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Nucleon —nucleon data below 3GO-MeV laboratory energy are described by a manifestly covariant
wave equation in which one of the intermediate nucleons is restricted to its mass shell. Antisym-
metrization of the kernel yields an equation in which the two nucleons are treated in an exactly
symmetric manner, and in which all amplitudes satisfy the Pauli principle exactly. The kernel is
modeled by the sum of one boson exchanges, and four models, all of which fit the data very well

(y = 3 per data point) are discussed. Two models require the exchange of only the s, o, p, and
~, but also require an admixture of p coupling for the pion, while two other models restrict the
pion coupling to pure p p", but require the exchange of six mesons, including the g, and a light
scalar-isovector meson referred to as cry. Deuteron wave functions resulting from these models are
obtained. The singularities and relativistic effects which are a part of this approach are discussed,
and a complete development of the theory is presented.

PACS uumber(s): 21.30.+y, 13.75.Cs

I. OVERVIEW, RESULTS, AND CONCLUSIONS

A. Introduction

With the discovery of quarks, and the construction of
powerful new facilities, such as the Continuous Electron
Beam Accelerator Facility (CEBAF), we have the oppor-
tunity to study and understand the structure of strongly
interacting matter at short distances (or high momentum
transfers). One goal of such studies is the development of
an effective theory of strongly interacting particles, tied
to the underlying theory of quarks and gluons (/CD),
but including effective variables and degrees of freedom
which are eKcient to describe strongly interacting matter
at momentum transfers of a few GeV/c. We do not at
this time know what these effective degrees of freedom
will be. They may be the quarks and gluons themselves,
or it may be that the mesons and nucleons observed at
low momentum transfers will continue to be the correct
variables to use at a few GeV. To compare these two pic-
tures, or to test either one, it is necessary to have simple,
dynamical models which can be applied consistently to a
large variety of interactions.

Models which are to be used to study processes in-
volving momentum transfers of a few GeV should be rel-
ativistic. This means not only that the energies of all
particles must satisfy the relativistic energy relation, but

also that it must be possible to transform all amplitudes
and wave functions from one Lorentz frame to another.
This feature is essential if we wish to eliminate all am-
biguities which arise from frame dependent choices, and
treat recoil, spin orbit, and other significant effects cor-
rectly.

Relativistic covariance can be achieved either by (1)
finding a way to boost amplitudes calculated in one spe-
cial frame to an arbitrary frame or by (2) using a dy-
namical theory which is covariant at every stage of the
calculation. The former method, which we will refer to
as relativistic Hamiltonian dynamics [1],has been devel-

oped by Coester, Keister, Polyzou, and their collabora-
tors, and has been recently applied to the calculation of
the deuteron form factors [2]. The use of light front vari-
ables seems to be a key to the success of this method.
The latter method, which will be referred to as mani-
festly covariant dynamics, has been developed by Tjon
and collaborators [3], who have used the Bethe-Salpeter
[4] and the Blankenbecler-Sugar [5] equation, and by one
of us (F.G.) using the spectator equation [6]. The advan-
tage of relativistic Hamiltonian dynamics is that the issue
of Lorentz covariance is separated from the dynamics,
so that any phenomenological, nonrelativistic, or semi-
relativistic calculation can be made covariant. A disad-
vantage, from our point of view, is that no connection is
made to an underlying field theory which is assumed to

4S 2094 Qc1992 The American Physical Society



45 RELATIVISTIC ONE-BOSON-EXCHANGE MODEL FOR THE. . . 2095

describe the physics. One consequence of this is that field

theory cannot be used to develop the connection between
the electromagnetic current operator and the strong in-
teraction physics, reducing the predictive power of such
calculations.

The work presented in this paper is an example of
manifestly covariant dynamics. The low energy nucleon-
nucleon scattering amplitude is calculated using a rela-
tivistic equation in which one particle is restricted to its
mass shell, which we refer to as the spectator equation.
This equation was first introduced [7] in 1969, and stud-
ied on several occasions since then [8, 9], but this is the
first time the equation has been properly symmetrized
for NN scattering, and solved exactly. (A short account
of the present work can be found in Ref. [10].) We be-
lieve that all of the theoretical problems associated with
the application of this equation to elastic NN scattering
have now been solved, and one of the principle purposes
of this paper is to present a careful and detailed treat-
ment of the theory in rather general terms. This is the
main thrust of Part II. A brief review of work leading
up to the present paper is given in Sec. I B below, which
also discusses how this paper relates to other work in this
field.

A second principal purpose of this paper is to demon-
strate that the relativistic spectator equation can serve
as basis of a successful relativistic phenomenology of low

energy NN scattering. We chose to describe the dynam-
ics with a one-boson-exchange (OBE) model, primarily
because the exchange of the lightest bosons is associated
with the longest range, peripheral part of the interaction,
which is the only part of the interaction we can hope to
describe with such an approach. All shorter range effects
are assumed to be accounted for by form factors, which
are treated purely phenomenologically. Our choice of the
OBE model is also consistent with our use of the spec-
tator equation, which we believe has a structure which
tends to minimize the contributions from higher order ir-
reducible kernels (a fact which can be proved for scalar
theories). Other advantages of the OBE model are that
OBE parameters have a clear physical meaning, the dy-
namics is closely coupled to a field theory (permitting the
model to be extended consistently to other processes),
and OBE models have enjoyed considerable success in
the past. A fit which requires only a few bosons may
be better than one which requires many; since the boson
couplings are treated as free parameters, extra bosons
can always be added if there is a reason. Because of this
possibility, we were especially pleased to find that a very
nice fit to all the data below 300 MeV can be found us-
ing only four bosons: x, 0', p, and u. These four have long
been regarded as playing a central role in NN scattering,
and it is hard to imagine any reasonable OBE description
without all of them, but to our knowledge this is the first
time a quantitatively accurate fit has been achieved using
only these four. This is because the off-shell contributions
which arise from our relativistic treatment are large, and
necessary to the fit, and this is the first time these oH'-

shell contributions have been carefully evaluated.
The fits to data, the OBE parameters, y and other

numerical results are presented in Sec. I C, while Sec. I 0

includes a discussion of important ofF-shell and relativis-
tic eR'ects. In these sections, four models are presented
and discussed. Models IA and 8 are examples of the four
boson case mentioned above, while Models IIA and B are
ones with six bosons (the four of Models I plus the il and
ei, a spin-zero, isospin-one meson) chosen to keep off-
shell effects small. (The Models previously described in
Ref. [10] are the same as the A versions given in this pa-
per. ) We find that all of these models work very well, giv-
ing a very nice fit to the data and phase parameters below
200 MeV, and a satisfactory fit over the entire range up
to 300 MeV. This brings us to the third principle purpose
of this paper, which is to find models which all agree with
the on-shell NN data, but have significantly different off-
shell extrapolations. These can be used to study the sen-
sitivity of electromagnetic or hadronic probes to off-shell
effects and to determine which measurements will most
improve our understanding. In electron scattering ex-
periments, such a program will have the greatest impact
when the current operator is strongly constrained by the
strong interaction dynamics. Recently, we have learned
how to construct this current operator in a way which in-
sures the conservation of current [ll], and calculations of
the deuteron form factors and deuteron electrodisintegra-
tion are underway. The connection to the underlying field
theory has also been a useful guide toward developing a
consistent relativistic multiple scattering theory [12],and
calculations [13] of J74oCa scattering observables based
on these ideas and the specific nucleon-nucleon scattering
amplitudes described in this paper are in good agreement
with data.

This paper is organized into three major parts. This
part (I) includes a full introduction, presentation of nu-
merical results, discussion and conclusions. An attempt
has been made to write this in a self-contained manner, so
that all the results can be understood without referring
to the other parts. Part II, General Theory, presents rel-
ativistic formalism applicable to any choice of relativistic
kernel (potential), while Part III discusses the detail of
the construction and treatment of the relativistic OBE
kernel. Three appendices include more detailed discus-
sion of technical points.

B. Background and overview

Manifestly covariant dynamics (as defined in this pa-
per) can be said to have started with the introduction of
the Bethe-Salpeter (BS) equation [4) in 1951. Some peo-
ple refer to any relativistic equation for the scattering
amplitude M which is of the linear form

M=V+ V M

(where V is the relativistic kernel and G the propagator)
as a BS equation. %'hen we refer to the BS equation
we will mean (a) that the propagator G describes the
propagation of two og shell nucleon-s, and (b) that the
integral operator includes the integration over all four
components of the relative momentum p =

2 (pi —p2), the
total four-momentum P = p~+ p2 being fixed by energy-
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have the same elastic (unitarity) cut, and since the large
contributions from reducible diagrams owe their origin
to this cut, they reasoned that ( 1.3) should be sufficient
to give a good description of low energy scattering and
bound states.

Independently, it was observed [7] that when the kernel
V is constructed so that all ladder and crossed ladder
diagrams are to be summed by the integral equation,
using a propagator which restructs one particle to its
mass-shell significantly improves the convergence of the
resulting series for V. In the notation of this section, this
propagator (for particle 1 on-shell) is

2~b+(m', —(-,'P+ p)')
&s =

mzz —(z'P —p)z —i~

(1.4)
2mb(Eg —

q W —p, )
2Eg [Ez —(W —Eg) —i~]

Note that this propagator also constrains the fourth vari-
able (p, ) so that the resulting integral equation, while co-
variant, depends only on the relative three-momentum.
This relativistic equation, which will be referred to as the
spectator equation, is the one used in this paper.

Subsequent study has revealed more about the rela-
tionship between these equations. It was pointed out [14]
that (1.3) and (1.4) are only special cases of an infinite
family of equations, all of which are covariant and three
dimensional. One continuous family of such equations [9]
can be described by the propagator

momentum conservation. For two spin zero particles with
masses mq and m2, the BS propagator is therefore [in the
c.m. where P = (W, 0)]

—g

(~~P+ p)' —ic][m2~—(-,'P —p)' —ie]
—'l

(~ W+ p, )~ —ic E~2 —(~ W —p, )2 —ic

(1 2)

GBS [m'—

E2

where E; = /m~+ pz.
If the kernel V includes all Feynman diagrams which

are two-body irreducible, then the solution to (1.1) gives
the exact result for the M matrix. In this sense, the
role of the BS equation is to reduce the number of di-
agrams which must be summed in perturbation theory,
but since the two-body irreducible diagrams are still infi-
nite in number, the method may not converge in theories
where the elementary couplings are large. Only when
the series of irreducible diagrams can be shown to con-
verge more rapidly than the full Feynman series is the
introduction of (1.1) an advantage.

One case where this is true is the study of bound states
in quantum electrodynamics (QED), or in any weak cou-

pling theory. A bound state pole can only be generated
by an infinite number of diagrams, since each individual
diagram has no such pole. In a weak coupling theory,
a Arst approximation to the sum of irreducible diagrams
can be obtained from the lowest order diagrams, which
are the one-boson-exchange (OBE) diagrams. The bound
state then emerges because the reducible diagrams gen-
erated from OBE (the so-called ladder diagrams) are all
of comparable size near the bound state energy where
the propagator G is large. In strong coupling theories,
the ladder sum can still generate a bound state, but it is
now less clear that this is a good approximation to the
actual problem because Vmay not be well approximated
by OBE diagrams.

