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Anharmonicities of nuclear vibrations from periodic mean-field orbits
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A new method for constructing periodic orbits of the time-dependent Hartree-Fock equations is pro-
posed. It is based on a perturbative expansion in the amplitude of the collective vibration. We present
applications to the case of octupole vibrations in ' 0 and Ca. From calculations performed up to
second order we determine the splitting of the two-phonon states. We discuss the problems which, for
the quadrupole mode, arise from a resonant coupling of the vibration with states of the continuum.

PACS number(s): 21.60.Jz

I. INTRODUCTION

The experimental discovery of high-energy structures
in heavy-ion grazing collisions and their interpretation in
terms of multiphonon excitations of giant quadrupole res-
onances [1] has renewed interest in the descriptions of
collective motions with more general scope than the usu-
al random-phase approximation (RPA). In the past, the
problem of large-amplitude collective vibrations has been
approached along different lines. Among the most popu-
lar, one can mention the adiabatic time-dependent
Hartree-Fock method [2,3], the generator coordinate
method [4], and the boson expansion method [4,5]. A
basic tool of the first two approaches is the so-called col-
lective path, which specifies the nature of the collective
motion. Although it can in principle be determined self-
consistently [2], it is often generated by a constrained
Hartree-Fock calculation using a constraining operator
chosen a priori. In the boson-expansion method the
lowest order is generated by solving the RPA equations,
which yield a set of noninteracting RPA bosons in this
order. Subsequent corrections lead to anharmonic and
interaction terms between the bosons.

In the present article we present a method based on an
explicit construction of finite-amplitude periodic orbits of
the time-dependent Hartree-Fock (TDHF) equations.
The question of the existence of these solutions has raised
much interest, because of the analogy with classical
mechanics [6]. Their importance has been recognized in
various contexts, especially in studies of nuclear collec-
tive motion [7—9] (our purpose), in the requantization
problem [10—12], and in the determination of corrections
to TDHF by means of time-dependent Feynman dia-
grams [13]. Their central role was already emphasized by
Poincare who noted that [14,15] "What renders these
periodic solutions so precious to us is that they are, so to
speak, the only breach through which we might try to
penetrate into a stronghold, hitherto reputed inaccessi-
ble."

The construction of periodic TDHF orbits is a difficult
task [7], which has been carried out only in simple cases
such as monopole oscillations [8]. The method presented
here is more general and can be applied to collective os-
cillations of any given multipolarity. It relies on an ex-

pansion in the amplitude of the collective vibration.
Since in lowest order it reduces to the RPA approxima-
tion, it bears some similarity with the boson-expansion
approach mentioned above. The higher-order terms pro-
vide anharmonic corrections to the RPA. It is also
analogous to the expansion methods which, in celestial
mechanics, are used to construct periodic trajectories as
power series in the amplitude of the motion [14]. Al-
though in this paper we restrict ourselves to the study of
the TDHF equations, we believe our method to be applic-
able to any time-dependent self-consistent equation
displaying periodic solutions. As an example, periodic
orbits of the breathing mode in the Skyrme model [16]
are under investigation and will be the subject of a forth-
coming publication [17].

The present article is organized as follows. In Sec. II
we review the main properties of the TDHF equations
and of their periodic orbits. Section III explains how one
can build periodic orbits by means of a Taylor expansion
in their amplitudes. Explicit expressions are presented
up to third order. In Sec. IV, we specialize the equations
to the case of the Skyrme interaction, for which more ex-
plicit formulas are provided. Section V deals with the
problem of performing an angular momentum reduction
of the corresponding equations, which is especially im-
portant in numerical applications. We show that the usu-
al angular reduction of the RPA matrix can still be used
to simplify calculations of higher orders. In Sec. VI, us-
ing a semiclassical quantization of these periodic orbits
we calculate actual nuclear collective spectra. In the
same section we indicate how this procedure can be used
to evaluate the splitting of two-phonon states. Section
VII presents our results concerning octupole modes in
' 0 and Ca. In Sec. VIII we describe a method suitable
to handle the problems arising when a resonant coupling
occurs between the vibration and states of the continuum.
Results are given in the case of quadrupole modes in

Ca. Section IX contains our main conclusions.

II. PERIODIC ORBITS
OF THE MEAN-FIELD EQUATIONS

Within the time-dependent Hartree-Fock (TDHF) ap-
proximation the many-body wave function %(t) is taken
as a Slater determinant for all times. The associated
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one-body density matrix p(t), which is Hermitian,
satisfies the conditions

Trp(t) = A,

p (t) =p(t),

(2.1a)

(2.1b)

where A is the number of particles. Its time evolution is
given by

i tip( t) = [ W( t),p(t) ], (2.2)

where W(t) is the mean-field Hamiltonian,
W(t) =5E/5p, E being the Hartree-Fock energy

In what follows we construct solutions of Eq. (2.2) such
that p(t)=p(t+T), where T is the period T.he single-
particle states Ih(t)), which are solutions of the time-
dependent mean-field equations,

Similarly we expand the mean-field Hamiltonian W(p) in
the form

W(p ) = Wo + e W, +e W~ +e W3 + (3.3)

[ Wo Po) =0, (3.4)

with the conditions po=po and Trpo= A.
To first order in e we obtain for p& the following linear-

ized mean field (or RPA) equation:

l f1p)
—JRP)

with

JRP&=—[Wo p&(t)]+[W](t) po]

(3.5)

(3.6)

To zeroth order in e we find that po is the static Hartree-
Fock solution satisfying

i% h—(t) ) = W(t) Ih(t ) ),
Bt

This equation is solved via the usual ansatz [4]
(2.3)

p, (t)=ate '+g+e (3.7)
are not periodic, but quasiperiodic:

Ih(t+T))=e "Ih(t)), (2.4)

where 0& is the so-called Floquet-Lyapounov phase. In
the following it will be convenient to use the periodic part
Ih (t)) of Ih(t)) which we define as

e&t
Ih (t)) =exp i Ih(t)), (2.&)

where ez =8t, h/T. The states Ih (t) ) satisfy a modified
evolution equation, namely,

where the sum is over the occupied states.

