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Bethe-Salpeter equations for two and three particles are employed to study relativistic effects
in the three-nucleon bound-state system. The used covariant, multirank separable interactions are
constructed from one phenomenological (Graz II) and two different meson-exchange potentials (Paris
and Bonn). The obtained increase in the triton binding energy due to relativity ranges from 0.29 to
0.38 MeV. In an approximation where boost effects are neglected and an angular-averaging procedure
is applied in the construction of the total trinucleon wave function, the elastic charge form factors
are calculated.
PACS number(s): 21.45.+v, 21.30.+y, 11.10.St, 11.80.Jy

I. INTRODUCTION

In an article [1] hereafter referred to as RT88, we have
employed Bethe-Salpeter-Faddeev (BSF) equations with
phenomenological, separable interactions of rank one to
study relativistic effects in the three-nucleon system. The
results indicated the promising possibility of increasing
the triton binding energy, thereby reducing the discrep-
ancy with the experimental value, and also of making the
falling-oR'of the He charge form factor steeper. How-
ever, the not so realistic nature of the used forces was
clearly revealed by the failure to reproduce the experi-
mentally observed diffraction minimum in the latter ob-
servable.

In the present paper, several multirank interactions
will be employed in order to account for a more realistic
description of the on- and off-shell nucleon-nucleon (NN)
amplitudes. These will be either purely phenomenologi-
cal, namely a covariant generalization of the nonrelativis-
tic (NR) Graz-II [2] potential, or derived from separable
approximations of the Paris [3] and Bonn [4] NN poten-
tials. Our strategy will be the same as in RT88, which
amounts to refitting, in the BS framework, the coupling
constants stemming from the underlying NR potentials
to the NN scattering data. The thus-determined rela-
tivistic interactions are then used to calculate the tri-
nucleon observables, which will be compared with the
NR predictions, as well as with two quasipotential ap-
proaches. Throughout this investigation the Dirac spin
structure of the nucleons will be neglected, so that they
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are effectively treated as scalar fermions. This approxi-
mation, also employed in RT88, is not imposed by any
basic difficulty other than a sizable increase of the num-

ber of coupled channels in the three-body equations. The
inclusion of the Dirac spin structure will be the subject
of future study.

In Sec. II the different separable interactions are pre-
sented and the results of fits to the NN data are given.
Section III generalizes the BSF equations derived in RT88
to the multirank case and deals with the construction of
the trinucleon charge form factors from the bound-state
solutions to these equations. In Sec. IV the results for
the triton binding energy and the charge form factors
are presented and discussed. Section V contains some
concluding remarks and prospects for future work.

II. TWO-NUCLEON SYSTEM

A. BS equation with separable interactions

In momentum space, the BS equation for the T ma-
trix describing relativistic two-particle scattering reads,
in terms of the relative four-momenta p, p', k, and the
total four-momentum P,

T(p, J'; P) = V(p, p')

d k V(p, k) S(k; P) T(k, p', P),
(2.1)

where V(p, p'), in principle, stands for the set of all two-
particle-irreducible diagrams, and S(k; P) is the free two-
particle Green's function. If one chooses a separable in-
teraction kernel, Eq. (2.1) can be solved in closed form.
Treating the nucleons as scalar fermions, which amounts
to describing their spin degrees of freedom essentially
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in a nonrelativistic way, we may take for the coupled-
channel case a covariant, multirank separable potential
of the form

on the total two-nucleon c.m. momentum. For equal-
mass particles and in the c.m. frame, the solution for the
partial-wave T matrix reads [I, 5]

N

(p p') = ).~* g,' '(p')~,' '(p") (2.2)
N

Tii (J., Ipl; po, lp'I; s) = ) ~; (3)~.'"(p') ~,"'(p"),

where the coupling matrix [A] is symmetric. For sim-
plicity, we assume that the form factors do not depend

I

with
(2.3)

i~ '(~)iv = 9 'iu — . ). «of ~'di~ig" '(~')g'"(~')
Ll 0 2 -oo 0

(2.4)

Here, S(ko, Ikl;s) = [(4s —koz + Ezz)2 —sE&2] ~ with

E~ — gkz + mz —ic is the free, scalar two-body
Green's function. The fully on-shell T matrix, defined
by TLL, (p) = Trr'(po Ipl

'
po Ipl

' s) with po = 0 and

lpl = 4s —mz = zmEi, b, is related to the scatter-

ing phase shifts as

TI,L(p) = — e"' " sin br, (p)
Ix I

(2.5)