The BS equation was originally applied to QED sys-
tems. In 1966, Blankenbecler and Sugar [5] introduced
an equation (refered to here as the BBS equation) more
suitable to theories where the coupling constant is large.
They argued that, to a good approximation, the two-

body propagator (1.2) could be replaced (for spin-zero
particles) by

2mb+(('+, )Ag —('~ )Az)
Ag+ Ag

(1.5)

where o. is a parameter which can be varied continuously
from —1 to 1, and

A) —m', —
~

P+ p I-
) '

(1 6)

/I
A. = m', -

i
-P - p I

.
)

When o. =1, the propagator (1.5) is identical to (1.4), and
when n=0 the propagator is similar to the BBS propa-
gator (1.3). For scalar theories with neutral particles the
following has been shown.

(i) The fourth-order kernel V, derived from the con-
sideration of box and crossed box diagrams, is of
order ~ x (crossed box), where p is the mass of
the exchanged meson and m = m, i —rn2. If the
exchanged meson is much lighter than the interact-
ing particles, this means that there is a cancellation
between the crossed box and that part of the box
not included in the first iteration of the OBE dia-
grams. In short, we have the ironic situation where
the use of a simpler equation actually gives a bet-
ter approximation order by order, to the sum of all
ladders and crossed ladders.

2 2

(E~ + Eq) b(2 z, +E po)

E,E2 [(Eg+ E ) —W — ]
(1.3)

where P = (gs+ P~, P) is the total four-momentum of
the two particles if they are both on their mass shell,
b+(m —p ) = b(m —p )0(p, ), and the second result
in (1.3) is specialized for the c.m. system. This prop-
agator is still covariant, but now depends on only three
continuous variables, the fourth variable (the relative en-

ergy p, ) being constrained by the mass-shell requirement.
Blankenbecler and Sugar were lead to the simpler propa-
gator ( 1.3) from the observation that both (1.2) and (1.3) (ii) This cancellation works for any value of the contin-

b (m2 —( 'P+ p) )b (m -—( P —p) )—
GBBs = x ds

s —P —zE
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uous parameter cx. However, if ~a~=1, the adiabatic
limit of the fourth-order kernel is local and energy
independent. On the other hand, the smallest value
of the fourth-order kernel when evaluated at thresh-
old (initial and final particles at rest) occurs when
n = 0 [15].

(iii) If one of the masses, say mi, becomes very large,
the cancellation described above works to all or-
ders, and leads naturally to a relativistic one body
equation, with n=l, for the lighter particle (rn2 in
this case) moving in a potential "created" by heav-
ier particle. (This potential becomes instantaneous
as T7l j ~ 00.

Unfortunately, these results do not generalize to the
case of particles with spin exchanging charged mesons.
However, in the realistic case of spin-

&
nucleons exchang-

ing charged pions which satisfy a chirally covariant inter-
action, the cancellation does occur [9] in the fourth-order
kernel associated with the spectator equation (1.4).

Furthermore, putting one particle (the spectator) on
shell does seem to have some conceptual advantages.
When this approach is extended to the three-body system
[16],relativistic Faddeev equations emerge which can be
reduced to coupled two-dimensional integral equations in
the usual manner. These equations satisfy the require-
ment of cluster separability; when one particle is removed
to infinity, the two remaining ones interact as if the third
were not present. Namyslowski has shown [17] that the
three-body BBS equation does not have this desirable
property. Finally, in the study of electron scattering [18],
or nucleon-nucleus scattering [12], it is natural to treat
some of the nucleons as spectators, and this approach
to the two-body problem is well suited for extension to
these other, more complex problems. In fact, the idea of
putting the spectator on its mass shell originated from
the study of electromagnetic form factors [18].

Two studies of the application of the spectator equa-
tion to the two nucleon problem have been carried out.
The nonrelativistic limit of the equations have been stud-
ied [8], and the parameters of an OBE model have been
determined approximately by fitting the nonrelativistic
limit of the kernel to the Reid potential [19].In the non-
relativistic limit, the equations have a simple form [cf.
Eq. (2.80) and Sec. IIG]
t'V2 —~

l @+(r) = V++(r)@+(r)+V+ (r)& (r)( t'ai

2m&-(r) = V +(r)g+(r) + V---(r)@-(r)
(1.7)

corresponding to coupled equations for two channels (+
and —) describing propagation of the off-shell nucleon
jn jts posjtjve (+) or negative (—) energy state. (The
other nucleon is on-shell, and hence is always in a posi-
tive energy state; the index which could describe this is
suppressed. ) The asymptotic solution for @ (r) is there-
fore zero as expected; the (—) channel is closed. Hence
all binding energies and phase shifts are determined by
the asymptotic solutions for @+ (r), which approximately
satisfies the equation

p'2 V+—2
—~

I
@+(r) =

I

V++(r) +
I
@+(r)(m j ( 2m j

(1.8)

obtained by neglecting V and eliminating g& &. [Note
that V + = (V+ )t.] One interesting feature of the ef-
fective potential in Eq. (1.8) is that the quadratic term,
)V+

~
/2m, is always repulsive, and dominates V++ at

short range because of its more singular structure. The
fits to the Reid potential showed that this term could
indeed account for the repulsive core for practical (fit-
ted) choices of the OBE parameters. Another feature
of the quadratic potential, not fully appreciated at the
time, was that it makes very important spin and isospin
dependent contributions, which can be helpful in phe-
nomenological fits.

In order to produce a successful phenomenology with a
OBE model with only the four basic mesons (z, o, p, u),
it was necessary to introduce a mixed coupling for the
pion of the form [cf. Eq (3.3)]

(1.9)

where p and p' are the four-momenta of the final and
initial nucleon, respectively. Note that (1.9) is indepen-
dent of A if both initial and final nucleons are on-shell,
and hence is sensitive only to off-shell contributions. The
value A = 0.41 emerged from the nonrelativistic fits in
Ref. [8]. The complete relativistic fits (Models IA and
B) presented here give A 0.22 .

In a second study [20], the equations were solved ex-
actly for a family of relativistic deuteron wave functions.
One focus of this study was to see the effect of vary-
ing A on deuteron properties. The relativistic deuteron
wave functions have four components; in addition to the
familiar 9 and D states, there are two small P state
components which play a role similar to the small lower
components of the Dirac wave function of the hydrogen
atom (for example). It was found that the small, rela-
tivistic P state components were very sensitive to A, as
expected. When A =1, there is strong coupling to neg-
ative energy states through the off-diagonal p matrix,
and the P states, a measure of the (—) channel strength,
increase linearly w'ith A . It was also found that the ex-
act solutions were insensitive to V . However, since
this study was limited to the deuteron only, the wave
functions determined were not constrained by other NN
data.

This paper extends the work of Ref. [20] to all partial
waves. We present fits obtained by solving the spectator
equation exactly for all NN scattering parameters be-
low 300 MeV. (A brief account of some of this work has
already been presented in Ref. [10].) The new deuteron
wave functions we determine are therefore constrained by
all the low energy NN data. Furthermore, the fits are
quantitatively good, and the helicity amplitudes which
result can be used to predict the results of other pro-
cesses [13].

Before turning to the results of this paper, we conclude
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this section with a discussion of some of the objections
which have been raised to using the spectator equation
for the NN problem. There seem to be two principle ob-
jections, both of which are dealt with fully in this paper.
These are the following:

(i) The spectator equation puts one nucleon on shell,
and therefore seems to treat the two nucleons dif-
ferently. How can this be consistent with the Pauli
principle?

(ii) The kernel has spurious singularities which appear
to violate the requirement of Hermiticity ['21].

The first objection can be eliminated completely and is
discussed fully in Sec. II A. The equations can be written
in two equivalent forms. In the first form, the propagator
is taken to be an average of a term in which particle 1
is on-shell and one in which particle 2 is on-shell. Hence
each particle is on-shell for an equal fraction of the prop-
agation, and the equation in this form is manifestly sym-
metric. It is then shown how to transform the equation
into a form in which only one particle is on-shell, The
resulting equation has a kernel which is explicitly anti-
symmetrized, and this is the key. If the kernel is explicitly

antisymmetrized, the propagator need not be. Unfortu-
nately, this point was not discussed correctly in Ref. [8],
and a considerable part of the effort in the preparation
of this paper went into clarifying all of these issues. The
final result is that atl of the amplitudes and equations
used can be shown to be exactly consistent with the Pauli
principle.

The resolution of the second objection is less satisfy-
ing. It can be shown that the spurious singularities in
the kernels of one order are canceled by spurious singu-
larities in kernels of higher order [9], and hence would
automatically be cancelled if the kernel could be calcu-
lated to alt orders. This means that one is justified in
dropping the singularities order by order to the extent
this is possible. The imaginary parts can be dropped by
taking the principal value of all singularities, and this
solves the problem of Hermiticity in a simple way. How-
ever, we have not yet found a way to eliminate the real
parts of the singularities without a major restructuring of
the equations, which would spoil their simplicity. Hence,
after much consideration, we have decided to treat the
singularities numerically. One can see that the half off-
shell solutions have no singularities and that all observ-
ables are also singularity free, so that the net result is
that one must live with the nuisance of doing principle
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value integrals over moving singularities. The quantita-
tive effect of these singular principal value contributions
can be inferred from the differences between the mod-
els designated A and those desiginated B. The A models
(previously described in Ref. [10]) have the singularities
removed using the "mixed" prescription described in Sec.
III C and Appendix B, while the B models retain the prin-
ciple value of the singularities, as discussed above. We
emphasize that the most straightforward treatment of the
equations, and hence the preferred approach, is to retain
the singularities as a principle value, and hence the B
versions of the two models are preferred; the A versions
previously published are presented for comparison only.
These issues and techniques are discussed in considerable
detail in Sec III C, and in Appendix B. We find that the
singularities do not produce large numerical effects, but
that there is some sensitivity.

We now present the principle numerical results of this
paper.