Of course phases disappear in the expression of the
one-body density matrix,

p(t)= g Ih(t))(h(t)l= g Ih (t))(h (t)l, (2.7)

where g is a time-independent operator which is a solu-
tion of the static RPA equations. We have adopted the
standard normalization Try„+ [po, g ]=5„ I coo„ I /too„
[4]

Note that the condition p =p [Eq. (2.1b)], to first order
in e, reads

Pop&+P ipo P &
~ (3.8)

If we denote lp ) and h ) the particle and hole states rel-
ative to po defined by

p, lp &
=0,p, I

h &
=

I
h &, W, I

h &
=e, I

h &, Wo lp &
=e„ lp &,

then Eq. (3.8) implies that

& p Ip& Ip' &
=

& h Ip& Ih
'

& =0 .

Equation (3.8) also implies Trp, =0 which ensures that
particle number is unchanged in first order.

Let us now consider Eq. (2.2) in second order; it reads

imp(t) = [Wo p2(t)]+ [ W2(t), po]

III. PERTURB%TIVE CONSTRUCTION
OF PERIODIC ORBITS

CO)

+[W, (t),p, (t)]—iR p, (t) .
Q)o

(3.9)

We look for solutions of the time-dependent mean-field
equation [Eq. (2.2)] in the form

Moreover, the physical solution of this evolution equa-
tion must preserve the condition p =p in second order;
i.e.,

CO

t +e pz
coo

CO

+up t +
o

P( ) Po+epi
coo

(3.1)

Pz Popz+Pzpo+P] ~

The particle-hole matrix elements of this last equation are
trivially satisfied, while the particle-particle and hole-hole
matrix elements turn out to be completely determined by

p, (t):
In the expansion (3.1) we use tot/too as the argument of
the functions p, ,pz, p3, . . . . This is a standard technique
introduced in the theory of nonlinear oscillations [19] to
take into account the dependence of the frequency co on
the amplitude e of the periodic orbit:

&p Ip~(t) lp'& = & &p Ip)(t) lh &(h Ip)(t) lp'&, (3.10a)

&hip (t)lh'&= —& &hip, (t)lp &(pip, (t)lh'& . (3.10b)

co —coo+ E'co~+ 6' 67z+ (3.2) These equations are consistent with the evolution equa-
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GO)

iR— p](t) .
COp

(3.11)

In Eq. (3.11) A is the RPA matrix defined above. The
operator Wz is that part of 8'2 which originates from the
particle-particle and hole-hole matrix elements of p2. For
a density-independent interaction it is (the sum over re-
peated indices being implicit)

tion (3.9). Indeed using the RPA equation (3.5) one can
check that the particle-particle and hole-hole matrix ele-
ments of the right-hand side of (3.9) are identical to the
time derivatives of Eqs. (3.10). Equation (3.10), which
also implies that Trp2=0, ensures particle number con-
servation in second order.

Therefore, the novel information contained in Eq. (3.9)
concerns only the particle-hole and hole-particle matrix
elements of p2. We obtain their time-evolution by pro-
jecting Eq. (3.9) on this subspace with the result

(isa, —Al )pz(t) =[W](t),p](t)]+ [ Wz(t), po]

&pip (t)lp'&= g [&pip (t)lh &&hip (t)l]]]')

+&plp2(t)lh &&hip](t)lp'&], (3.16a)

&h Ip3«)lh'& = —g [&h Ip](t)lp &&p Ip2(t)lh'&

+&hip, «)lp &&pip, «)lh'&] .

(3.16b)

Again one checks that Eqs. (3.16) are consistent with the
evolution equation (3.15) and that Trp3 =0. The
particle-hole matrix elements are solutions of the follow-
ing equation:

(i]]]B,—At )p, (t)= [ W, (t),p,(t)]+[ W, (t),p, (t)]

+ [ W3(t), po] —i]]] p](t), (3.17)
COp

where W3 is given (for a density-independent interaction)
by

&p'Ip2lp" &(p I W,'Ih &=
fipt] flap, t-

$2E

f']Ppsfip] ]- (h Ip, lh-) . (3.12)

&p'Ip3lp" &&plw', lh &=
flap, ] 5p] p-

52E

~pph ~ph'h"
&h'Ip, lh" & . (3.18)

Because of Eq. (3.10) Wz is completely determined from
the knowledge of p, . In contrast, the remaining term in

W2 [& E&(5pp], &pp], )](p'Ip2lh'), involves the unknown
matrix elements of p2 and thus contributes to the matrix
AI on the left-hand side of Eq. (3.11).

