever, a significant Coriolis mixing is observed in the
two-quasineutron E =3 band; the configurations
which mix are K =2, {—,'[642]„ —,

' [521]„j and

E+ =4, [ —', [633]„ —,'[510]„j. It may be pointed out
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that the E =4 and E =3 bands having the
configuration {—',[633]„e—,'[521]„}are also observed in

Yb and exhibit a large odd-even e8'ect at higher spins.
It is therefore reasonable to expect a similar behavior also
in ' Er if these bands are followed to higher spins.

The p[642]„e—,
' [521]„}bands. The K+ =3 and

E =2 bands belonging to this configuration are ob-
served to lie at 2262 and 2230 keV, respectively. Since
the K + =3 band is based on the singlet configuration, it
represents a violation of the Gallagher rule. However,

TABLE I. Theoretically calculated bandhead energies for all the known bands and all the interacting K =0 bands in ' 'Er are
compared with the experimental data. Also given are the parameter values E., fi l22, Ez, and those values of (j+ ) which were ad-

justed T.he values of (j+ ) in the parentheses are from the Nilsson model.

Configuration

Two-quasiproton
p[523]e —'[411]}

P [523]e—'[411]}

P [523]e—,
' [541]}

P [523]e—'[404] }

j —,
'

[523]e —,
' [404] j

{3[411]e-'[411]}
I
—', [411]e—,

' [411]j
f

3 [411]e—,
' [404]}

j -'[420]e —,
' [411]j

f —,
' [541]e—,

' [411]j

3
4+

0
2+
1+
5+
0+

0

Eexpt
{keV)

1905.1
1999.2
2055.9
2 122.4

2 193.0
2365.3
2298.0

{keV)

1905.1
1998.0
2054.7
2121.5
2472.5

2191.4
2365.2
2298.8
2330.0
2560.0

E
{keV)

1865.4
1964.4
2015.0
2040.0
2470.0
2173.6
235 1.7
2237.0
3 188.7
2480.0

A /2g
{keV)

9.5
1 1.0
1 3.5
12.0
12.0
10.4
11.1
12.0
12.6
14.0

EN
{kev)

0.0

+861.0
—80.0

Two-quasineutron

f
—'[510]e—,

' [512]j

j ~1[510]e 1 [521]}
{-',[521]e-,'[512]}
f —,
' [521]e—,

' [512]}
f

—', [521]e—,
' [521]}

f
—'[521]e—'[514]}

{—,
' [521]e-,'[514]}

{—,
' [523]e—,

' [512]}
j —,
' [523]e—,

' [512]}
f —,
' [523]e—,

' [521]}

f -,
' [512]e—,

' [521]j

I —,
' [521]e-,'[633]}

f -,
' [521]e-,'[633]}

{—,
' [521]e—,

' [633]}

f —,
' [512]e—,

' [642] j

j -,
' [512]e-', [642]}

@[512]e—,'[633]j

f
5 [512]e-,'[633]j

f -,
' [510]e-,'[633]}

f —,
' [510]e —,

' [633] }

j —,
' [523]e—,

' [633]}
P[514]e—'[633]j

f
—', [523]e -', [642] }

f
3 [521]e—,

' [651]}
f
—'[521]e—[642] }

P [521]e—', [642] j

2+
0+
1+
4+
2+
3+
4+
5+
0+
2+
3+

0

0

0

1930.3

2 133.7
2238.2
1848.4
2 186.7
2663.0
2267.0

2424.9
1653.5
1094.0
1541 .6
2365.0

2477.0
1358.9
1773.2
1828.1
2060.0
1936.6

2230.4
2262.0

1929.6
1867.7
2133.8
2238.4
1847.4
2 1 88.2
2656.2
2267.0
2299.9
2425.7
1653.9
1093.5
1545.1

2352.3
2247. 1

2478.4
1358.8
1773.1
1826.1

2059.0
1935.3
1772.4
2568.7
3617.8
2237.5
2261.3

1909.0
1 987.7
2122.2
2 195.9
1 866.4
2 143.3
263 1.5
2242.8

2400.0
2404.3
1690.0
1 160.4
1619.6
2490.0
1990.1
2706.0
1609.0
2023.2
2080.8
2277.5
2 182.5
2040.0
2700.0
3200.0
23 19.1
2307.0