C. Numerical results

Fits to the low energy nucleon-nucleon phase shifts ob-
tained for Models I and II are shown in Fig. 1. Our fits
are compared with the full Bonn potential [22] (which
includes boxes and crossed boxes), and energy indepen-
dent phase parameters obtained from the Amdt-Roper
SP89 [23] fits and from Bugg [24], both shown with er-
ror bars. We did not calculate the Coulomb contribu-
tions to pp scattering, so our fits to the pp data were
based on our np calculations, modified using the semi-
phenomenological b(pp) —b(np) diR'erences in the sArD

code. The np phase parameters for Model IIB are tabu-

lated in Table I.
While some differences between our four fits are visible,

particularly for ep and D3, the differences are very small,
and not significant statistically. We conclude that the
four models are essentially indistinguishable on the basis
of NN data alone. This view is supported by Table II,
which gives y~ for the fits to the np data for seven energy
bins below 325 MeV, and also for all data in the energy
ranges from 8 to 225 and 8 to 325 MeV. Since completing
this work, we learned [25] that the semiphenomenological
proceedure in the sAID code may not give an accurate
estimate of the actual Coulomb corrections, and for this
reason we decided not to present, in Table II, the y2 for
the combined fits to both np and pp data obtained using
this proceedure. (These combined y are comparable,
but generally slightly larger than those given in the table,
except at 300 MeV, where they are significantly smaller.
The numbers for the combined energy range from 8 to
325 MeV are 3.41, 3.96, 2.85, and 3.13 for Models IA,
IB, IIA, and IIB, respectively, and the total number of
np and pp data points is 3377.) Table II also compares the
y~ for Models I and II with the full Bonn potential [22]
and the purely phenomenological Argonne V14 potential
[26) (the VPI energy dependent phase shift fit from spss
is shown for reference). Not only are the y~ for the four
models very similar (except for Model IB at 300 MeV),
but the y2 for the fits below 200 MeV compare favorably
with the Bonn and Argonne V14 results. We conclude
that all of our Models give excellent descriptions of the
NN data below 200 MeV, and that the quality of the fit
begins to deteriorate only above 200 MeV, where Models
IA and B are somewhat less successful than Models IIA
and B.

TABLE I. The np phase parameters, in degrees, for Model IIB.

Tiab (MeV)
lg

Pp
lp
3p
Sl

3D

61
'D
3D
3p
3p

C2

ly
3p
3D

G3
C3

1G

G4
3p
H4

10

60.71
4.084
-3.117
-2.207
103.3

-0.6636
1.049

0.1627
0.8251
0.6962

0.01318
-0.2032
-0.06503
-0.03187
-0.001378
-0.003775
0.07977
0.003296
0.01340
0.001232
0.0001528
-0.003851

52.02
9.182
-6.541
-5.155
81.55
-2.763
1.510

0.6470
3.586
2.543

0.1004
-0.8046
-0.4130
-0.2234

-0.009374
-0.05226
0.5402
0.03744
0.1659
0.01809
0.003713
-0.04584

50

41.76
12.34
-9.984
-8.686
63.80
-6.407
1.588
1.525
8.621
5.926
0.3206
-1.710
-1.116
-0.6711
0.1094
-0.2558
1.571

0.1426
0.6966
0.09672
0.02366
-0.1838

100

27.54
10.19
-14.41
-13.92
44.10
-12.33
1.589
3.391
16.91
11.23

0.7554
-2.712
-2.225
-1.504
0.9244
-0.9348
3.410
0.3814
2.060

0.4080
0.09748
-0.5124

150

17.04
4.780
-17.85
-18.41
31.30
-16.70
1.802
5.317
22.47
14.26
1.077

-2.954
-2.991
-2.140
2.186
-1.769
4.746
0.6135
3.397
0.8603
0.1886
-0.8121

200

8.436
-1.311
-20.81
-22.64
21.53
-19.95
2.227
7.139
25.84
15.74
1.246

-2.773
-3.591
-2.633
3.575
-2.635
5.673
0.8476
4.606
1.391

0.2825
-1.066

300

-5.567
-1.344
-25.36
-30.73
6.625
-24.20
3.590
10.07
28.29
16.29
1.044
-1.812
-4.677
-3.395
6.071
-4.249
6.683
1.346
6.628
2.509
0.4531
-1.450
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TABLE II. y per np data point obtained for the four models, compared with the Argonne V14
(Ref. [26]), the full Bonn results (Ref. [22]), and the Amdt —Roper SP89 fits (Ref. [23]). Numbers
are given for each energy bin and for the overall fit from 8 to 225 MeV and from 8 to 325 MeV.
The last column is the number of data for which the y is calculated.

Energy

10
25
50
100
150
200
300

IA

0.95
1.06
1.58
1.41
1.76
3.90
9.93

IB

1.05
1.21
1.63
1.33
1.59
4.45
14.55

0.95
1.10
1.64
1.61
1.98
3.20
7.17

1.09
1.30
1.89
2.44
2.45
4.71
8.08

IIA IIB Argonne V14

2.39
2 ~ 63
1 ~ 94
1.41
1.91
3.72
3.23

Bonn

1.78
2.08
1.91
1.37
1.56
2.51
7.01

VPIa(SP89)

0.98
0.96
1.41
1.45
1.50
1.94
1.70

Data

112
282
307
210
256
299
468

8-225
8-325

1.85
3.62

1.98
4.42

1.82
2.91

2.29
3.40

2.24
2.40

1.88
2.93

1.46
1.48

1585
2264

With the use of the sAID facility, we have looked at
how our models fit actual data (in contrast to the phase
parameters). These fits are much better than one would
naively expect from a look at Fig. 1. This is because the
error bars commonly given with phase shifts are diago-
nal errors which underestimate the true errors. These
fits support the conclusion that all the models are, for
all practical purposes, indistinguishable, but that there
are some differences between our models and the Bonn
potential. The fits are excellent at lower energies (as the
y~ indicate) but begin to give the wrong shape for some
observables above 300 MeV. Since we have not included
pion production mechanisms, it may not be surprising or
unexpected that the quality of the fits should deteriorate

as the pion production threshold (at E~,b 290 MeV) is
approached.

The parameters of the ORE kernels which produce
these results are shown in Table III. Parameters which
were varied during the fitting proceedure are given in
bold face; the others were fixed. For precise definitions
of all coupling constants, see Eq. (3.3), and for the form
factors see Eqs. (3.11) and (3.13). Note that Models
I have 10 parameters while Models II have 13. All of
the meson coupling constants (including the pion) and

z = ~ ratios (for the p and u) were varied in each case.
g

Additional variables were the masses of the o (and crq

for Models II), a form factor mass common to all mesons

TABLE III. OBE parameters for the four models. Numbers in bold face were varied during
the fitting procedure; others were not. All masses are in MeV, and all parameters are defined
precisely in Part III. (The numbers are given to the accuracy necessary to reproduce the deuteron
binding energy and other low energy parameters to the precision given in Table IV.)

g'/47r
A

mar
g2/4s.

mn
g2 /4s.

mar

g', /4s.
mg y

g' /4s.
K~

m~
gp/4s.

Kp

Ap

mp
Anuci

AmCSOII

Model IA

13.54403
0.22515

138.0

5.51070
516.0

9.85106
0.14259

1.0
782.8

0.38291
7.52525

1.0
760.0

1610.0
2135.0

Model IB

13.41085
0.21633

138.0

5.51433
523.0

9.02467
0.20702

1.0
782.8

0.26917
8.77647

1.0
760.0

1600.0
2510.0

Model IIA

13.35757
0.0

138.0
6.40798

0.0
548.8

5.04718
514.0

0.32590
573.0

9.83054
0.15050

1.0
782.8

0.58686
6.14920
0.75218

760.0
1685.0
1830.0

Model IIB

13.37758
0.0

138.0
5.30321

0.0
548.8

4.86870
522.0

0.24372
428.0

8.86086
0.22069

1.0
782.8

0.60318
5.66983
0.82989

760.0
1675.0
2185.0
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(Am), and a form factor mass for the off-shell nucleon

(AN). Finally, off-shell mixing parameters A; were intro-
duced for the pion (and il), as defined in Eq. (1.9), and
for the vector mesons, Eq. (3.3), but for Models I A was
the only such parameter varied, while for Models II only
A~ was varied. As previously described, the essential dif-
ference between the models I and II is that A„0.22 in
Models I, corresponding to an admixture of about 22'%%uo ps

coupling, while Models II constrain A = 0 (pure pay&

coupling) and incorporate two extra mesons, the oi and
the g, which adds three new parameters. For compari-
son, the full Bonn potential varies ten parameters. These
include the three form factor masses associated with the
xNN, pNN, and xNL couplings, the mass of the u, and
the NN couplings of five mesons, the x, ~, p, ~, and b,
the latter having a mass of 983 MeV, in agreement with
the scalar-isovector resonance observed at this energy.

Our values of ~~„are considerably smaller than those
obtained in Ref. [22]. All models give numbers in the
range of 13.4 —13.5, compared to the value of 14.28 ob-
tained from older analyses of rrN scattering [27]. How-
ever, deSwart and collaborators [28] have recently ob-
tained, from a detailed analysis of low energy pp data,
a value in the neighborhood of 13.5 for both the neutral
and charged pion coupling constants, and Amdt et al.
[29] recently obtained, from a new analysis of xN scat-
tering data, a value of the charged coupling near 13.3.
Our value is consistent with these new results. However,
our low value probably partially accounts for somewhat
low value of the asymptotic D/S ratio which we obtain
[30] (see Table V below). Our value for the ~ coupling
constant is a factor of two smaller than that used in the
Bonn potential [22], a reflection of the fact that the a,
in this model, no longer needs to supply all of the short
range repulsion; some of it comes from relativistic ef-
fects. Note, however, that it is still considerably larger
than predictions derived from the quark model. We men-
tion that the Nijmegen group [31]obtains about the same
value as found in this work; in their models a consider-
able part of the required additional repulsion comes from
pomeron exchange. Perhaps the most unusual result we
obtain is the small value of the gz for the Model I fits.
(The values of f~ are similar for all of the models. ) We
suspect that the small gz values are related, through chi-
ral symmetry, to the presence of the y5 coupling, but this
effect is still under study.

The fits are very sensitive to the value of A . If only
four mesons are considered, and this parameter is allowed
to vary, it moves quickly to some value near 0.25, and the
fit deteriorates if it is moved significantly away from this
value. To get a comparable fit with A„= 0, it is necessary
to add at least one more meson, the o~, as was done in
Models II.

The low energy scattering parameters are shown in Ta-
ble IV, and properties of the deuteron are shown in Ta-
ble V. The deuteron binding energy, taken to be exactly
2.2246 MeV, was treated as a constraint to the fits, and
attempts were made to also fit the scattering lengths, a,
and effective ranges, r Ou.r values of these quantities
agree preceisely with the experimental results reported
in Ref. [22], except for r, and (for Models II) ri which
differ by 3 —4 standard deviations. In view of the overall

quality of the low energy fits, we are not concerned by
these differences. Amdt has pointed out [32) that these
numbers are sensitive to the procedure and range of data
used to extract them, and his numbers (also shown in
Table IV) are quite different from those quoted in Ref.
[22).

The nonrelativistic deuteron magnetic moments agree
well with the experimental value, primarily because
of our low D state percentage (about 4%), but the
quadrupole moment and asymptotic D/S ratio are both
too low. The discrepancy between our D/S ratio and
the newly reported experimental determination of Rod-
ning and Knutson [33],which is significantly smaller than
the value reported in Ref. [22], is only 2 —5 standard de-
viations. Nevertheless, these low values, taken together
with tendency for ei to be too small (as shown in Fig.
1), suggests that our models have too little tensor inter-
action, and that this should be corrected if the models
are to be used for precision studies of the deuteron and
its interactions.