The inhomogeneous linear equation (3.11) can be
solved only when the right-hand side has no component
on the zero modes of the operator (i]]18,—AI ). This is the
case for the first two terms, whose time dependences are

k 2l cool
e or 1 (see, however, Sec. VIII for an exception), but

1 Cdpt
not for the last term since ip] /coo = ]7+e

+EQpf—qe is just a sum of two zero modes. Thus the
linear equation can only be solved if

By requiring the source term of Eq. (3.17) to be orthog-
0' + '~of

onal to the vector rie '(ri+e ') we determine the
second-order correction to the frequency

Tf dtTr(([ W„p,]+[ W2, p]]+[W3, pp])[po, p]])
N2 —NP Tf dtTr(ihip][po, p]])

(3.19)

Formulas for higher-order corrections to the frequency
and the density can be derived along similar steps. Al-
though straightforward the calculations already become
rather cumbersome at fourth order. For this reason, ap-
plications presented in this work are restricted to studies
in second order for co and in third order for p.

co) —0 .

Therefore, the equation defining p2(t) reduces to

( l'flB] AI )p2( t )= [ W] ( t ) p] ( t ) ]+ [ W2 ( t ) po ]

Let us now consider Eq. (2.2) in third order:

ilp3(t)= [Wp p (t3)]+[ W(t3) p]]]

+ [ W, (t),p, (t))

N2+ [ W2(t), p](t)]—iA' p, (t) .
COp

(3.13)

(3.14)

(3.15)

IV. THE CASE QF A SIMPLIFIED SKYRME FORCE

For a symmetric, spin and isospin saturated nucleus,
the energy density H(r, t) calculated with a Skyrme in-
teraction in the mean-field approximation reads

H(r, t)= r+ top + t3p + (3t]+—5t2)PT
3 2 1 3 1

+ (9t, —St2)(Vp) ——wopV J . (4.1)

In Eq. (4.1) v and J are respectively the kinetic-energy
density and the spin density:

In order to preserve the condition p =p in third order we
must have p3=ppp3+p~p+p~2+p~, . As above, it can
be shown that this equation determines the particle-
particle and hole-hole matrix elements of p3 in terms of p2
and p&.

T(r, t)= y IV(r, olh(t))l
h, o.

J(r, t) = i g (h(t)lr, o. ) [V(r, o'Ih(—t)).
x &o lo. lo') ] .

(4.2a)

(4.2b)
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U(r, t)= V(r, t)+u(r, t) ( i)(V—X o),
where

(4.3)

For simplicity we consider forces with 3t, +Stz =0, i.e.,
such that the p~ does not appear in the energy density.
In this case, the effective mass is equal to unity. Such
forces are adequate for the purpose of our study. They
are indeed simple and still general enough to allow a
correct description of the collective vibrations we wish to
investigate.

The mean-field potential reads [4,20,21] W( r, t )
= —(fi 12m )b, + U(r, t ) with

In third order the result is

dU
W3(r, t)=(rl(1—2po)(p, pz+p~, )lr)

dp p pp

d U+ p, (r, t)pz(r, t) .
dP P=Pp

(4.9)

(See Appendix A for a derivation of these two formulas).
For more general Skyrme forces it is a straightforward,

although a tedious task, to construct the potentials 8';.
One complication is that, in this case, the potentials W;
include momentum operators.

V(r, t) = top—+ t3p — Abp ——woV J3 3, A 3

4 16 2m 4
(4.4a)

V. REDUCTION OF THE ANGULAR VARIABLES

u(r, t)= —woVp+ (t, t~)J . —3 1
(4.4b)

The quantity A, appearing in this equation is the combina-
tion

2m 1
(9t, —5r, ) . (4.5)

3 3
Wo(r) = 5+ to+ t3p—o(r) — Ab, po(r)

2m 4 16 2m

+—woVpo ( i)(VX—cr),3 (4.6)

The contribution to u arising from the last term in Eq.
(4.4b) has been omitted in our calculations since it is
known to produce negligible effects [20].

The explicit expressions of the potentials W, (r, t) ap-

pearing in Eq. (3.3) are

In the case of doubly-closed-shell nuclei one can sim-

plify the evolution equations by introducing an angular
decomposition. Let us begin with the static HF equa-
tions [see Eq. (3.4)]. We write the single-particle orbitals
as

(rla ) =R (r)5
& J (r, o )gz(r), (5.1)

where P is the usual angular wave function of particles
with spin —,

' [see Eq. (2.15) of Ref. [4]] and where the in-

dex a stands for a particle (p) or hole (h ) state index. We
have also introduced the notation a, =(q„n„l„j—, ),
where q is the isospin, n the principal quantum number, l
the orbital angular momentum, j the total angular
momentum, and m, the magnetic quantum number. The
static density po(r) depends on the radial coordinate r
only:

3 3
W, (r, t ) = to+ —t3p—o(r }— Ab, p, (r, t ), (4.7a)

po(r)= g(2j +1)R (r) .1

ah

(5.2)

3 3
W~(r, t ) = to+ —t3po(r—) — Ab. pz(r, t )

+ r,p, (r, r),3 2 (4.7b)

The same property holds for the average nuclear poten-
tial Wo(r).