B. Covariantization

Notice that exact two-particle unitarity will be satisfied
except for those energies at which a pinch can occur
of a pole of the Green's function with a singularity of
the interaction. The integral over ko in Eq. (2.4) can
be calculated either by applying Cauchy's theorem and
accounting for the residues of all Green's-function and
form-factor poles lying within the closed contour or by
carrying out a Wick rotation in this variable, thereby also
taking into account the possibly encountered poles in the
rotation process. In RT88, only the former method was
used, while here both are employed whenever feasible, so
as to have an additional numerical check. The remain-
ing integration(s) can then be done numerically, with a
standard subtraction at positive energies.

plicable to these interactions. Naturally, this does not
in general lead to phase equivalence of the respective LS
and BS two-nucleon amplitudes, a necessary requirement
to study relativistic effects in the three-nucleon system.
Therefore, some parameter refitting has to be carried out
in the BS framework. Yet, only the coupling constants
A;& are adjusted and not the range parameters, which are,
albeit indirectly, related to the meson masses in the un-

derlying potential model. It is hoped that in this manner
the oR'-shell behavior of the NR potentials is not changed
too much, and thus a relativistic meson-exchange inter-
action for scalar nucleons will be mimicked via the covari-
antization scheme. However, one should realize that the
covariant interactions obtained via this hybrid construc-
tion are not expected to be genuine separable approxima-
tions of such an underlying meson-exchange force, con-
trary to their NR counterparts.

C. Graz-II, Paris, and Bonn interactions

In the present investigation, we will employ six mul-
tirank separable interactions, to be derived from the
phenomenological Graz-II (with three different D-state
probabilities), the Paris (in two different separable
parametrizations), and the Bonn potentials. The covari-
ant Graz-II form factors read (see also Ref. [5])

In RT88, phenomenological, separable NN interac-
tions of rank one were chosen, with form factors only
depending on the square of the relative four-momentum

p in order to ensure I,orentz covariance. Of course, this is
by no means a unique way to obtain covariant form fac-
tors, for an obvious alternative would be to also include
a dependence on p . P with P the total c.m. momen-
tum; however, it certainly is the simplest one. It, allows
a simple procedure to construct relativistic separable in-
teractions to be used in the BS equation, from NR ones
in a Lipprnann-Schwinger (LS) approach being functions
of the three-momentum squared p, namely through the
substitution p ~ p = pp —p . At first sight though, it
is not at all clear how to apply this method to NR po-
tentials based on meson exchange. However, separable
approximations to the Paris [3, 6] and Bonn [4] poten-
tials in momentum space have been constructed, with
form factors consisting of rational functions of p only,
making the above "covariantization" procedure also ap-

2= 1 7&P~(p)= 2 2 +
P —P„+ ie (P —P, z + i~)

p' Vz(p')'
(P2 Pzz& + jg)2 (P2 P222 + jg)3

(2.6)

for the Sp partial wave, and

1—
(p' —4'i+ &&)'

'

2

(p ) (p pz

p (I —Tzp )
(P' - Pz'i+ i~)(P' - Pz'2+ i~)' '

g( )(pz) g( )(pz) g(o)(pz) —
()

g(o)(pz)

g(2)(pz)

(2 7)

for the coupled Sq Dz. Note that the -parameters P, g
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TABLE I. Adjusted So parameters of Graz-II interactions.

NR
BSLT
BS

0.563 486
0.585 669
0.582 344

Aii (GeV )
-0.725 034
-0.717 523
-0.747 549

Aq~ (GeV )
666.063
151.859
130.422

and y, are different for the two partial waves. Their nu-

merical values are given in Ref. [2]. Furthermore, the

coupling matrix [A;&] is diagonal and of rank 2 in the

singlet case, while it is of rank 3 and nondiagonal for
the coupled triplet. Now, we proceed to refit the cou-

plings to the scattering length a, effective range r0, and,
in the triplet case, also to the deuteron binding energy

Bg, D-state probability PD, and asymptotic D/S-state
ratio pD~s, while keeping the phase shifts as close as pos-
sible to the ones of the original potential. In the singlet
case, where we have only two couplings at our disposal,
also the parameter y1 is adjusted so as to obtain a satis-
factory fit, but, as mentioned before, the range parame-
ters P;& are always left unaltered. In order to study the

dependence of the trinucleon observables on PD, three
different values of this quantity are chosen, viz. 4%%uo, 5%,
and 6%, rather than keeping it fixed at its original value

of 4.82%. Consequently, in the NR triplet case a refit
has to be performed, too. Apart from the described LS
and BS approaches, we also use the BSLT reduction of
the BS equation (see, e.g. , RT88) as an additional com-

parison. This leaves us with three sets of parameters for
the S0 partial wave, shown in Table I, and nine for the
coupled triplet, given in Table II. Notice that the lat-
ter are different from those in Ref. [7], where the same

type of interactions was used, but with Dirac instead of
scalar propagators, in order to study relativistic contribu-
tions to the deuteron electromagnetic form factors. The
resulting effective-range parameters and deuteron prop-
erties can be found in Tables III and IV. We see that
very similar results are obtained for the three used equa-
tions with, on the whole, relatively small changes in the
coupling constants. In particular, the BS and BSLT pre-
dictions are almost identical.