The use of nonrelativistic formulas for the calculation
of magnetic and quadrupole moments is unjustified if
one wishes to make precision comparisons with experi-
mental results. The relativistic corrections to the mag-
netic moment have been a subject of much discussion
for many years [34), but there are also corrections to the
quadrupole moment. The relativistic impulse approxi-
mation (RIA) to the electromagnetic form factors, when
expanded to order ("-, )~, yields the following corrections
[»):

TABLE IV. Low energy parameters compared with values reported by Amdt [32) aud those
experimental values reported in Ref. [22]. Scattering lengths aud effective ranges are denoted by a
and r, respectively, with the subscript referring to spin singlet (s) and triplet (t).

Model IA

—23.748
2.598
5.423
1.752

Model IB

—23.748
2.583
5.413
1.738

Model IIA

—23.748
2.612
5.411
1.735

Model IIB

—23.748
2.609
5.382
1.695

Amdt

—24.50
2.876
5.402
1.876

Experiment

—23.748 + 0.010
2.75 + 0.05

5.424 + 0.004
1.759 + 0.005
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TABLE V. Deuteron properties. The relativistic deuteron wave function has four components,
with percentages given. These do not add up to 100+p, the additional piece is the size of the & V' )
term [from Eq. (1.13)]arising from the energy dependence of the kernel. The values of the magnetic
and quadrupole moments given in parentheses include the relativistic corrections of Eq. (1.10). The
experimental D/S ratio is from Ref. [28].

Model IA Model IB Model IIA Model IIB Bonn Experiment

70 S
'Fo D
'%%uo P,
%P,
Total

95.038
3.969
0.460
0.007
99.474

94.801
4.098
0.468
0.010
99.377

95.284
4.146
0.110
0.009
99.549

94.797
4.538
0.137
0.006
99.478

4.249

qg (fm')

0.8574
(0.8978)
0.2665

(0.2702)

0.8566
(0.9025)
0.2596

(0.2634)

0.8564
(0.8836)
0.2626

(0.2647)

0.8541
(0.8799)
0.2604

(0.2627)
0.2807 0.2859 + 0.0003

0.8555 0.857406 + 0.000001

As (GeV) ~

An (GeV) ~

Arr/As

0.4024

0.009949
0.0247

0.3985
0.009455
0.0237

0.4016
0.009714
0.0242

0.3963
0.009570
0.0241 0.0267 0.0256 + 0.0004

m 1 1bpd= rdr~ u vr —v, —rv v+ v,
3 p ( - 2 - - 2

~22 ~ 1 1 3 d u I ur'
b.Q~ — r' dr -(uur+ uru) — u)rv + p —ur

10rns p ~
.2 v8 - 2 dr r V2

5 f . I 1 'i 1uvs + , vr —rv vr — vq (

—~3 rv vg — vr
6& - 2 - . 2 -) - 2 - )

(1.10)

where

d 6
6) = —

2 + —2+ mE 0))

6 = — +mE' Qr

Aped

——0.0404
= 0.0459
= 0.0272
= 0.0258

b Qd ——0.0037
= 0.0038
= 0.0021
= 0.0023

(Model IA)
(Model IB)
(Model IIA)
(Model IIB),
(Model IA)
(Model IB)
(Model IIA)
(Model IIB).

(1.12)

8) =, p=2p —1dr'
and u, ur are the familiar S and D state components
of the deuteron wave function, v&, v, are the two small
relativistic P state components defined in Ref. [20] and
discussed below, and p, = 0.880 is the isovector mag-
netic moment of the nucleon. These corrections have
been evaluated for these models, and are

than the experimental errors in these quantities. The
corrected quantities are shown in parentheses in Table V.
The correction to Qd is not nearly large enough to bring
it into agreement with experiment, while Apg is much
too large and spoils the agreement. However, as the ten-
sor force is increased, p~ will decrease and Qg and the
D/8 ratio will increase, opening the possibility for agree-
ment. Before definitive conclusions can be drawn, a com-
pletely consistent calculation of the deuteron moments
should be completed. Such a calculation might include
contributions not contained in the formulae (1.10), such
as contributions from the perp exchange current, which
is largely independent of the details of the nuclear force
model [36].

The asymptotic normalization constants for the S and
D state wave functions, Ag and AD, and the asymptotic
D/S ratio, AD/As, are also shown in Table V.

The deuteron wave functions which result from Models
I and II are shown in Fig. 2. The relativistic models
have wave functions with four components, as mentioned
above. The two small P state components vr and v, (for
spin triplet and singlet) play a role similar to the small
components of the Dirac wave function of the hydrogen
atom. The definition and normalization of these wave
functions is discussed fully in Ref. [20], and generally in
Sec. II C. They are normalized according to

Note that a11 of these are positive; Apg is about 3—
6%%uo and AQd is 1—1&%, and all are many times larger dr[u +rv +v, +vj + (U') = 1

0
(1 13)
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FIG. 2. Deuteron wave functions for Model IA (solid), IB
(dash-dotted), IIA (long dashes), IIB (short dashes). The po-
sition space wave functions are shown in the two left-hand

figures and the momentum space ones in the two right-hand

figures. The upper two figures are Model IA only, and show
the behavior of the large component u. The lower two fig-
ures are drawn so that the comparative sizes of the smaller
components, m, v~, and v„can be studied.

to keeping only the diagonal elements of (1.14), and tak-
ing yo

——Q. This always gives a very large y per data
point (values below 15 are almost impossible to achieve,
and numbers in the vicinity of 20 indicate a very good
fit), but converged quite efficiently to the correct region
in parameter space. The fitting was then continued by
first adding the deuteron binding energy as a constraint
(by adjusting the a coupling constant to give the exact
value for the binding energy) and then minimizing the full
expression (1.14), including the correlated errors which
come from the oR'-diagonal terms. This latter procedure
is much slower [apparently the the surface determined by
(1.14) is not smooth], but keeps the minimization from
wandering into a region where the At to the actual data is
not as good, which will happen if correlated errors are ig-
nored in the final stages. Unfortunately, the g obtained
from (1.14) is only a quadratic approximation to the true
value, and hence is only accurate very near the minimum,
so the final yz presented in Table II was calculated di-
rectly from the data using the sAID facility [23]. Since
our fit was made using (1.14), the values reported in Ta-
ble II might be improved by doing a complete fit to the
actual data, but we expect any such improvements, or
any changes in the OBE parameters which would result,
to be small.

where the first term in (1.13) is the reduction of the first
term on the right-hand side (RHS) of Eq. (2.50) and
(V') is shorthand for the second term on the RHS of
that equation. The probabilities of each of the four com-
ponents of the wave function are given in Table V; the
remaining probability (not given) is the contribution of
the interesting term (V'), which arises from the depen-
dence of the relativistic kernel on the total energy (see
Sec. II C), and is about &%%uo.

Note that the v, wave function is negligible for most
purposes, and that the size of the vq wave function is
sensitive to A~, as discussed in Ref. [20]. Its probability
is about z%%uo in Model I and about io%%uo in Model II. While
these are very small percentages, the vg wave function in
momentum space is comparable to the others above 500
Mev, and thus may play a role in observables sensitive
to such large momentum components.

The OBE parameters were determined by an auto-
matic fitting routine which minimized y2 as determined
from the error matrix based on the SP89 fit supplied to
us by Amdt [32]. Briefly, we minimized the quantity

(1.14)

where b; are the SP89 phase parameters, b; are the cal-
culated phase parameters, p; j is the error matrix, yp ls
the y2 of the spse fit (given in Table II) and the sum
over i and j depends on the energy range and angular
momentum states which are included in the fit [37]. The
sum (1.14) included phase parameters up to J = 4, and
used data binned around the seven energies listed in Ta-
ble II. In each case, the fitting procedure was started by
first fitting the phase shifts directly, which is equivalent

D. Relativistic efFects in IVY scattering

In this subsection we will discuss the relativistic ef-
fects which arise in our treatment of low energy nucleon-
nucleon scattering. These effects arise from four sources:
(i) negative energy channels, (ii) retardation in the me-
son propagators and form factors, (iii) off-shell factors in
the meson-nucleon couplings, and (iv) relativistic energy
factors in the nucleon propagator.

The importance of contributions from the negative en-
ergy channels is easily studied by shutting off the V
and V+ potential terms in the coupled equations. Fig-
ure 3 shows how the J = 0, 1 phase parameters for Model
IA change when V is set to zero (dotted line), and
when both V and V+ are set to zero (dashed line),
leaving only V++. The same results for Model IIA are
shown in Fig. 4. Note that in both cases the effects of
V are small, but not completely negligible, while the
lowest order eRects of the negative energy channel, mea-
sured by the sensitivity to V+, are quite significant.
The negative energy channel makes large contributions
to the scattering amplitudes in both models.

In view of the discussion following Eq. (1.8), it is not
surprising that the negative energy channels are impor-
tant in Model IA, where A is nonzero, but it was not
expected that they would also be important in Model
IIA, where A„ is zero. The explanation for this is sug-
gested by Fig. 5, which shows how these phase param-
eters vary with A and Az. Setting A to zero in Model
IA produces an eRect an most of the phase parameters
very similar to setting V+ to zero (except for some of
the P waves and ey, where the quantitative size of the
two effects is somewhat difFerent), showing that the V+
contributions arise, in large part, from the ps coupling of
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the pion. However, the figure also shows that the phase
parameters in the singlet channels are quite sensitive to
Az, and that reducing Az from 1.0 to 0.8 in these channels
produces an effect comparable to changing A from 0.23
to 0, but in the opposite direction. Since both Models II
have a value of Az close to 0.8, the eft'ect of V+ in Mod-
els II appears to be due, at least in part, to this oR-'shell

sensitivity of the p coupling. (The dotted line in Fig. 5
V

shows the effect of turning ofF the ~
~~ term in the vector

propagators. Note that this effect is not large. )
In any case, we find that the effect of the negative en-

ergy channels is always repulsive, in agreement with Ref.
[8], and our discussion following Eq. (1.8). This is in
contrast with the results of Fleischer and Tjon [3] and
Hippchen and Holinde [38]. Using the Bethe-Salpeter
equation, Fleischer and Tjon found that the negative en-

ergy states are attractive in the i So channel (in all other
channels the effect is negative, in agreement with our
results). Hippchen and Holinde confirmed this by calcu-
lating the pair term contributions from box and crossed
box diagrams using the Bonn [22] parameters. The dif-
ferences between these results and ours can be traced to
states in which both nucleons have negative energy. In our
approach, these states are completely suppressed at the
level of the OBE approximat. ion, but appear in the two-

boson exchange (TBE) (and higher order) kernels, where,
as was found in Ref. [9], they are canceled by other TBE

(and higher order) mechanisms which arise from chiral
invariance.