In first order the procedure is also standard. We first
rewrite the RPA equation (3.5) in a form which exhibits
its symplectic structure, namely,

3 3 A'

W3(r, t ) = to+ —t3po(r) —— Ab, p3(r, t )
/ka Z

~ Z B Z
—B* —A Z

(5.3)

3+ t,p, (r, t)pz(r, t}—.
8

(4.7c)

In these equations we have used the notation

p, (r, t)=(rip, (t)lr). -

For Skyrme forces the source terms in the inhomo-
geneous equations defining the higher-order density ma-
trices [cf. Eqs. (3.11), (3.17)] are more complicated be-
cause additional terms arise from the density dependence
of the interaction. Explicitly one finds in second order

m —1/2ZLM y ( 1) P

p h
m mhp h

jh L
ph (5.4)

In terms of these quantities p, (r, t ) can be expressed as

where Z is the vector whose components are the
particle-hole matrix elements of p„ i.e., Z~„= (p Ip&l& ).
To exploit rotational invariance we couple particle and
hole states to a total angular momentum L, and use the
following vectors:

Wp(r, t)= (rl(I —2po)pflr)
dp p=pp

1d U+— p, (r, t) .
2 dp p=pp

(4.8)

p, (r, t)= —g F R (r)R (r)L
1 Q4 a ah a ah

a ah

X(Z YLM(8, $)+c.c. ),
p h

(5.5)
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1

h ' h' 4 h ' h' h ' h'
(5.6a)

AL =(e —e, )5 5, +8 . (5.6b)
p h p' h' p h p p' h h' p h p' h'

where L stands for &(2L+1) and F is a combination of
Clebsch-Gordan coe5cients and 6-J symbol given by

p h Jp JhI I I
' '

I
Fa a =IplhJpJh 0 0 0p h h p

The quantities Z are solutions of RPA equations

similar to (5.3) with matrices A and 8 replaced by
A L and 8 (see Appendix B) given bya aha .Ch p h p' h'

The matrices being M independent, the solutions will be
(2L+1)-fold degenerate. In these equations, e is the

a
Hartree-Fock energy of the single-particle orbit a and C
is the radial matrix element

Ca aha ah

R rR r R rR rrdr,
0 p " dp p=p

(5.7)

where R (r) is normalized to unity with the weight r dr.
For the Skyrme force considered it is

C = r dr R (r)R (r) to+—t3po(r)— A, ——
2
r—00 3 3 fi 1 d l(1+1)

0 3 0 R (r)R (r) .a, ah, (5.8)

If we now consider the second-order evolution equation we find that the angular components p2 of p2, defined as in

Eq. (5.4), satisfy

A

g eL'

gL'

A
eL'

L'M'
P2

(1)MPIIILM
SL'M'

2

( 1)M'geL' —M' (5.9)

this purpose we first note thatLet us now investigate the angular momentum structure of the source term S2. For
the angular components of the product of two operators Ol, o2 are given by the formula

M'+j +j +j Ll L2 L'
( —1) ~ " '(2L, +1)(2L2+1) Ml M2 -M- Jh

Ll L2 L'
-oL'M'oL'M'

J J lap aa 2aa aha a
(0 0 )L™=

a LiMiL~M~

Because 8', has the angular components

(5.10)

a iahi

(5.11)

the source term [ Wl, pl] in Eq. (3.9) contains even values L' of the angular momentum running from 0 to 2L for a col-
lective mode of angular momentum L. By using Eq. (5.10) we obtain

L'
[ Pr p

]lLL)L' —L 4 + + „+ly2 L
(
—1)'

Jha aha

L L'
(~ +c.c. )~a a „a,ah, P la, ah, ' ' P la „ahJp Jp

j j„j„„al,„al, al, , aP la, al, , ' Pl a a&„ (5.12)

For the term [ Wz, po] we also have L ' =0,2, . . . , 2L with

IIriL'M' 8L'
(

2)L'M' 8L'
2 (

2 )L'M'
a al, X a ,al aPal aa„X , a l, &, al, „apal al, ,al, „p p p p pa ia

L'
m —1/2 Jp Jh d U

( —1)~, fd r(pir&(rib & pl(r, t)
2 —m mh M'

dp
p h p pp

(5.13)

where p, (r, t ) is defined in (5.5). Consequently, p2 contains also the same values of the angular momentum. Explicitly
p2(r, t) can be written as

2L L'
(r t) —y y L'M'( t)

L'=0 M'= —L'
(5.14)
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with

l

p2 (r, i)= —YL.~, g F«R~ (r)R~ (r)[pz~ ~ +( —1) pz~ ~ ]
a ah

+ g F R (r)R (r)(p&) —g F R (r)R (r)(p&) (5.15)
a a h h'

The fact that the source term and p2 contain com-
ponents of all the even angular momentum between 0 and
2L reflects the splitting of two-phonon states. This point
will be further elaborated below.

n fico()
e (n, L')=

82 nk—co2(L ')

E'(n, L') =nfi[coo+e ( n, L')co i( L') ] .