5

u(p') =)
a=1

for the singlet (rank 3), and

(2.8)

~;» lpl
6 (L)

~ ( ) )
»=1 ( —p + p.»

—l6)
(2.9)

for the coupled triplet (rank 4). The parameters Q';», P»,
and P;», which are kept fixed, can be found in Ref. [6]
(Tables I and III), as well as the couplings A;z. Note that
the value of the parameter P4s in the fourth column of
Table III should be 3.0094516 instead of 2.0094516 [8].
Here, however, we repeat the fit of the couplings, for two
reasons. In the first place, the singlet coupling matrix
was originally taken to be diagonal, making a good re-
production of the effective-range parameters impossible,

The second set of separable interactions are con-
structed from the Paris and Bonn potentials, based on
meson exchange. For the purpose of exploring the re-
liability of the covariantization procedure, we use two
distinct separable approximations of the Paris potential.
These have been published in Ref. [6], to be denoted by
Paris 1, and in Ref. [3], originally named PEST3 and
PEST4 for the So and Si Di -case, respectively, here
denoted by Paris 2. Although both parametrizations are
of rank 3 and 4, the used form factors are very different.
As a matter of fact, in the former work covariant separa-
ble interactions for the BS equation were developed in an
analogous way as in the present investigation. In order
to facilitate the po integration in Eq. (2.4) with Cauchy s
method, form factors were chosen containing only poles of
low order. In the latter paper on the other hand, merely
an NR separable potential was constructed, so that no
such restrictions were needed. Here, we evaluate the p0
integrals for the corresponding Paris-2 interaction using
the Wick-rotation procedure only. Surprisingly, it turns
out that, already for poles of relatively low order, this
method, involving a two-dimensional numerical integra-
tion, becomes more efficient in terms of precision/CPU
time than Cauchy s, where it is just one-dimensional.

The form factors of the Paris-1 interaction read [6, 5]

TABLE II. Sy couplings of Graz-II interactions.

Pz)

4%

6%

NR
BSLT
BS
NR
BSLT
BS
NR
BSLT
BS

Ayy

3.357 24x 10
3.93760x 10

-6.18065 x 10

3.050 65 x 10
5.87384x 10

-3.634 71x 10

2.964 42 x 10
9.374 41x 10

-5.65449x10

b

-7.808 89x 10
-3.468 36x 10
-2.330 79x 10

-5.082 87x 10
-1.95377x 10
-1.12326 x 10
-2.98733x 10
-8.327 04 x 10
-4.29335x 10

Ay3

-2.25484x10
-1.672 42x 10
-1.546 14x 10

-1.96867x 10
-1.601 01x 10
-1.51066x 10
-1.755 66x 10
-1.561 66x 10
-1.478 43x 10

A2g

170.283
104.769
90.4794

96.0983
57.9262
51.0166
41.9506
22.5999
17.0509

Ag3
b

3.426 10
2.39946
2.226 10

2.592 44
1.985 53
1.92140

2.006 21
1.71346
1.679 46

A33

4.052 94x 10
2.491 97x 10
1.98778x 10

2.78235x 10-2
1.83408x 10
1.43681x 10

1.86786x 10
1.35330x 10
9.81472x 10

Jn GeV
bIn GeV

In GeV .
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TABLE III. So efI'ective-range parameters with Graz-II
interactions.

TABLE Iv. Si effective-range parameters and deuteron
properties with Graz-II interactions.

NR
BSLT
BS

a (fm)

-23.77
-23.77
-23.77

ro (fm)

2.683
2.683
2.683

PD

4%

a (fm)

NR 5 418
BSLT 5.419
BS 5.419

ro (fm)

1.780
1.779
1.780

Bg (MeV)

2.2254
2.2254
2.2254

PD/S

0.02502
0.02592
0.02591

Experiment (n-p) -23.748 2.75 5% N R 5.419 1.780
BSLT 5.420 1.779
BS 5.420 1.779

2.2254
2.2254
2.2254

0.02796
0.02896
0.02896

with eventual repercussions in the three-nucleon system
[9].We remedy this by relaxing the diagonality condition
of [A], also for the LS equation. This is clearly legitimate,
as the original Paris potential does not cover the neutron-
proton (n-p) iSO partial wave. Conversely, we will only be
dealing with the n-p case for simplicity, since we are inves-
tigating the infiuence of relativity in the trinucleon and
not possible charge-symmetry-breaking eft'ects. Secondly,
in Ref. [6] the accuracy of the computed XN eff'ective-

range parameters and deuteron properties is insufficient
to warrant a reliable study of relativistic contributions in
the three-nucleon case. Thus, we refit all the couplings
for the three equations and the two partial waves.