The size of the remaining relativistic effects itemized
above are shown in Fig. 6, which gives the J = 0, 1
phase parameters for Model IA in a sequence of four ap-
proximations corresponding to turning off relativistic ef-
fects sequentially. The full calculation is the solid curve,
and the one to which all other curves should be com-
pared. The long-dashed curve shows the effect of shut-
ting oR' the retardation factors in the meson propagators
and form factors. Specifically, the retardation terms are
the energy difFerence factors of the form (Ez —Ea)2 and

(W —E& —Et)~ which occur in the meson four-vector
momentum transfer, which appears in the denominators

D(z) and D(z) of the meson propagators given in Eq.
(3.14), and also in the meson form factors. Shutting
oR' these terms has a large effect, particularly on the e1
parameter. Next, the dotted curve shows the effect of
shutting off both the retardation terms and the negative
energy channel (by setting V+ and V equal to zero).
Note that retardation and negative energy effects tend
to cancel in the S and D states, but in the P waves
the effect of the negative energy channel is larger, and is
the dominant effect in the Pi channel. Finally, the last
curve (the short-dashed line) is the nonrelativistic result,
which is obtained when terms proportional to O' —E&,
W —EI„and Ez —Ey are dropped in the numerator of
the V++ matrix elements, and when the factor 2Ek —W
in the g+ propagator, given in Eq. (2.89), is replaced
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FIG. 4. V++ and V+ dependences for Model IIA.
Curves are as in Fig. 3.
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by —(k2 —pz). These effects are large in the S and D
states, but negligible in the P states. We conclude that
all of these relativistic effects are significant, but that
they sometimes cancel. In total, our results show that
relativistic effects are very significant, even at low en-
ergy.

Because nonrelativistic models have been found which
also fit low energy nucleon-nucleon scattering, we know
that we could compensate for these relativistic effects to
some extent by refitting the meson parameters. Thus the
difference between relativistic and nonrelativistic models
shows up ultimately in the differences between the values
of coupling constants and masses required to fit data, in
the dynamical degrees of freedom required, and in the
applications of any two-nucleon force model to the de-
scription of other processes (interactions with external
probes, and the three-nucleon problem, for example). In
this respect, we have already emphasized that major dif-
ferences are the (comparatively) small size of the u cou-
pling constant needed in our fit, and the fact that we find
it possible to fit the data with only four mesons. We also
expect significant differences to arise when our models
are used to describe other physical processes.

We have looked at the sensitivity of our fits to small
variations in the parameters. Each of the parameters
was changed by 10%, and the effect on the fits examined.

Those parameters which produced the largest change in
the y were A„„~i, g~, g~, g~, zz, and Az. Increasing
A„„c~ increases the attraction in the S waves, and changes
the shape of the Pi phase shift. The shape of the P1
phase shift is also quite sensitive to the value of Az. The
change in g had the greatest effect on the J = 2 phase
shifts, while an increase in g~ increased the attraction
(as expected) particularly in the Ss and P2 channels,
and an increase in g had a particularly large repulsive
effect on the Po and Pz channels. The principal effect
of an increase in zp was attractive in the 'So channel
and repulsive in the P0 channel. While these changes
individually produced a large effect, many of these effects
are correlated, so these parameters are not necessarily
those most precisely defined by the fit. The pion mixing
parameter A was quite well fixed by the Model I fits,
but a 10% change in this parameter did not have a large
effect on the phase shifts.

The last effect we will discuss is the virtual coupling
which occurs in the (formerly) uncoupled channels in
which L = J. This coupling is discussed in Sec. III.
Briefly, when one nucleon is off-shell, the difference in
the energies of the two nucleons, p„need not be zero,
and there exists states which change sign as p, ~ —p, .
Such states are referred to as "odd" states (denoted by a
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FIG. 5. Dependences on A and A~ for Model IA. Full
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FIG. 6. Relativistic efFects (Madel IA). Full calculation
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tion and the (—) channel (dats), nanrelativistic limit (shart
dashes). See discussion in the text.
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subscript o) and the Pauli principle requires that they be
symmetric under interchange of all other quantum num-
bers, the "wrong" symmetry for normal states. Since
we assume isospin conservation, and parity conservation
fixes L, the only way to construct a "wrong" symmetry
state is to assign it a total spin different from the nor-
mal assignment. Hence, for example, we find that our
isoscalar P1 state is coupled to an "odd" isoscalar state
with P1 quantum numbers. The odd states go to zero
when both particles are on mass-shell (when p, = 0),
and hence are closed virtual channels which only couple
to the physical states inside the interaction region. In
this respect, they play a role similar to the negative en-
ergy states, but they are distinct effects not described
by the negative energy channel. In fact, each positive
energy channel couples to a corresponding negative en-
ergy channel, and hence in our relativistic formalism the
physical isoscalar iPI state is actually coupled to four
channels (one is odd and the other two the companion
negative energy channels —see Sec. III). The 'So and
P0 states are exceptions to this rule, because angular

momentum conservation prevents the existence of com-
panion So and Po states, so these states couple to only
one other (negative energy) channel. Also, the coupled
states with J g I do not have companion odd states
for a similar reason; it is impossible to construct coupled
states with total spin equal to zero. These states there-

fore have four channels: two physical coupled states and
two negative energy companion states.

From the above discussion it is clear that the odd states
effect only those channels with J = L ) Q. The effect
on these channels of turning off the odd states is shown
in Fig. 7. The effect is tiny in all but the J = 1 states,
where it is small and repulsive.

The next subsection summarizes the major conclusions
of this work.

E. Conclusions

The principal conclusions of this paper are summarized
as follows.

(i) The relativistic spectator equations, with an OBE
kernel, can be used to describe low energy NN scat-
tering. We obtain very nice fits comparable to the
best available.

(ii) Models with different off-shell behavior have been
found which fit the on-shell data equally well. The
existence of phase equivalent solutions, embedded
in the same formalism, shows (once again) that on-
shell data cannot uniquely determine the dynamics,
and we plan to look for other phase equivalent so-
lutions. These families of solutions can be used to
study the sensitivity of other physical processes to
off-shell effects.
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FIG. 7. Dependence of the J = L ) 0 phase parameters
on the virtual "odd" states, as discussed in the text. Full
result (solid) and results when odd states are omitted from
the coupled equations (dots) are shown.

(iii) We find that it is possible to fit the low energy NN
data using an OBE model with only four mesons
and 10 parameters (Models IA and IB). The exis-
tence of such a fit suggests that the low energy NN
data cannot alone determine the coupling constants
of other mesons which may be present, the role of
inelastic processes such as the virtual production of
b. and Roper resonances (which are surely present),
or the size of box and crossed box contributions.
In particular, we conclude that the g coupling is
very poorly determined by such fits (beyond the
observation that it is small), and that a successful
OBE model can be found which does not require a
scalar, isoIIecfor meson. [Note that, although the
b(983) surely exists, its coupling to the nucleon is
completely unknown. ]

(iv) Our models include contributions from the negative
energy states of the propagating nucleons, retarda-
tion (energy dependence) in the meson propaga-
tors, and off-shell effects in the meson-NN vertex
functions, all of which can be considered relativis-
tic effects, and all of which are usually ignored in
other calculations. These effects are all individu-
ally large, and their combined effect is large, even
though they tend to cancel. Perhaps more signif-
icantly, they do not appear to be easily described
by a single meson, or by a combination of the four
basic mesons believed to be essential to any OBE
description (the Ir, o', p, and u). We believe that
this explains our ability to fit the data with only
four exchanged mesons. However, because fits with
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non-relativistic models are possible, this fact in it-
self provides only limited evidence for the impor-
tance of relativistic effects.

(v) Two objections to the spectator formalism are ad-
dressed in detail. First, it is shown that the equa-
tions can be written in a manifestly symmetric
form, and that this insures that the Pauli princi-
ple is exactly satisfied. Secondly, it is shown how
to handle the spurious singularities which arise in
the kernel. The differences between versions A and
B of the two models show the sensitivity of the
results to these singularities. We find that phase
equivalent fits can be found, but that some of the
coupling constants which emerge from the fits can
differ significantly.

This concludes the introduction, overview, and con-
clusions of Part I. In Part II, the relativistic spectator
formalism is described in detail. The discussion applies
to any interaction kernel. In Part III, the details of the
OBE kernels actually used in this paper are described.

A. Symmetric form of the equations

It is convenient to start with the two-body equations
for the scattering amplitude in their fully symmetric 16 x
16 component form, with initial and final states labeled
by two Dirac indices (a, P). The four-momenta of the
two particles are

1
pi = —P+ p~ P = pi+ ~~2

(2.1)
1 1

p2 = -P —p, p = -(pi —p2).
2 ' 2

The symmetric form of the equations will contain ampli-
tudes M in which particle 1 is on-shell in the final state,
p& ——m, and in which particle 2 is on-shell in the fi-
nal state, p&

—m . These constraints fix the relative
energy p, in a covariant manner. To avoid a cumber-
some notation, the symbols in (2.1) will refer to the case
when p&

——m, and symbols with the caret, p, p~, p~, will
denote the four-momenta when p&

—m . In the c.m.
system, the following relations therefore hold:

P=P=(WO),

II. GENERAL THEORY
I =

I Ep —-Wp I,)
p=

~

—W —Ep, p(2
In this part the relativistic wave equations and wave

functions are presented and it is proved that the theory
is covariant, unitary (below the pion production thresh-
old), and treats the two nucleons symmetrically. Reduc-
tion of the equation and amplitudes to a practical form
suitable for numerical solution is then described. This re-
duction involves first separating the 4-component channel
which describes propagation of the off-shell nucleon into
two 2-component channels in which the off-shell nucleon
is either in its positive energy (+) or negative energy

(—) state. A partial wave decomposition of the resulting
helicity amplitudes is then introduced, and the kernel is
block diagonalized into the three independent channels
referred to as singlet, triplet, and coupled.

» = (E~ p )
pg

——(W —E„,—p ),
pi ——(W —Ep, p ),
» =(Ep, —p),

(2.2)

where Ez ——(ms + p s) ~ . Note that changing the sign of
p maps p into —p.

For simplicity, the equations will be given in the c.m.
system, but they are manifestly covariant and the ex-
plicit form of the Lorentz transformation of the scatter-
ing amplitudes which permits them to be boosted to an
arbitrary frame will be given in Sec. IIB below. The
symmetric form of the two-body equations for the elastic
scattering amplitude M in a channel with isospin I can
then be written

I . I .' pp'(»p P) = — V ' pp'(p p P)+( 1) V p' p '(p —p'P)—2.
d'I m

V „pp, (p, k; P)G, „p,p, (k; P)M, ,p,p (k, p', P)

d3k m V, pp, (p, k; P)G, ,p p (k; P)M I,p pI (k, p; P). (2 3)

A second equation for M(p, p', P), identical to the
above except for the substitution p for p, completes the
set. The two equations form a coupled set for the ampli-
tudes M(p, p'; P) and M(p, p'; P), as illustrated diagra-
matically in Fig. 8.