(6.6a)

(6.6b)

VI. QUANTIZATION

I=y J dr (I(r)~ir ~a(r)& e, —T a
Bt

(6.1)

is equal to an integer multiple of the Planck constant:
I=nb In E.q. (6.1) the summation runs over the quasi-
periodic single-particle occupied states h defined in Eq.
(2.3). To second order in e, the action I is given by

I=E f —iiri Trp, (t)[p, (t),po] . (6.2)

The integrand in Eq. (6.2) can be related to the second-
order correction 82 to the total energy E =EHF+E 6i of
the orbit p(t)

if'6&= Trp, (t)[p, (t),p ) . (6.3)

Since 82 (as E) is time independent one finds I=E T@i.
The quantization rule I=nb thus determines the ampli-
tude t.„ofthe n-quantum state according to the formula

How periodic orbits of the time-dependent Hartree-
Fock equations can be used to construct the energies of
many-body systems has been described by several au-
thors. The standard procedure relies on the semiclassical
quantization rule [6, 10—12]. One looks for periodic
solutions such that the mean-field action I along a period-
ic orbit p(t),

From this last formula one sees that the excitation energy
of the nth state is still nfico but the frequency co now in-

cludes the anharmonic corrections e co& with e and co2

being adjusted on the desired value of the angular
momentum.

VII. RESULTS FOR THE OCTUPOLE MODES

In this section, we present some results for octupole vi-
brations in ' 0 and Ca obtained with the semiclassical
quantization rule. We have performed calculations up to
third order in the elongation of the periodic orbits in or-
der to discuss the two-phonon states. We have used a
simplified Skyrme force. The single-particle wave func-
tions have been obtained by static spherical Hartree-Fock
calculations (3.4) in configuration space using a 50-point
lattice with a 0.2-fm mesh size. As boundary conditions
we have set wave functions to zero at the outer edge of
the lattice. The single-particle basis used in RPA and
second-order calculations includes all the single-particle
eigenstates ( r

~
a ) of the discretized Hamiltonian Wo

with a principal quantum number n, 8. With such a
basis, truncation effects are negligible. For instance the
energy-weighted sum rules [4] (EWSR) obtained from
RPA eigenstates agree within 0.2%%uo, in both ' 0 and

Ca, with the expectation value of the double commuta-
tor calculated in the HF ground state. Finally, using a
100-point mesh, we have checked that results are stable
against an increase of the dimension of the lattice.

n %coo

n fico, — (6.4) A. Octupole modes in ' 0

The corresponding energies are given by

+HF n ~t coo+ &„co2i (6.5)

Equation (6.5) does not give the splitting of the two-
phonon state according to the different values of the an-
gular momentum. Using an analogy with angular
momentum projection techniques, one can however make
a reasonable guess for this splitting. The obvious
prescription is to retain, in the semiclassical quantization,
only that part p2 of pz which has a definite angular
momentum L'(L'=0, 2, . . . , 2L), as defined by Eq. (5.9).
Then the quantity cui in Eqs. (6.4) and (6.5) is replaced by
the contribution co&(L') of pz

..

In a previous letter [7], we demonstrated the practica-
bility of our method by calculating periodic orbits with a
simplified interaction including no spin-orbit term. Nu-
merical applications were made for octupole vibrations in
' 0 and the splitting of two-phonon states was calculated.
However these calculations were too schematic since the
spin-orbit interaction is important to reproduce the posi-
tion of the low-lying octupole state. This is remedied in
the present calculation which uses a two-body force in-

cluding a spin-orbit term. The Coulomb interaction is ig-
nored, which is legitimate for light nuclei. For ' 0 the
parameters of the interaction are to= —1048 MeVfm,
t3 =19 150 MeV fm, A, =O, and wo =95 MeV fm . The
values of the parameters to and t3 were adjusted to obtain
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0.16

0.12

0.08

0.04

Therefore anharmonic terms are small for both states and
comparable to, although smaller than, the values found in
our earlier calculations (13% and 26%, respectively).

In order to calculate the splitting of the two-phonon
states corresponding to different values of the angular
momentum L'=0, 2,4, 6 we have solved Eqs. (6.6). The
results are given in Table I, where we report, for each an-
gular momentum L', the value of the second-order
correction fico2(L'), the excitation energy Ez (L') relative
to the Hartree-Fock ground state, and the shift

5EL =E'(2,L') —2A'a)0

0.00
0 2 3

r (fm)

FIG. 1. Hartree-Fock density po(r) (fm ) (full line), and
transition density p&(r) (fm ') (dashed line) corresponding to
the low-lying octupole state 3 in the case of the ' O.

a value of —7.95 MeV for the energy per nucleon and a
value of 2.61 fm for the root-mean-square radius of ' O.
The value of the spin-orbit strength was adjusted to
reproduce the observed energy of the low-lying octupole
state [irido(3 ) =6.05 MeV] in the random-phase approx-
imation. The resulting value of the spin-orbit strength
also provides a reasonable splitting (4.1 MeV) of the ip
levels in the Hartree-Fock approximation. We find that
the low-lying 3 RPA state exhausts 10.5%%uo of the
EWSR and 35%%uo of the sum rule (SR) So. The radial part
p, (r) of the transition density defined by

p, (r, t ) =p, (r) Y&0(r )cos(coot ) (7 1)

is shown in Fig. 1. As expected, the low-lying octupole
vibration is a surface mode and its form factor is similar
to the derivative of the Hartree-Fock density po(r) also
shown in Fig. 1. The transition density vanishes rapidly
at large distance. This behavior is characteristic of a
bound RPA state.

To second order, we find Aco2=0. 547 MeV. The quant-
ization rule (6.5) gives E,* =6.66 MeV and Ez =14.78
MeV. The corresponding anharmonicities, defined by

2
nN2

CO

are 9% for the first state and 18% for the second state.

with respect to the bare two-phonon energy. We find
that the spreading of two-phonon states is 2 MeV, a value
much smaller than that found in our previous calculation
[7] which ignored the spin-orbit force (5 MeV). This il-
lustrates the importance of the spin-orbit interaction.