The form factors of both the Paris-2 [3] and the Bonn
[4] separable interactions have the structure

(2.10)

for the rank-3 singlet, and

(2.11)

for the rank-4 triplet. Notice that here the threshold be-
havior in the D state is described by —p, while for the
Paris-1 interaction a factor p2 was taken as in Ref. [6].
There, magic vectors were used to guarantee covariance,
also in P waves, However, the difference in the two pre-
scriptions turns out to be immaterial. The parameters
C, k and P, i can be found in Refs. [3] (Table VI of first
article, Table I of second) and [4] (Tables II and III).
Here, a comment is due with regard to two-particle uni-
tarity. For all used separable interactions, this property
will be exactly satisfied up to laboratory energies of at
least 480 MeV, except for the Paris-2 case. There, one

of the 32 triplet range parameters, viz. ps&, is slightly
larger than twice the nucleon mass, leading, in principle,

6% NR
BSLT
BS

4.82% Grai-II

Experiment

5.420
5.421
5.421

5.419

5.424

1.779
1.778
1.778

1.780

1.759

2.2254
2.2254
2.2254

2.2254

2.2246

0.03061
0.03171
0.03170

0.02746

0.0263

to unitarity violation at all scattering energies in the BS
equation. This effect, however, is completely negligible,
as has been checked numerically. The refitted coupling
constants of the Paris-1, Paris-2, and Bonn interactions
are given in Tables V and VI, and the resulting effective-
range parameters and deuteron properties in Tables VII
and VIII. Once more, one can observe that the couplings
are quite similar for the LS, BSLT, and BS equations.
We also remark that the predictions of the Paris-1 and
Paris-2 interactions are not perfectly identical, which is
hardly surprising, as they have been obtained from sep-
arable approximations to the original Paris potential.

Finally, we point out that, with all interactions de-
scribed in this section, the NN phase shifts for the three
employed equations are very similar and practically in-
distinguishable graphically, so that we have not plotted
them. Thus, relativistic and nonrelativistic NN inter-
actions have been constructed which are to a high de-
gree phase equivalent, making a comparison of the cor-
responding three-nucleon observables meaningful.

III. THREE-NUCLEON SYSTEM

A. BSF equations

In RT88, homogeneous, Faddeev-type (BSF) integral
equations in two continuous variables were derived to de-

scribe the three-nucleon bound-state system, with sepa-
rable, pairwise interactions of rank one. It was also shown

that a Wick rotation could be carried out, leading to a

TABLE V. So couplings of Paris and Bonn interactions; units: fm

Paris-1

Paris-2

Bonn

NR
BSLT
BS
NR
BSLT
BS
NR
BSLT
BS

-0.948820
-1.020 93
-1.060 70
-0.00420 731
-0.00439 216
-O.OO448 232
-0.00400 648
-0.00293762
-0.00257235

0.0396328
-0.0127224
-0.0473 008
0.0888 985
0.0973919
0.100214
0.106667
0.129658
0.137886

Ags

-0.00587 557
0.0525 057
0.161285
0.0109088
0.0299 439
0.0239 941
0.556 320
0.661 269
0.710601

-1.18470
-1.44785
-1.51288
-2.17809
-2.722 19
-2.858 64
28.9071
24.9786
23.3424

-0.0491 013
0.336379
0.198404

-1.23781
-1.242 05
-0.997939

-75.7845
-76.4435
-76.7143

%33

0.833606
0.570 440
0.578 036
6.09989
5.546 11
4.844 84

176.63?
207.104
223.126
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TABLE VI. Si couplings of Paris and Bonn interactions; units: fm

A11

Ais
Ay4
Ag2
A2s
Ag4
Ass
As4

NR

-0.205559
-0.108958
0.0625966
0.0259473
0.246180
0.0817942
-0.127576
-0.0295842
-0.0471933
0.227136

Paris-1
BSLT

-0.231413
-0.146062
0.0636279
0.00959093
0.0783938
0.0845026
-0.0639813
-0.0282376
-0.0384208
0.187132

BS
-0.238168
-0.140148
0.0624894
0.00671305
0.0821977
0.0848610
-0.0750647
-0.0295189
-0.0373834
0.167919

-2.30301
-1.55623
0.649750
0.0462466
0.794700
0.856251
-0.717883
-0.277624
-0.317045
1.53599