The inhomogeneous term in Eq. (2.3) has been explic-
itly antisymmetrized with respect to interchange of the
two particles in the initial state. Note that interchange

I

of the two particles requires that all g components of
the relative momentum p' change sign; and that the spin
and isospin indicies also be interchanged. Since isospin
indicies will be suppressed, their interchange has been
represented by an explicit factor of —(—1)I in Eq. (2.3).

The propagator G is the product of the positive energy
projection operator for the on-shell particle 1 and the
usual Dirac propagator for the off-shell particle 2:
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14
Ml

i

A

14
M

p, ~~;
1+
2

M

k,

M

I+
2

1+
2 M

G. ... p, p, (k; P) =G, , ( P—+ k~Ap, p, P——k)

= Gp, p„, , (—k; P). (2.6)

The overall effect of dividing the propagation equally be-
tween t,erms in which particle 1 is on-shell and those in
which particle 2 is on-shell is to produce a coupled set
of equations in which intermediate and final states are
antisymmetrized if one starts with an initial state which
is properly antisymmetrized.

Before demonstrating this fact explicitly, note that Eq.
(2.3) can be formally obtained from the Bethe-Salpeter
equation by dividing the k, integration into two equal
parts, closing one in the upper half plane and retaining
only the contribution from the positive energy pole of
particle 2, and closing the other in the lower half plane
and retaining only the positive energy pole of particle 1.
Formally

FIG. 8. Diagrammatic representation of the equations
(2 3). Gi(ki)Gp(k2) ~ —Ai(ki)G2(kg)2mb+ (m —ki)

2

+ Gl(kl)A2(k2)2mb+(m' —k&).
2

(2.7)

From the antisymmetrization of the inhomogenous term
in Eq. ('2.3) with respect to interchange of the two par-
ticles in the initial state, it follows immediately that the
full scattering amplitude is also antisymmetrized with re-

spect to the initial statewhere, using the subscripts 1,2 to represent (ni, n2} or
(Pi, P~} (» p' P) = ( —1)'M,p p

—(» p' P) (2 8)

G, „p,p, (k; P) = A, , i
P+ k G—p, p, i

P k i— —(1 fl

(2.4)

( +/i)
2m

G (k )
( + /2)Plp2
m2 —a,' —~.

(2.5) V~~ pp (p) p; P) = l pp ~~ (—pi —p; P) (2.9)

To prove that the final state is also antisymmetric, it
is necessary to use the identity

The propagator G corresponding to propagation in which

particle 2 is on-shell is

which is always satisfied by the relativistic kernels (see
Part III). Using this property, and relation (2.6), Eq.
(2.3) can be written

M~~i ppi(p, p', P) = — V~~i ppi(p, p'; P) + (—1) Vp~i ~pi( —p, p'; P)

1 dI3k m

2 (2ir)s Eg
V, pp, (p, k; P)G, , p, p, (k, P)M, ~ p, p (k, p'; P)

1 d3k m
Vp, p, (—p, k; P)G, p, p (k, P)Mp I pi( —k, p; P). (2.10)

The second equation is again identical with p replaced by p. If, in this second equation, the sign of p is changed and 0
and P are interchanged, one obtains an equation for Mp i pii( —p, p', P) identical to (2.10) but with the inhomogeneous

term multiplied by (—1) [and with M(k, p', P) and M( —k, p'; P) interchanged]. Hence, since the solutions are unique,

it follows that

Mp, -p ( p, p', P) = ( 1—)'M-, PP (» p' —P)'
Hence the final state is also antisymmetric. Using (2.11), Eq. ('2. 10) can be written in a compact form:

(2.11)

ik 'PM~~ pp (pi p'i P) = V~~ pp (p) p'; P) — V~~, pp, (p, k; P) G~, ~, p, p, (k) P) M~, ~ p, p (,p ) )
(2x)s Ei

(2.12)
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where

, PP (p p' ) =
2

U, Pp (» p' P) + ( 1—)'UP, p ( p—p', P) . (2.13)

This symmetrized potential is shown diagramatically in Fig. 9. The form (2.12) of the equations will be used

throughout the remainder of this paper. While it appears to be asymmetric in the treatment of the two particles
because it contains the propagator G only, the antisymmetrization of the potential (2.13) insures that the Pauli
principle is satisfied and that the particles are, in fact, treated identically. The reader can easily confirm that the
steps leading from (2.3) to (2.12) can be reversed, permitting the recovery of the manifestly symmetric form (2.3)
from (2.12).

B. Reduction of the on-she11 particle

The next step is to simplify Eq. (2.12) by exploiting the fact that particle 1 is on-shell. Use the expansion

Ai(ki) = ) u(k, Ai)u(k, Ai) (2.14)

where the sum is over the two possible helicities Ai —+2, and introduce the matrix elements

Mp g pp (p, p;P) = u (p, Ai)M pp (p, p;P)u (p, Ai),

Vg, ), ~ ppI(p, p'; P) = u~(p, Ai)U I pp~(p, p'; P)u ~(& ', A', ).
This gives

d3k m
Mg, p ppi (p, p; P) = Vg, g ppl (p, p; P) —

s Vp, g pp, (p, k, P)GP, P~ (k2)Mpg p~pi (k, p; P).

(2.15)

(2.16)

S-'(A)&~S(A) = A~ „~" (2.17)

it follows that M and V satisfy the transformation law

Note that the quantum numbers of the on-shell parti-
cle have been completely removed from the propagator,
which describes the propagation of the oft'-shell particle
2 only, and that the particle states are now described by
only 2 x 4=8 components. The behavior of the amplitudes
M and V under Lorentz transformations follows from the
corresponding behavior of M and U introduced in the last
section. Introducing the operators S(A), which represent
the Lorentz transformations A on the Dirac subspace and
satisfy

S(A)u(pi, A) = u(Api, A )Dgl g(R )A,

u(pi, A)S '(A) = D„„,(RA)u(Api, A') (2.19)

where D are the representations of the rotations on the
spin-& space, A and A' are helicities, summed over when
indicies are repeated, and RA and RA are the Wigner
rotations, which depend on the four momenta pi (and
pi) and transformation A, as follows:

In applications, thjs can be used to boost the M matrix
to its c.m. frame, so that it is sufficient to carry out all
numerical computations of M in the c.m. frame. The u

spinors also have relatively simple transformation prop-
erties [35)

S,(A)Spp, (A)M, , p, p, (p, p', P)S,(A)Sp, 'p, (A)

= M~~i ppi(Ap, Ap', AP).
(2.18)

RA ——HA„AHp„
(2.20)

Here Hz, is the pure boost in the z direction, following a
rotation to the pq direction which carries the four-vector
(m, 0 ) into (Ez, , pi) (see Appendix A). Using these re-
lations, the transformation law for the M and V ampli-
tudes is

direct exchange

FIG. 9. Antisymmetrized potential (2.13), with direct and

exchange terms.

Spp, (A) Mgp p, p (p, p', P) Sp p, (A)

= D&& (RA)Mp, p pp (Ap, Ap; AP)Dp i (RA).

(2.21)

The unitarity of the D matrices
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D) ~, (RA) &g p, (RA) = ~) ~

and the covariance of the volume integration

d3k
d kb+(m —k )2EI,

ensure that Eq. (2.16) is covariant.

C. Relativistic wave functions

(2.22)

(2.23)

for completeness. It is assumed that the scattering am-
plitude M develops a spin 1 pole at P = M&, so that it
can be written

M„,„pp (p, p'; P) = —0"„p(p, P) A„„(P)0„" p, (p', P)
+R~, ~' pp (p p'P) (2.26)

where 4&, is the deuteron propagator, which has a pole
at P = M&, 8 is a remainder function nonsingular at
the pole, and the deuteron vertex functions are

It is sometimes convenient to use relativistic wave func-
tions instead of scattering amplitudes. Wave functions
satisfy a homogeneous wave equation. In this paper, the
relativistic scattering wave function will be defined only
when the initial state is on shell, and only in the c.m.
system in which case E„=W/2, and

C.p(p, p'; P) = "(2~)'b'(p —p')up(I &, »)4.,

Gpp'(P2)M%A', ,
'pp(p, p', P)up-(I 2 ~2).

(2.24)

Note that reference to the helicities of the initial on-shell
particles (A& and A2) has been suppressed in Q. It is easy
to see that g satisfies the homogeneous equation

Gpp, (p2) Qp p (p, p'; P)

d'I rn(,s Vax~ ppi(p) k) P) Qxip~(k, p'I P).

(2.25)

The relativistic deuteron wave function has been de-
fined previously [20]; discussion of it will be included here

I

0„"p(p, P) = I'"(p, P)C
- PP'

with [20]

uTP, (Pi, Ai) (2.27)

I'"(p, P) = FV"+ p" — - '
i

H~" + —p"
i

G (m —P)(
m m q m

(2.28)

The four invariant functions F, G, II, and I are functions
of p and P, but are uniquely defined only at the pole,
where P = M&, and they become functions of p only.
The deuteron propagator is

('""
d ~ d

(2.29)

At the deuteron pole, the projection operator reduces to
a sum over the three helicity states of the deuteron.

).|,'~(&)&:(&) = &~—PAP„
M2

d

(2.30)

Hence, substituting ('2.26) into (2.16), and going to
the pole gives a homogeneous equation for the deuteron
vertex function

0 d3k m 0 0

0A",p(p P)4(&) = — . V~",pp, (p k P) Gp p. (») 0AP, (»P)4(&) (2.31)

where P = (Md, 0) in the c.m. system. The relativistic
deuteron wave function is defined to be

Equivalently, taking the Dirac conjugate of this equation
gives

0

g~, p i(p, P) = N Gp, p (p~) 0„"
p (p; P) („(A) (2.32) M =V — Mt"V (2.34)

D. Unitarity and normalization

The unitarity relation for M and the normalization of
the bound state wave function (2.32) can be obtained
directly from the fundamental equation ('2. 16). To this
end it is convenient to suppress indicies and write ('2. 16)
in the compact form

V| M. (2.33)

and it satisfies Eq. (2.25), the same equation satisfied by
the scat, tering wave function. The choice of normalization
const, ant N will be discussed in the next section.

where

This operation has the effect of complex conjugating all
of the invariant functions of which M is constructed, but
does not otherwise alter the structure of M. For example,
note that G

~' m+ $2t y'
G(kg) =

m2 —I;2' + i.
rn+ 2

rn2 k2 + iE
(2.36)

IM) 1A' pp'(pi p'I P) = "l gp Mg p~ p p„(pi p
' P)'Y p2p'.

('2.35)
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divers from G only in the sign of the ic prescription. It is
assumed that the relativistic kernel is real so that V = V.