Second-order corrections pz, and pzf to the transition
density, defined by [see Eq. (5.15)]

pz (r, t ) = [p~, (r)cos(2mot )+pif (r ) ] YL p, (7.2)

where L' takes the values 0, 2, 4, and 6, are drawn re-
spectively in Figs. 2(a) and 2(b). For n =2 the values of
the elongation e are 2.28, 2.19, 2, 1.96, for L'=0, 2,4, 6,
respectively. Although these numbers do not look small,
second-order corrections are in fact small since the
relevant quantities to be looked at are the e p2's which
are indeed small compared to ep, . The largest correc-
tions are obtained for small angular momenta.

It can be seen on Fig. 2 that the second-order densities

pz, (r) and pif(r) tend rapidly to zero at large distance.
Indeed, although p2 has nonzero particle-particle matrix
elements for some single-particle states of the continuum,
these matrix elements have a suSciently smooth behavior
as a function of energy.

B. Octupole modes in ~Ca

The interaction parameters to = —1018 MeV fm,
t3 = 15 500 MeV fm, A, =5 fm, and wo= 100 MeV fm
used for Ca have been adjusted to give a root-mean-
square radius of 3.38 fm, a binding energy of —8.41 MeV
per nucleon and a value of 4.0 MeV for the excitation en-
ergy of the low-lying octupole. The low-lying 3 state
exhausts 7.5% of the energy-weighted sum rule and
29.2% of the nonweighted sum rule. In second order we
find Aco2=0. 547, 4.63 MeV for the excitation energy of
the one-phonon state and 11.0 MeV for the excitation en-

TABLE I. Two-octupole-phonon states in ' 0 and Ca. For each state are reported its spin and par-
ity, fico2 (in keV), the excitation energy E (in MeV) and the shift 5E (in MeV) with respect to the un-
perturbed energy Eo =2ficoo.

16O "Ca

0+
2+
4+
6+

369.4
260.7

—19.9
—63.5

13.793
13.251
12.031
11.861

1.683
1.141

—.079
—.249

0+
2+
4+
6+

421.2
121.2

—16.1
20.9

10.134
8.516
7.936
8.085

2.134
.5161

—.0639
.0845



2212 A. ABADA AND D. VAUTHERIN 45

0.016

0.008

0.000
I

—0.008

c8

-0.016

cedure. Indeed the octupole mode is a bound RPA state
whereas the giant quadrupole lies in the continuum. As a
consequence, while the second-order source terms, pro-
portional to exp(+2icoot ), are nonresonant for octupoles,
they are resonant for quadrupoles. In the latter case, the
spectrum of the RPA matrix JR contains an eigenstate
whose energy is close to 2ficop, so that the inhornogeneous
linear equation defining the second-order density matrix
is singular or nearly singular.

A. Treatment of resonant couplings with the continuum

-0.024

—0.032

0.016

I «& & I » & i I i i i s I « i & I & & i a

1 2 3 4 5
r (fm)

To circumvent this difficulty, we use as first-order
periodic orbit a superposition of the quadrupole mode
and the resonant RPA mode with energy 2ANp.

l COpE + l COp~ zl COpt g + 2l COpf

p, (r)=r)&e '+Tlute '+yri~e '+y*rl~e

(8.1)

0.008

0.000
I

b) In second order the equation for pz reads

CO)
(t'RB, —JR)p (t)=S (t) —tA p, (t),

C00
(8.2)

-0.008

where the source term Sz is given as before by the formu-
la

—0.016
S2(t) = [ W, (t),p, (t)] +[8'2(t),po] . (8.3)

-0.024

However Sz is now a superposition of contributions aris-

ing from the quadrupole mode, from the resonant mode
and from the cross term:

0 032 I i s i i I i s i i I I I I I I I

0 1 2 3 4

r (fm)

S2=(Sage '+Sgg+ySy~e '+ySg„e

+y S~„e '+IyI S~g) —H. c. (8.4)

FIG. 2. Second-order corrections p&,
(L'=0, 2, 4, 6) to the transition density in the

pole mode in ' O.

and p2f (fn1 )

case of the octu-

ergy of the two-phonon state. The corresponding anhar-
monicities are 14%%uo and 27%%uo respectively. These values

are similar to those found in oxygen. The excitation en-

ergies of two-phonon states with angular momenta rang-

ing from 0 to 6 are given in Table I. The root-mean-

square deviation of these energies, weighted by the ade-

quate degeneracy factors (2L'+1), is 0.42 MeV. This is

comparable to the value found in ' 0 (0.59 MeV). It is

similar to the deviation found by Catara, Chomaz, and
Van Giai using boson expansion techniques. One
difference, however, with these authors is that we find a
larger shift of the 0+ state. This may be due to the fact
that our semiclassical angular momentum projection
technique is accurate only for large mornenta.