Paris-2
BSLT

-2.28431
-1.56471
0.640183
0.0346558
0.668754
0.879083
-0.692309
-0.282922
-0.344264
1.57055

Bs
-2.34799
-1.53749
0.629960
0.0559728
0.688313
0.882429
-0.727545
-0.284657
-0.346235
1.47533

NR

-1.93010
-1.85908
0.600230
0.843597
0.708501
1.38688
-0.723216
-0.253240
-1.25370
1.92639

Bonn
BSLT

-1.91329
-1.83626
0.608954
0.784281
0.681793
1.45580
-0.758844
-0.274625
-1.30664
1.99451

BS
-1.99086
-1.81676
0.591910
0.781237
0.62337?
1.47213
-0.772750
-0.286107
-1.29517
1.96585

coupled set of integral equations with a compact kernel.
As the generalization to the multirank case is straight-
forward, we give here the final expressions only (see also
Ref. [5]). For a rank-N separable interaction, the Fad-
deev bound-state amplitude takes the form

N

~'(p q) = ). a'(p) *', [(-'.& + q)'] C';(q) (3.1)

where p, q are the relative four-momenta with respect
to the spectator particle, and the superscript a refers
to a specific two-body channel. Then, restricting our-
selves to S waves and equal masses just as in RT88, we

get, in the three-particle c.m. frame, for the partial-wave-
decomposed spectator function 4 the Nick-rotated inte-
gral equation

2 Na (m oo

@;(q4 lql) =-4 s). ) dq4 q"dlq'l~;t(q4, lql;q4, lq'I), "' ', , '„. ..@~(q4 lq'I)
a=1 a,S=1

8 q4 —q rn + le
(3 2)

with the driving term

e,'(--,'« q4, I-,'-q+ q'I) ~&(q4+ 2«, lq+ 2q'I)

-i '

(z~s+i(q4+q4)) —(q+q') —m + ie
(3.3)

Here, N~ is the rank of the separable interaction in chan-
nel b, and s is related to the three-body binding energy by
~s = 3m —Bt. The spin/isospin recoupling coefficients
have the vallles C = C = — and C 2 = C4
Note that the restriction to S waves implies a truncation
of the sSi-sDi two-body T matrix, which is, however, cal-
culated in full. This so-called T00 approximation yields
results quite close to a complete 5-channel calculation, at
least in the NR case.

B. Trinucleon charge form factors

The trinucleon charge form factors can readily be
found in the relativistic impulse approximation [10].
They are determined from the Faddeev amplitude given
in Eq. (3.1) by taking the appropriate matrix elements
of the single-nucleon current operator, accounting for all
three-nucleon contributions. Keeping in mind that in this
way pair currents will automatically be included, one can

TABLE VII. So effective-range parameters with Paris
and Bonn interactions.

TABLE VIII. Si effective-range parameters and deuteron
properties with Paris and Bonn interactions.

Paris-1

Paris-2

Bonn

NR
BSLT
BS
NR
BSLT
BS
NR
BSLT
BS

a (fm)

-23.67
-23.72
-23.72

-23.72
-23.72
-23.72

-23.75
-23.75
-23.75

rp (fm)

2.805
2.805
2.810

2.817
2.817
2.817

2.731
2.727
2.734

Paris-1
PD ——

5.7770

Paris-2
PD ——

5.77%
Bonn
PD =
4.58%

NR
BSLT
BS
NR
BSLT
BS
NR
BSLT
BS

5.428
5.426
5.426

5.411
5.414
5.413
5.484
5.479
5.484

1.780
1.774
1.775

1.765
1.765
1.765

1.853
1.845
1.851

2.2241
2.2247
2.2246

2.2250
2.2250
2.2250

2.2250
2.2249
2.2250

a (fm) rp (fm) Bq (MeV) PD]S

0.02611
0.02612
0.02610

0.02614
0.02614
0.02614

0.02669
0.02666
0.02656

Experiment (n-y) -23.748 2.75 Experiment 5.424 1.759 2.2246 0.0271
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S S S
vp = Q —k~~~ + 0"~~~ + 443) )

gl S' I" = ~( (i)+ (~)
-' ('))

e = ~(4' —4' )

(3.6)

(3.7)

(3.8)
l

essentially proceed similarly to the NR case, where such
effects would have to be treated separately. Thus, we
define the amplitudes

~('l = w2(~() —~(')) (3 4)
S'

~(*& = w2(~(*) + ~(*)) (3.5)

where @(;l = 4(p;, q;), and the superscripts s and t stand
for singlet and triplet, respectively. Next, we can con-
struct the totally symmetric and mixed symmetric vertex
functions