Use (2.34) to eliminate V under the integral in (2.33)
and (2.33) to eliminate V under the integral in (2.34).
This gives the following two equations:

M=V — MM — M V M,

(2.37)

M =V — M M — M V M;

(2.38)
I

taking the difference of these two equations gives the uni-
tarity relation

M —M= — M — M=2i MLGM

(2.39)

where

G —G = 2i AG—= —2iri b(rn —kz) 2m A(kq).

(2.40)

Restoring the indicies and integrations gives explicitly

~A, A'„pp'(p p'P) ™A,A'„pp'(p p P)

i m Mg p pp (p, k; P)Ap p (ks)Mphil p pi(k, p; P) (2.41)
Ws —4m' ~ 1Qy-

4Ws (2s)s

where the superscript o on relative four-momenta speci-
fies that both particles are on shell, so that in the c.m.
system

r 'pr+ r 'pv r

(0, 1&). (2.42)
r v'p r+ r v 'pr

The normalization condition for the bound state wave
function can also be obtained from the nonlinear Eq.
(2.37). Substituting ( 2.26) into (2.37) gives terms which
contain double poles at P = M&, and terms which con-
tain single poles. The double pole terms all cancel be-
cause of the bound state Eq. (2.31). Similarly, the terms
involving single poles and the terms in M not singular at
the pole also cancel. (These terms include contributions
from the smooth remainder term 8 and derivatives of 0
with respect to P at Ps = Mz~. ) However, cancellation
of all single pole terms imposes a new condition on the
vertex function 0 which depends on the propagator and
the energy dependence of the kernel.

This condition arises from the requirement that the
residue of the single pole on the left-hand-side (LHS) Eq.
(2.37) must equal the residue of the pole on the right-
hand side (RHS). Terms which contribute to the residue
on the RHS come from the energy dependence of the
propagator G and the potential V near the pole. Ex-
panding these around P = M&2 gives

G(P) = G(P) + G (P)(P Mq) + ' '

(2.45)

r"„,= o„",(„(a),

—Ar„,= g„(~)o»,

(2.46)

and, in this notation Eqs. (2.26) and (2.31) are

rr
~2 p2

d

VG r.
(2.47)

Using the wave equation for r, and

where F [not to be confused with the I' of Eq. (2.28)] is
a short representation for the deuteron vertex function
(2.27)

V(P) = V(P) + V'(P)(P —Mg) +

where

(2.43) G'(P) = G(P)2M~ G(P)

Equation (2.45) reduces to

(2.48)

P=P
(2.44) rG, Gr — rGV'p Gr.

(2.49)

and similarily for V. Substituting these expansions into
(2.37) and equating residues gives

In expanded form, and expressed in terms of the rela-
tivistic wave function defined in (2.32), this becomes
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0

rn — ~ p) p)i." p E V~, p~(p, P)
M 0~, p ~ (p, P)

—2M'
(2 )s E gq, pq(p;P)V'„„, p&, (p, p';P) Q& p ~ (p';P) (2.50)

where the normalization constant was chosen to be

2

N = 2M'(2ir) (2.51)

Note that the normalization condition (2.50) is covari-
ant, and that it involves the derivative of the potential
with respect to P. This condition will be further reduced
below.

M=R+ i MA R. (2.57)

Substituting (2.57) into (2.54), and (2.54) into (2.57)
gives

I

from (2.54) satisfies the unitarity relation provided only
that R is real (R=R). To prove this result, first observe
that M is also given by R

E. The relativistic R matrix
M=R —i MAGM— M bGRAGM,

R = V —P VGR (2.52)

For applications to scattering problems it is convenient
to introduce a reduced matrix (which will be called R)
which is real. The R matrix will be defined in such a way
that it satisfies the same equation (2.16) satisfied by M,
but with the elastic cut removed. The equation for R, in
the compact notation of Sec. II D, is

(2.58)

M=R+i M6GM— MAGRAGM.

Subtracting the two equations yields the unitarity rela-
tion (2.39).

The relation between R and M can be simplified after
the partial wave expansions have been introduced. How-
ever, the full relation (2.54) may be useful in applications.

where 'P represents the principal value of the integral, so
that

(2.53)

where b, G was defined in Eq. (2.40). Next, M is con-
structed from R by the operation OM(R)

F. Separation of channels

It is now time to separate the four degrees of freedom
of the off-shell particle (which will be particle 2) into two
channels, each with only two degrees of freedom. The
means of carrying out this separation is through use of
the familiar identity for the nucleon propagator, which
in the c.m. frame of the pair becomes

M = OM(R) = R —i (2.54)
m ) . u(-k, A2)u(-k, A2)

Ek (2Es —W)
A2

which is carried out on the variables of the initial state.
Applying this operation to Eq. (2.52) gives

v(k, A, )v(k, Av)

)
(2.59)

OM(R) = Ovv(V) —P f V OOvv(R)

or, using (2.53)

(2.55)

M = V —i VAGM —P VGM

= V — VGM. (2.56)

Since the solution of the (2.16) is unique, this procedure
of constructing M from R which solves (2.52) necessarily
gives the correct scattering matrix.

Furthermore, it can be confirmed that M determined

where k2 and W are as defined in Eq. (2.2). Note that
this decomposition breaks the manifest covariance of the

theory; the mixing between u and e spinors defined in
(2.59) is frame dependent. Because of this, most of the
expressions obtained in the rest of this part will not be
manifestly Lorentz invariant, and it is for this reason that
separation into channels is delayed as long as possible.
All separations will be carried out in the c.m. frame of
the pair, where the expressions are simplest.

Channels involving u (v) spinor degrees of freedom of
the off-shell particle will be referred to as + (—) channels.
Using (2.59), Eq. (2.16) reduces to two coupled equations

(2.60)

where summation on the RHS is over repeated indicies and p, p', and p" take on the values + or —corresponding to
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the two channels involved. These are directly related to the p spin indicies introduced originally by Kubis [39],except
that in Eq. (2.60) an index is needed only for the off-shell particle; the on-shell particle is always in the + state.
The A's and p's refer to helicity states; the Kubis convention will be used here, and is described in Appendix A. The
propagators for each p spin channel are

G+(k) = 1

2' —W —i~ '
1

(k) = ——.
W

(2.61)

These M and V amplitudes (not to be confused with the M and V amplitudes introduced in Sec. IIA above) are
related to the relativistic amplitudes M and V defined in (2.15) by

m2
Vg+, g, g, g, (p p' P) =

~ E E, ~&p( »»—)&~,~;,pa (p»'P)&~ ( p' &—'2)

(2.62)

~)„~ i.), (»p'P) =
~ E E, ~&p(p &z)&~,i„pp(p, p', P)up( p', &-'z)

and similarly for V+ and V in cases where the initial channel involves a v(p', Alz) spinor.
Note that the equations (2.60) have a form similar to nonrelativistic equations except for the presence of the

relativistic energy E& in the propagator G+ and for the presence of the extra (—) channel, which arises from the
coupling to the v spinors required by relativity. Otherwise, the equations are identical to what would arise in a
nonrelativistic limit of (2.60), and this will be discussed in Sec. IIG below.

The relativistic wave functions, unitarity relation, and normalization condition all take on simple forms when re-
expressed in terms of the coupled (+,—) channels. The relativistic scattering wave functions become, in the c.m.
system,

&~~(» p'P) =
2 &ii (» p'P)&~( —»&')+ &~~ (» p'P)&~(»&')

where

Mxz' x w'(» p ~P)++ I.
0)+g (p, p', P) = (2~)'|'(p —p')4), , ~~ ~, —

P

1
y„„,(p, p'; P) = —M„„+„,„,(p, p'; P).

The homogeneous equations satisfied by these wave functions are

d3k
( J

— )&~~ (» p' ) = —
( . i'~', ~ i.(» ) 4,i, ( p' )

Wax, (P, P'; P) = ——f 3 V„w a,i (P, k; P)gi s (k, P', P)

Similarly, the bound state wave function is

(2.63)

(2.64)

(2.65)

0 0
(p, P) = @„+„„(p,P)up( —p, Az) + g„„„(p,P)ep(p, A2)

where summation over A2 is implied, and using the normalization constant Eq. (2.51)

(2.66)

g(2z. )s2Mg

"p(—» A2)O„",p(p P)g (A)

E„(2'—Mg)

(2.67)
0

up(p, A2)O„" p(p, P)
g(2 ) 2M

This definition is identical to that previously used in Buck and Gross [20], and these wave functions satisfy the same
coupled equations (2.65).

The unitarity relation, expressed in terms of the + amplitudes, becomes
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Im M«+«, « „,(p, p';P) = —«f M«+«'««(p, k;P) M„"„+, ««, (k, p';P),

(2.68)

m MA, A' A.A'(» p «) = "
2 MA, A A. A (p»' ) AA' A A'(k«p

where

K = —y W2(Ws —4m2).
1

16 (2.69)

Note that the phase of M + is completely determined by M++. This is because M + does not propagate to infinity
(in position space), or have the elastic unitarity cut (in momentum space).

Next, the normalization condition also takes a simple form in the coupled channel representation. Using the relations

gives

u(-p, A)p'u(-p, A') = v(p, A)p'v(p, A') =
m

u( —p, A)y'v(p, A') = 6(p, A')y'u(-p, A') = 0,

(2.70)

" P &~,i„~(» ) &i,i„~ (» ) 2 s &i,~„i(»
(2.71)

where sums over repeated indices are implied. Note that, if the potential is independent of Mg, the g+ and g wave
functions are orthogonal. Finally, the relativistic R matrix can also be decomposed into (+, —) channels. The R)'

matrix elements are constructed from R as in (2.62) and satisfy Eq. (2.60) with the integrals replaced by principal
values. The M~+ matrix is related to R + by

M«+«' ««'(p p'P) = ~«+«' ««'(p p'P) 'K f (
)«R«+«««'(p "'P) M««+' ««'(" p''P) (2.72)

where p = +. This shows that the phase of the half off-
shell M matrix is determined by the on-shell M matrix.

G. Nonrelativistic limits

The separation into channels puts the equations into
a form ideal for taking nonrelativistic limits. In the
extreme nonrelativistic limit, where all terms of order
ps/ms are neglected, the coupled equations (2.60) reduce
to a single equation for M++ only:

f

become

d3k P++ M++
M++ V++

(2s)s k2 —k~ — "', —ie

V+-M-+
2m2

(2.76)

M++ = V++ —m
V++M++

(2~)s k2 —k2 —ie

where

(2.73)

V-+M++

(2x)s k2 —k,' —i~
'

The second equation can be used to eliminate M + from
the first, giving an equation for M++ alone:

k.' = m(2m- W) (2.74)

is the square of the nonrelativistic on-shell momentum.
If terms of order p2/m2 are retained, but higher order

terms ignored, the (—) channel will make a contribution.