10.3
12.5
I 1.6
13.0
8.5

1 3.0
12.0
8.5

12.0

12.3
12.7
14.0
8.0

10.8

12.9
14.0
8.5
8.9
9.9
9.3

13.0
1 1.0
7.4
8.4

120.0

0.0

—364.9

—30.0
—50.O

—500.0

( 2 [411]I2 [411])P=0.308(0.941)
( —,[411]I —,

' [420])~ =0.829(2.826)

( —,
' [541]I

—2[541])p
= —3.21( —3.73)

( 2[521]l—, [521])„= —0. 143( —0.90)
( —, [624]I—'[633])„=4.404(5.612)

( 3 [411]I
—'[411]) =0.523(0.500)

( 2 [523] I
—'[532] )7 =1.073(5 073)

( —,
' [510]+[510])„=-o.olo( —o. 1o)

( —', [633]I

—', [642] )„=4.65(6. 108)
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our calculations predict the unperturbed positions of the
E =3 and 2 bands at 2332 and 2334 keV, respective-
ly. A Coriolis mixing with the E =3, [7[633]„
@—,'[510]„jand the K+ =4 , [7[633]„g—,'[521]„jbands
pushes the K+ =3 band above the E =2 band in
question. The violation of the Gallagher rule is therefore
only an apparent one and is resolved by our calculations.

The I27[633]„ —', [512]„j bands. The K+=6 and
E =1 bands are observed at 1773 and 1359 keV, re-
spectively. The E = 1 band exhibits a very large odd-
even staggering, which is reproduced very well by our
calulations. This odd-even shift is due to a large admix-
ture of K =O, P[642]„ —,'[512]„j band which we

place at 2247 keV with a large Newby shift of —364 keV.
Due to the large Newby shift, the odd-spin members have
a E =0 admixture of 16 to 25% whereas the even-spin
members have an admixture of 1 to 2% only. The calcu-
lations of Sood et aL [15] using a zero-range delta force
place the K+ =6 and K =1 bandheads at 1782 and
1533 keV, respectively. The unperturbed positions of
these bandheads from our calculations come out to be
2116 and 1622 keV, respectively.

The I —',[633]„ —', [523]„j bands Only . the K =1
band of this configuration is observed at 1936 keV and
exhibits a large odd-even staggering. We reproduce this

band very well with an admixture of K =0, j —,'[633]„
8 —', [514]„jand K =0 , [—', [642]„ —', [523]„jbands.

The P[633]„g—,'[510]„j bands. The K+ =4 and
K =3 bands are seen at 2060 and 1828 keV, respec-
tively. The K =3 band known only up to I=7 shows
an irregular behavior in moment of inertia which is
reproduced very well by our calculations; it has a
5 to 10% admixture of E+ =3, [—', [642]„ —,'[521]„j
configuration. However, the irregular behavior is mainly
due to a successive mixing of the E+ =3
(T5[642)„ —,'[521]„j and the K+ =4 , I

—,'[633]„
—,'[521]„j bands. The K =4 band, on the other hand,

also has a mixing with many other configurations.
The unperturbed positions of these K+ =4 and

K =3 band heads come out to be 2311 and 2101 keV,
respectively, which may be compared with the predic-
tions of Ray [10]at 2242 and 2006 keV, respectively

The [7[633]„ —,'[514]„j and [ —', [523]~ —,'[~4]~j
bands. Both these configurations lead to E+ =7 and
K" =0 bands. A mixing between the two K =7
bands has been suggested by Burke et ol. [11,12]. Only
the two-quasiproton E =7 band is seen experimentally at
2122 keV. We do not observe any Coriolis mixing in the
two-quasiproton E =7 band. The unperturbed posi-
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FIG. 3. Results of our calculations (dashed line) in comparison with the experimental data (solid line) for ' Er.



228 ALPANA GOEL AND A. K. JAIN 45

tions of these bands in our calculations are 1898 keV for
two-quasineutron and 2125 keV for two-quasiproton
bands which may be compared with the predictions of
Ray [10]at 1889 and 2023 keV, respectively.