Note that v~ is symmetric under the interchange of parti-
cles one and two, while v~ is antisymmetric. Now, if one
of Faddeev amplitudes has been obtained by solving the
BSF equations (3.'2,3.3), say @(sl, then the other two can
be constructed from the former by interpolation of the re-
spective Jacobi variables. After all, they refer to the same
function, since the particles are identical, but with differ-
ent arguments. At this point, a diKculty arises because
even if iI)'(sl is restricted to S waves only, as is the case,
the other two will automatically get higher partial-wave
components in the interpolation process. In other words,
the latter will depend also on the angle between the rela-
tive momenta p and q, which poses an extremely diKcult
numerical problem when computing the charge form fac-
tors. A remedy is to apply an angular-averaging approx-
imation, also used in RT88, which amounts to writing

+1
~((»)4 l»l (qs)4 1~21) = — «os%,&@(--,'p4--4'q4 I-,'p+4'~l; p4--,'q4 lp ——,'~l),

—1
(3.9)

and a similar expression for 4'~~~. It should be noted that,
while this approximation is known to work well in the NR
case, the same is not necessarily true in the BSF formal-
ism, for in the latter case there is an additional depen-
dence on 6P& & in two of the three propagators. However,
at zero momentum transfer, the exact result can be com-
puted quite straightforwardly, and the angular-averaging
approximation has been verified to be very reasonable
in this limit. A possible improvement would be to con-
sider the right-hand side of Eq. (3.9) the first term in a
partial-wave expansion and to include some more terms.
In fact, in the mentioned limit, this procedure turns out
to converge very rapidly to the exact answer. For arbi-
trary momentum transfers, it might still be numerically
feasible, which will be investigated in future work.

The three-nucleon charge form factors can be written
in terms of the proton and neutron ones as

2F,h( He) = (2F,"h+ F,"h)Fi —s(F,"h —F,"h)Fg, (3.10)

Fq:h( H) = (F,"h + 2F,"iq)Fi + s(F,"h —F,"h)F2, (3.11)

I

gauge invariance of the associated electromagnetic (EM)
three-nucleon current; hence, we include it in the present
investigation. Nevertheless, its effect on the form fac-
tors turns out to be negligible, at least when recoil is
treated in an NR manner. This static approximation,
which amounts to disregarding boost effects, has been
amply discussed in RT88, and will also be applied here.
Boost corrections to the deuteron EM form factors have
been studied in Ref. [7], leading to the conclusion that
they are small for the charge form factor. However, the
same is not necessarily true in the trinucleon case, in view
of the very peaked behavior of the spectator function 4
in Eq. (3.2), as a function of q4 (see RT88). Despite the
numerical diKculties, at least part of the boost effects,
e.g. , the boost on the final-state one-particle propagator
Gs(q') in Eq. (3.12), which turned out to give by far the
largest contribution in the deuteron, will be included in
forthcoming studies.

IV. RESULTS AND DISCUSSION

where I"~ and Fp are the usual body form factors. With
the vertex functions defined in Eq. (3.6), the former are
then given by (see also RT88)

Equations (3.2) and (3.3) are solved in essentially the
same way as in RT88, namely by discretizing the two in-
tegrations and iterating the resulting matrix eigenvalue
problem. It turns out that for all considered interactions
this procedure rapidly converges to the sought solution.
In other words, all other eigenvalues of the discretized
kernel are smaller than unity in absolute value. This fea-
ture, in combination with a careful choice of mappings
for the integration points, allows a very accurate deter-
mination of the binding energy and spectator function.

In Tables IX and X, the triton binding energy B& is
given for all six interactions defined in Sec. II, using four
different Faddeev-type approaches with respect, to rela-
tivity just as in RT88. These are denoted by NRF, QPi,
QP2, and BSF, standing for nonrelativistic Faddeev,
type-1 quasipotential, type-2 quasipotential, and Bethe-
Salpeter-Faddeev equations, respectively. The QPi and
QPq equations are derived from dispersion integrals in
the three- and two-body invariant energy, respectively

xG(p, q) v„(p, q),
(3.12)

F, (Q) = —3f d'p d'qvt(pq') 0,( )p, (qq, , q')

x G(&, q) u(p, q),

where q' = q —sQ with Q the photon momentum,
G(p, q) = Gi(p, q)G~(p, q)Gs(p, q) is the free three-body
Green's function, and I'&(q, q') = sP& + Q& —2q& is the
vertex operator for scalar electrodynamics. For simplic-
ity, this operator was taken to be unity in RT88. Strictly
speaking, the correct expression is needed to warrant

P (0) =f d'pf d'q ) C(pq')&. (q')P (qq'),
n=p
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QPr BSF

TABLE IX. Triton binding energies (MeV) for Graz-II in-
teractions with equations described in text.