VIII. QUADRUPOLE MODES
AND THE CONTINUUM PROBLEM

In this section we study quadrupole vibrations in Ca
which might be relevant for the understanding of the
high-energy structures observed in [1]. For these modes
we must use a modified perturbative construction pro-

In Appendix C we give the explicit expression of the
cross term S-„and S z corresponding respectively to

I COpI l &pt
e ' and e

The inhomogeneous linear equation defining pz can be
solved only when there are no resonant terms in the
right-hand side. This condition requires

o dt CO) l COptf Tr S2(t) —i' p, (t) [p0, 7)ge
'

) =0,
0 Tp C00

(8.5a)

o dt CO) zl COpt

Tr Sz t iA p& t pp, gee ' =0.
0 Tp C00

(8.5b)

y =Tr(Sgg[po, qR ])l2Tr(Sg~ [po, r)g ]),

A'co, =y*Tr(Sgg [po, rIg ]) .

(8.6a)

(8.6b)

The presence of a coupling between two modes implies
also a modification in the implementation of the semiclas-

These equations provide the value of the coupling
strength y and the first order correction co& to the fre-

quency:
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sical quantization procedure described in Sec. V. Insert-
ing the expression (8.1) into the quantization condition
I=nb where I is given by (6.2) we obtain the equation
which gives the value of the elongation e„of the state
with n quanta:

CO)

6„(1+2
~ y ~ ) =n 1 +6„

COp

(8.7}

The excitation energy E„*corresponding to this state is

1E„*=n Scop 1+@„
COp

(8.8}

( +3ia)ot)
Since the source term Sz also contains e ' and

( +4i coot )
e ', one should in principle consider as well cou-
plings to the resonant modes at 3Acop, scop, . . . . We
have found however that these states are nearly pure
particle-hole configurations and that the corresponding
couplings are small.

B. Results for quadrupole modes in Ca

Let us now focus on the application of the above for-
mulas to two-phonon quadrupole states (n =2) in Ca.
The first information we gain from our formulas is that,
already in first order, there is a splitting of the two pho-
non states with angular momenta L'=0, 2,4, since co& is
nonzero and angular momentum dependent. The next in-
formation is that, while in the case of uncoupled modes
the excitation energy depends only on the square of the
elongation, it now depends explicitly on the elongation it-
self. As a result, a splitting- of the states n, L' will arise
when the two roots of Eq. (8.7) are inserted into (8.8).
The same phenomenon would arise in boson expansion
methods. In this case, the degeneracy between the two-
boson state and the single-boson states in the continuum
would be lifted when including their coupling in pertur-
bation theory.

In the Ca case, the quadrupole mode is found at
ficop=15. 54 MeV in RPA calculations. We evaluated the
source term with L'=0, 2,4 and considered a resonant
term in the channels Lz =0,2,4, respectively. The results
obtained for the coupling strength y, for the correction
Ace& to the frequency, and for the excitation energies E*
of the two-phonon states are reported in Table II. Note

that in the channel L„=4we find a negative value for y
which implies purely imaginary values of y and co&. This
result is a signature of an instability of the corresponding
orbit.

In the two cases L =2+,4+, the value of A'co, is very
small and compatible with zero. As compared to the
Catara —Chomaz-Van Giai calculations, a similar root-
mean-square deviation of the two-phonon states is found
as was already the case for two-octupole phonon states.

IX. CONCLUSION

In this paper we have presented a perturbative con-
struction method of the periodic orbits of the time-
dependent Hartree-Fock equations. The solutions are
found in the form of a power series in the amplitude of
the collective motion. We have performed calculations
using third-order expansions to determine the splitting of
two-phonon states of the low-lying octupole vibration in
' 0 and Ca. In agreement with generator coordinate
calculations [22] and with the boson expansion calcula-
tions of Catara, Chomaz, and Van Giai [18] we found
small anharmonicities. We find root-mean-square devia-
tions comparable to those of Ref. [18]. We have also in-
vestigated giant quadrupole vibrations. We had to gen-
eralize our method in order to account for the resonant
coupling between the two-phonon state and one-phonon
states in the continuum. This was done by introducing
admixture of the resonant mode in the first-order expres-
sion of the periodic orbit. Calculations to second order
have been performed. As in the nonresonant case we find
small anharmonicities and root-mean-square deviations
of the two-pho non energies comparable to Catara,
Chomaz, and Van Giai.

Our results demonstrate that the method of quantiza-
tion of periodic orbits of TDHF equation is a powerful
tool to investigate the energy spectra of many-body sys-
tems. Although it sometimes involves large numerical
summations, it only requires simple ingredients such as
the RPA matrices and RPA amplitudes. Although it
takes some computation it is easy to implement. In par-
ticular, it appears possible to extend the method to the
construction of periodic orbits of the time-dependent
Hartree-Fock-Bogoliubov equations. Such an extension
would allow one to study the adiabaticity versus diabaci-
ty of large-amplitude collective motion [23].
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APPENDIX A

The ith-order contribution to the mean-field, 8' can be
decomposed into two parts:

In third order the previous procedure yields

dU
W3 (r, t ) = ( rI( 1 —po)p3( 1 —po) +pop3poIr )

dp p=pp

d U+ p, (r, t)p~(r, t)
dp p pp

W =m'P"'+W'
l l i (Al) +—

3 p(rt).1 d U 3

dp p=pp
(A5)

where 8",P"' involves only the particle-hole matrix ele-
ments of p;. For a simplified Skyrme force we have

W(~"'(r, t)= (rI(1 —po)p;po+pop;(1 —po) r) .
dp p pp

(A2)

The term W,.'P"' contributes to the operator ifiB, —A,
whereas 8' generates the source term appearing in Eqs.
(3.14) and (3.17).