The [7[523] 8 —,'[411]„j and t
—', [633]„8—', [521]„j

bands. Both these configurations give rise to K =2
and K+ =5 bands and a strong mixing between the
E = 5 triplet coupled states is suggested. Davidson et
al. [16]observe a K =5 band at 2365 keV, which is as-
signed the two-quasineutron configuration with some ad-
mixture of two-quasiproton configuration. In our calcu-
lations we have estimated unperturbed positions of the
E =5 two-quasineutron and two-quasiproton bandheads
to be 2500 and 1905 keV. The two-quasineutron K =5
band is found to be highly mixed with the
K+ =5, [ —,'[523]„-,'[642]„j and K+ =4, @[633]„,
Igw —,

' [510]„jbands due to the particle-particle and Coriolis
terms. The two-quasineutron K"=2 band also mixes
with K" =1,[ —,'[642]„ —,'[521]„j and K" =0
[ —',[651]„13—', [521]„jconfigurations and exhibits an odd-

even shift. After Coriolis mixing, the two-quasineutron
K =5 and 2 bands come out at 2367 and 2109 keV, re-
spectively. These may be compared with the predictions
of Ray [10] at 2368 and 1799 keV, respectively. The
two-quasiproton K = 5 band also exhibits some
Coriolis mixing with K+ =4, [ —,'[523] (81 —,

' [411]
configuration. After Coriolis mixing the two-quasiproton
E =5 and 2 bands are predicted at 1903 and 1567 keV,
respectively.

C. The positive parity bands

The I
—', [411] I8) —,

' [411]zj and I z' [521]„8—,
' [521]„j

bands. Both these configurations lead to K+ =2+ and
K =1+ bands and a strong mixing between the two-
quasiproton and the two-quasineutron K =2+ bands is
suggested. The K+ =2+, @[521]„—,'[521]„j band ob-

served at 1848 keV exhibits a large Coriolis mixing with
K"' =0+, 1+,+[510]„ —,'[521]„j and K + =3+,
@[512]„—,'[521]„j bands. The K = 1+,

{—,'[521]„8—,'[521]„j band also exhibits a large Coriolis
mixing although it is not yet experimentally observed; we
place this band at 2052 keV. The two-quasiproton
E"=2+ and K =1+ bands are experimentally observed
at 2193 and 2365 keV, respectively. The K"=1+ band

exhibits a large odd-even shift due to a mixing with
K =0+,

I —,'[420) —,'[411] j band, which has a large
Newby shift of +861 keV. The large positive Newby
shift leads to almost 50% admixture in the even-spin
members whereas the odd-spin members remain nearly
pure. Due to a small admixture of the K=O band, the
K"=2+ two-quasiproton band is also expected to show
an odd-even shift.

The h5[512]„I83—,
' [521]„j band. This configuration

gives rise to K+ =3+ and K =2+ bands of which
K =3+ is experimentally observed at 1653 keV. The
zero-range delta force calculations of Ray [10] predict
this bandhead at 2320 keV. Both the K"=3+ and 2+
bands exhibit a significant Coriolis mixing. We do ob-
serve a mixing of K" =2+, @[523]„—,'[521]„j band
into the unknown K =2 band; this mixing is greatest for
I =3+ and 4+ levels (-20%) while smaller for other
spins ( —5%). This gives rise to a large irregularity in the
moment of inertia parameter at I =3 and 4.

V. CONCLUSIONS

To conclude, we have analyzed the experimental data
on two-quasiparticle states in the even-even nuclei which
are found to exhibit an odd-even staggering in both the
K+ and K bands. Coriolis coupling seems to be re-
sponsible for the observed odd-even e6'ect. Results of the
Coriolis coupling calculations carried out for ' Er,
where a large number of two-quasiparticle rotationa1
bands are experimentally known, bear out this contention
by correctly reproducing the varying degree of odd-even
effect observed in the various bands. Our calculations
also reso1ve the apparent violation of the Gallagher rule
in the configuration [5[642]„NI—,'[521]„j of ' Er. Two
mechanisms are seen to be responsible for the odd-even
staggering. Mainly a Coriolis coupling of first to second
order with one or more K =0 bands leads to the odd-even
staggering. An irregular behavior seen, for example, in
the K =3, I —,'[633]cgw —,'[510]j band is, on the other
hand, due to a mixing with another K=3 and a K=4
band.
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