10

IF.hl

10

PD ——4%
PD =5%
PD =6%

8.369
7.961
7.566

8.539
8.129
7.735

8.606
8.188
7.787

8.701
8.290
7.892

10

10

(see RT88 for the definitions). The numerical errors are
less than 0.005 MeV in the BSF case and less than 0.001
MeV in the others. From Table IX we see that, for the
Graz-II interactions, the BS formalism gives rise to an
extra binding of about 0.33 MeV, practically indepen-
dent of the deuteron D-state probability PD. Note that
the BSF results are slightly different from those given in
Ref. [5], where a minor error occurred in the evaluation
of the oR'-shell two-body T-matrices for complex argu-
ments by using Cauchy's theorem Th. is inaccuracy has
now been eliminated and verified with the Wick-rotation
method discussed in Sec. IIA. Furthermore, the bind-
ing energy turns out to scale almost linearly with PD,
increasing by about 0.4 MeV/%. Table X contains the
binding energies for the interactions derived from meson-
exchange potentials. In the case of the Paris interactions,
the extra binding with the BSF approach is 0.29 MeV for
both parametrizations, despite the 0.06 MeV binding-
energy difference of one with respect to the other. This
may indicate that the covariantization procedure does
not alter the off-shell behavior of the two-body ampli-
tudes substantially, thereby lending extra support to the
whole hybrid scheme of constructing relativistic interac-
tions. After all, the two employed EST parametrizations
of the Paris potential are very different in the used basis
functions, and nothing guarantees a priori that, after co-
variantizing these functions and refitting the couplings,
the resulting off-shell T matrices will still be comparable.
For the Bonn interaction, the increase in binding is 0.38
MeV, which is very significant, since the NR versions of
this potential already produce results much closer to the
experimental value of 8.48 MeV than any other realis-
tic potential, basically due its low PD value. In fact, it
seems safe to conclude that in the BSF framework some
version of Bonn will indeed be capable of reproducing
this number, when accounting for higher partial waves.
That does not necessarily mean the Bonn potential pro-
vides a correct description of the NN forces, for there are
serious problems with the trinucleon charge form factors,
as will be shown below. Finally, concerning all quasi-
potential results in Tables IX and X, the same pattern

10

10
10 20 25 QQ

q (fm )

FIG. 1. He charge form factor with Paris-1 interaction
and equations described in text.

10

10

10

I I
[

I I I

NRF
Qp,
Qpa

BSF

for B& is obtained as in RT88, which can be symbolically
summarized by NRF & /Pi & QPz & BSF.

Turning to the trinucleon charge form factor, we first
focus our attention on the He case. In Figs. 1—7,
F,h ( He) is plotted for the various interactions and equa-
tions. Since this investigation is primarily of a compari-
tive nature, no experimental data points are displayed in
the graphs. Suffice it to say that realistic NN potentials
in an NR framework like the ones used here predict the
first diR'raction minimum and the secondary maximum
at too high momentum transfers. Figure 1 shows the
Paris-1 results with the four described equations. While
the NRF, @Pi, and QPz curves are very similar, the BSF
one has a somewhat different behavior. At low and inter-
mediate momentum transfers, there is a slightly steeper
falling-off (see also RT88), which however does not per-
sist up to the diffraction minimum, so that the dip is
moved outwards and the secondary maximum reduced,
contrary to what is needed to get closer to the experi-
mental data. In Fig. 2 the same curves are given for the
Paris-2 interaction, showing only minor deviations from
those in Fig. 1 as expected, although the NRF and BSF
results depend noticeably more on the specific separable
parametrization than the QP ones. Figure 3 displays the
NRF and BSF form factors for both Paris interactions,

TABLE X. Triton binding energies (MeV) for Paris and
Bonn interactions with equations described in text.

10

10

Paris-1
Paris-2
Bonn

7.245
7.183
7.822

QPg

7.389
7.363
8.083

QPz

7.435
7.408
8.140

BSF

7.535
7.474
8.201

10
10 15 20 25 30

q (fm )

FIG. 2. Same as Fig. 1, with Paris-2 interaction.
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FIG. 3.
tions.

Same as Fig. 1, with Paris-1 and Paris-2 interac-
FIG. 5. Same as Fig. 1, with Graz-II interaction and

Pg =4%o.

in order to focus on possible deviations due to the covari-
antization procedure, which are not observed, however.
The Bonn results are plotted in Fig. 4, showing the same
qualitative behavior as in the Paris case, but much more
pronounced. We also see that the NR Bonn potential, in

spite of yielding a triton binding energy much closer to
the experimental value than the Paris potential, gives rise
to a considerably worse charge form factor as compared
to experiment.