In second order one finds

In this case one uses the identity
pop3po= —po(p, p2+p2p, ). The previous expression thus
reduces to

dU
W3(r, t)= (rI(1 —2po)(p, pz+p»)Ir)

dp p pp

d U+ pi(r t )p2(r t )
dp p pp

dU
W,'(r, t ) = (rI(1 —po)p;(1 —

po)+pop~pair )
dp p pp

+— p, (r, t) .
1d U

dp p pp

(A6)

+—, p(r t).1d U

2 dp p=pp
(A3) APPENDIX B

By using the identity p~~o= —
p~& one obtains the fol-

lowing expression:

W2(r, t ) = (rI(1 —
2pq)p~ Ir )

dp p pp

The particle-hole matrix element of p& satisfies the fol-
lowing equation [see Eq. (3.5)]:

iR (pIP&—Ih ) =(e —e )(p Ip&Ih )+(pIW&Ih ),a

(B1)

+— p, (r, t) .
1 d U

2 dp p=pp
(A4) which implies, by using the definition (5.4),

where

a I

m mh

m -iy2
(
—1) ' —m m6

(p I
w Ih ), (B2)

(pIW& Ih ) = Jd r(p rI)(r Ih) (r)p, (r, t) .
dp p=pp

21+1 —~n I

a iah ~

J6

where C' is defined in Eq. (5.7), and where
p h p' h'

By using the definition (5.1) for ( rIp ) and ( rI h ) one finds

(B3)

(B4)

I I„A A A A P
Fa ah =lpl6JpJ6 0 0

I Jp J
0 IA I

2

(B5)

In order to derive this relation we have used the well-known identity

Jp J6 I
(r o)PI* (r cr)= g( —1) ' F' Yt (r) .

p Jp p h~h h mp m6 m +4~ p h
Im

(B6)
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Now we can rewrite (B2) as

Im
I
g I Im~ a

,P1- -„—X
P

a aha, ah, P1a,ah.
a

spahi

appearing in Eq. (8.4).
We use the notation p&(r) and pII (r) for the radial part

of the transition densities p, &(r, t} and pIR(r, t } defined

by

where

81 = C F1 FI1

p h p' h' 477 p h p' h' p h p' h'

(B7}

(B8a}

p1&(r, t ) =pg( r) YL o(9)cos(coot },

p, tI(r, t)=pz(r)YL 0(r) ,'(ye —'+y'e ') .

In terms of the angular components we have

(C 1a}

(Clb)

p h p' h' p h p p' h h' p h p' h'

APPENDIX C

(p Isq„ Ih )

Lg+L~

ILg —L~ I

Jh L'
Jp

S
pyg O QRa ah

p h

In this appendix we give the explicit expressions of the
particle-hole matrix elements of the cross terms between
the quadrupole mode and the resonant one SQR and SQR, where SQR is given byQR apah

(C2)

Lg LR L'
P2 2

(~pj's)n a =I'g~tI 0 O O

+/1, +J „+1/2 Lg

Jha aha

LR L'

J J p p" p' h' ' p' h' ' ' h' ' "
h

Rj +jI, +j „+1/2

Jha aha

Lg L'
( + t

)a a' „a,ah, .iRa, ah, IRa,ah, Vga „ahP n P

ap ah ah

j +j„+j„„+I/2 Lg

Jp

LR L'
B~ (n '+ nt )n

Jh Jh" a" a" ap a" Qapah, - Qa, ah, -iRa ah„

+ + +ir2
.LR Lg L'

J Jh Jh h h p h p h p h Q pahJp

Lg
+ + ( l )j .+JI, , +j „+1/2

Ja aha

LR L'
'8 (g n +mt mt }j, jh, apahap aP„Rap, ah, gaga „ah, gaga, ah, sRa „ah,

j,+j&,+jh„+1/2 LR

Jh"

Lg L'
gL

Jh J p h h' h" ~g ' h' lRa 'ah" 9Ra,ah'~g ' h"h' Jp' p p p p

(C3)

Similarly the source term SQR reads
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L L~ L'
~2 n2

(Sgjt )« =L&L& 0 p 0
L

j +jh+j „+1/2 La

Ja
CX CXh Q

L~ L'
B'& (q +., 'a "a 'ah' ~ 'ah' -ega, ah, -sRa "ah

L~+/~+/ „+1/2

Ja
CX (Xh CX

+jh +j&„+1/2 Lg

Jp

Lg L'

J p p" p' h'
- sRap. ah' iRa .ah' '~ "

h

L~ L' 'Bo(+ t )t
h Ih" h &h&p &h I~o' '&h' ~~& '+h' QRa ah"p P p

CX CXh Qh

CK CXh CX

j +j„+j„„+]nL

Jp

j,+j~,+j „+1/2 Lg
r P

J

Lg L'

J J &h" h p' h' Rap, ah' I Rap
ah' ~ p h"

B'", (~ +-.,t }-.,

L~ L'

h' p h p' p" ~ p' h' tRap"ah' -iRap'ah'-sRap„ah,
Jp

&p &h &h"

L~j,+j&, +j& +1/2

Jg )t

Lg L'
BL'

(
t t

)
JQ' Jp'J p h h' h" ' h' ~ ' h" ~ ' h' ' h"P P p p

(C4)

Note that in these equations, only the matrix 8 appears and not the matrix A. This is due to the fact that we consid-
er a simplified Skyrme interaction.
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