Regarding the Graz-II interactions, the results are
given in Figs. 5, 6, and 7, with PD values of 4, 5, and

6%, respectively. First of all, we see that these inter-

actions produce the first diffraction minimum at much
too high values of q~, a de6ciency already observed in
the deuteron case [7]. Furthermore, increasing PDd makes
the dip move inwards, also in accordance with Ref. [7].
Concerning the relativistic approaches, the same pattern
emerges as for the Bonn interaction, namely with the two
nearly coinciding QP curves lying between the NRF and
BSF ones.

In Fig. 8, finally, we show the tritium charge form fac-
tor for the Paris-1 interaction. The same type of behavior
can be seen as in the He case, though the dip of the BSF
curve is now only marginally shifted. Also, the falling
off of all four curves at low momentum transfer is less

10

10

10

10

10

10

10
0 5 10 15 20 25 30 35 40 45 50

q (fm )

FIG. 6. Same as Fig. 1, with Graz-II interaction and
Po'=5'.
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q' (f~i ')
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q (!Ii1 )

FIG. 4. Same as Fig. 1, with Bonn interaction.
FIG. 7. Same as Fig. 1, with Graz-II interaction and

PD=6%.
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FIG. 8. H charge form factor; description as in Fig. 1.

steep, reflecting a smaller charge radius of the triton as
compared to He. %e may conclude that, with the used
approximations, the BSF approach does not improve the
trinucleon charge form factors. Yet, a certain tendency
can be observed for the shift of the difFraction minimum
becoming larger as the dip moves outwards.

V. CONCLUSIONS AND OUTLOOK

In order to put the results obtained above in a cor-
rect perspective, we emphasize that the state-of-the-art
of relativistic three-nucleon calculations is by no means
comparable to the NR case. There, virtually converged
results for nearly all popular NN potentials with a va-
riety of very difFerent methods have been produced. In
the relativistic case, virtually nothing has been done in
terms of corroborated predictions. This is clearly an un-
satisfactory state of affairs, becoming all the more incom-
prehensible for quasipotential approaches, which do not
require much more numerical effort than NR ones, es-
pecially when neglecting the Dirac spin structure of the
nucleons. On the other hand, the solution of the BSF
problem is numerically hard. Therefore, the present cal-
culations have as yet been restricted effectively to two
three-body channels, so that the results cannot be as-
sumed to have converged. However, we do not expect
that the higher partial waves, which give rise to an extra
binding of about 0.2 (0.1) MeV for the NR Paris (Bonn)
potential [11],contribute very difFerently in the relativis-
tic case.

A picture seems to emerge from the studies of the rela-
tivistic efFects on the trinucleon observables in the present
framework. As for the triton binding energy B&, an addi-
tional contribution varying from 0.29 to 0.38 MeV is ob-
tained, displaying only a mild dependence on the global
characteristics of the used interaction. This parameter-
free prediction, which includes effective three-body con-

tributions due to retardation, is to be contrasted with
the highly cutoff-dependent results of NR models with
explicit three-body forces [12, 13]. However, whether the
found increase in binding is sufficient to obtain agree-
ment with experiment is still uncertain, in view of the
strong dependence of B& on the D-state probability of
the underlying NN force.

With regard to the three-nucleon charge form factors,
the situation seems to be less favorable. If the presented
BSF results are taken at face value, the disagreement
with experiment is even worsened, though this might not
be the case for interactions (e.g. , the Reid soft-core po-
tential) that produce a diffraction minimum at lower mo-
mentum transfers than the ones employed here. Never-
theless, more definite conclusions are somewhat prema-
ture because of the applied approximations. Especially,
the neglect of boost effects could very well give rise to
substantial deviations at the intermediate and high mo-
mentum transfers considered. Besides, as suggested by
nonrelativistic studies, meson-exchange currents should
play an important role at high momentum transfer.

In conclusion, we wish to mention possible improve-
ments and extensions of the present work. In the first
place, of course, one should attempt to go beyond the
static and angular-averaging approximations used in cal-
culating the charge form factors, along the lines discussed
in Sec. III B. Then, the Top approximation can be im-
proved upon by also including D waves in the three-body
equations, despite a further increase in the size of the
already very large kernel. Finally, some aspects of the
nucleon Dirac structure may be incorporated. However,
even if this is restricted to using Dirac instead of scalar
propagators and neglecting the negative-energy compo-
nents, the Lorentz-transformation properties of the off-
shell two-body T matrices in the BSF equations will have
to be reexamined. Such an analysis would also allow in-
clusion of the relativistic form of the EM current opera-
tor.
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