If all of the potentials V++, V+, ( V +)~, and V are
considered to be of the same order in p2/m2 (a debatable
assumption), then it follows that

where

y++ y++ +eff

d'k v+-(v+ )t
(27r)s 2m

(2.77)

(2.78)

M-+ = M++ (2.75)

and the contribution of the M + term to M++ need
be included only in leading order. Hence the equations

This shows that the V+ terms add, to the diagonal
elements of V++, the short range repulsion [8] discussed
in Part I.
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If position space wave functions and potentials are de-
fined by the relations

V4)-~+4, l4'(.) = V, (r)g'(. ),

1
V(r) =

(27r)s
d q e''r'V(q),

1
&(&) = 2,(, d'P &"'4(P)

V +
@ (~) =

2
@+(~)

(2.79)
where

++ V+-(.) V+-(r)
2m

(2.81)

(2.82)

where it is assumed that V is local in the nonrelativistic
limit, so that V(p, p', P) = V(p —p'), then the equations
(2.65) for the wave functions assume a very simple and
transparent structure:

These equations provide the intuitive interpretation of
the role of the V+, and will be used in subsequent work
to interpret results.

H. Partial wave expansions

+V+ ()g (),
(2.80)

(2 + )g ()= V +()g+()+V ()g ()
where c = W—2m, and the V potential has been re-
tained for completeness even though it probably should
be neglected when working to order ps/ms. To order

p /m, the solution to this coupled set of equations is

The equations can be further reduced by introducing
partial wave expansions for the helicity amplitudes. The
procedure of Jacob and Wick [40] will be followed here,
and many details can be found in Appendix A.

One advantage of the separation into + channels intro-
duced in Sec. F is that the structure of the partial wave
expansion is independent of p and p' in V~l' . Hence,
these p spin indicies will be suppressed whenever it is
convenient to do so.

The partial wave expansion for all amplitudes ( V or
M) is

Vg, g, )„p,(p, k; P) = ) ( piJMA)Ag & V)„i )„~ (p, k; P) ( JMA', Asik &

J,M
(2.83)

where the partial wave amplitudes VJ depend only on the magnitudes of p and k and not on directions. The coupling
coefficients are as introduced in Jacob and Wick

& p~JM&, ~»= +
DMI'„(y, e, y) = +-.*~~-"lI d~I„(g)

4~ M" ' ' 4~
(2.84)

where A=Aq —Aq. [The A dependence of the states ~p AqAq & has been suppressed in (2.84) for convenience. ] If the
scattering is restricted to the s-z plane, then /=0 and

V& &'„»',(p ~ P) =
4 ) .(2J+ l)"x'w(~)Vw, w'„x,a', (p ~'P)

J
where use was made of the addition theorem for the d's:

d~), (~) =).DM'~(fop)DM), (fly)
M

(2.85)

(2.86)

and the compact notation Oz will sometimes be used for the arguments (Pz, 8&,—Pz) of the D s. Using both expansions
(2.83) and (2.85), the addition theorem (2.86), and the orthogonality relation

f Jl 4x""~ DM A(~~) DMA(o~) = 2J+1 ~JJI IMMI (2.87)

the coupled equations (2.60) can be separated,

(2.88)

where there is no summation over J on the RHS, and the reduced propagators are
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(2 ) I 2@„gr & () (2 ) ~igr) (2.89)

The equations (2.88) will be further reduced in the next section.
The partial wave expansion also simplifies the unitarity relation and the connection between the M matrix and the

8 matrix. The unitarity relations (2.68) for partial wave amplitudes become

MA'A'A A (p p' P) = — MA'A'A'
A (p " )MA'A"A A (k p'»

(2.90)

I
1 M„„,„„(p,p; P) = —

( )
M„,„„,„,(p, k; P)M„„,„,„,(k, p; P)

For on-shell, uncoupled amplitudes, the relations de-
termine M++~ (k)

M++ (k)= —' ' '' i 6
i4~~'

kEI,
(2.91)

p+J= ~~+, i'„i,i', (p k'P)
kEI, p+ J—'

( )
R„,„„,„,(p, k; P)M„„,„,„,(k). (2.93)

Applying this to uncoup/ed amplitudes with the initial
state on shell gives

M++ (p, k;P) = —~M++ (p, k;P)~e"',
(2.92)

M +
(p, k;P) = —~M + (p k;P)~e' '

For coupled amplitudes the phases can also be deter-
mined by matrix inversion.

The relations for the 8 matrix also simplify. If the
initial state is on-shell, the general relations are

Mx,+x'„~,x,'(» k' P)

7 121JMA1A2 &+ = (—1)' ' I~MA2A1 (2.97)

where the bar over A2 is used to mean that the helicity
of the particle is A2, but that it is off-shell. Since the
u spinors are the same for both on-shell and oA'-shell

particles, this distinction is sometimes necessary only for

(—) channels, where the bar will locate the position of
the v spinor. Hence, following Kubis, two combinations
of (—) channel states occur, referred to as even (e) and
odd (o)

Appendix A it is shown that the phases can be chosen so
that the states

~
JMA1A2 & transform under the parity

operation P as follows

&6 —s'(-1)' 'IJM- A1 —A2 &6

(2.96)
where the subscript + refers to the + channel (with two
u spinors) or the —channel (with one u and one v spinor).
The extra phase on the RHS of (2.96), sr, is a consequence
of the odd parity of the v spinor, and is + for (+) channels
and —for (—) channels. Similarly under interchange of the
two particles, carried out by the exchange operator 'Pip,
the phases are chosen so that

Again, if the amplitudes are uncoup/ed (2.93) has a sim-

ple solution
iA1A2 &, , = 1

[IA1A2 &- + IA1A2 &—j

R++ (k) = — tan bJ.
(4')'
kEI,

(2.95)

I. Classification of states and block diagonalization
of the equations

The equations (2.88) can be further reduced and sim-
plified by identifying conbinations of helicity amplitudes
which have definite parity and interchange symmetry. In

I

M~+ (p k P) M + (p k'P)
R&+'(p, k; P) =

1+ie'~& sin bJ cos bJ

(2.94)

In particular, for uncoupled channels,

1
[u (A1)vp (A2) 6 v (A1)uP(A2)] .

2

(2.98)
Note in particular that the odd state is not zero, and
that the phase of the interchange operation is the same
for (+) and (—) channels.

It is convenient to view the two terms which compose
V in Eq. (2.13) as a direct and an exchange piece, as
illustrated in Fig. 9. Then the interchange operation
(2.97) can be used to express the helicity amplitudes in

terms of the direct part only. Simplifying the notation for
the partial wave helicity amplitudes introduced in (2.85),

(p, k; P) =( A1A2 )V (A', A2 & (2.99)

it follows that

( A1A2IV'IA1A2 & = — ( A1A21VdirectlA1A2 &+( 1) ( A1A2IVexchanselA1A2 &2.
J( A1A21+&(ire t IA1A2 & +( 1) + ( A2A1 IVdirect IA1A2 &2. (2.100)
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4'i= &+
42= &+
4s ——&+
44= &+

4s= &+
4s= &+
P7 ——&+
4s= &—

+ I4irectl +
+ IVdirect I

I Vdirect I +
I Vdirectl

+ lv:;... I+
I Vdirect I +

+
I Vdirectl

+
I Vdirectl +

+)=&C
—)=«
—)=«
+)=«

+)=«
+)=~C
+)=«+

—IVd;:ct I—J

IVdirect I +
+ IVdirectl

+ I Vdirect I +

I Vdirectl

+ IVdirectl

I Vdirectl +
I Vdirectl

+))

(2.101)
+),

where ~ is+ for V++ and V potentials, and —for V+
and V + potentials.

These parity relations, and the relations (2.100) ob-
tained using the particle interchange operation, may be

where the notation V ~ will be used to denote direct am-

plitudes in which particle 2 in the final state is on-shell.
These are obtained from V by changing p ~ —p . (The
proof of this relation is given in Appendix A.) The ex-
change term with particle 1 on-shell has been expressed in
terms of the direct term with particle 2 on-shell (referred
to as "alternating" contributions), thus "uncrossing" the
final nucleon lines, as illustrated in Fig. 10. The advan-
tage of this operation is that all potentials may now be
expressed in terms of the direct term only.

Next, the parity relations may be used to reduce the
number of independent helicity amplitudes from 16 to
8. Since only the direct amplitudes are needed, these 8
amplitudes will be denoted

(Ep, p )

~1

(S' —F, —P)

(W —F —g )

I

(Ep. p )

exchange alternating

FIG. 10. Diagrammatic representation of how the ex-
change diagram with particle 1 on-shell is transformed into
a direct diagram with particle 2 on-shell (referred to as an
"alternating" diagram).

used to decouple the original equations into three distinct
channels. Amplitudes in which particle one is on-shell in
the final state will be denoted by P; as in Eq. (2.101),
while those in which particle two in the final state is on-

shell will be denoted by P, , and are obtained from P; by
letting p, ~ —p, .

Instead of using linear combinations like (2.100), it was
easier to program the 16 amplitudes given in Table VI.
These amplitudes all have definite symmetries under par-
ity and particle interchange, as shown in the Table, and
these symmetries permit the recovery of the correct com-
bination for each channel (to be described below). They
also have certain properties on-shell, when the relative
energy in the initial or final state is zero. These prop-
erties are summarized in Table VI and will be explained
now.

The general form of any v; in Table VI is

ui = -& & &i&2IVdirectl~1~2 &+bi & &i&2IVdirectl ~1 ~2 &
2

+b2(& AiA2IV„„„tlat, A2 &+bi & AiA2IV„„„tl —A, —,&)). (2.102)

If the fi'nal state is a plus channel, this expression
shows that the phase under change of sign of p, is b2.
In particular, if b2 — —I, the amplitude will be zero on
shell where p, = 0. If the final state is a minus channel,
the amplitude has no definite symmetry under p, ~ —p,
because of (2.98), but when p, = 0 it couples to only one
of the two linear combinations IAiA2 &, , depending on

whether b2 —+I (e) or —I (o). The combination which
survives is given in Table VI; note that such amplitudes
are not necessarily zero on-shell.

Determination of the behavior under interchange k, ~
—k, of the initial relative energy follows from the reflec-
tion symmetry given in Eq. ('2.9), and in some cases, the
use of parity. For amplitudes with A~

——A2, reflection

TABLE VI. The 16 independent amplitudes for which the final equations are constructed.

Amplitudes

~;(p, x ).",' = &(» - ~2) + &(41."; = $(4i3 —441+ $(~3
+3 1(y y )+ 1(j

= p(46 —4s) + p(46

—i2)
—pg)
—S7)
—4s)

v++
F12 P k

Symmetries
v+-

+12 k

(~ =(—)' ')
v-+

+12 Po

o
e
o

o
e
o

+g
+g
+g
+g

v
+12 po

„",, = &(»+~2)~ &(~1
= $(4'3 + 44 l + $(43

= p(4'6 + 4'8) + p(4'6

+ 42} +n
+ 44) +n
+ 47} +n
+ 4s) +n
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symmetry is sufficient, giving the phase 62 if Al —A2 and
b2bq, if A& g Az. In the former case, which applies to
vl v5 v9 and vl3, the p, and k, symmetries are identical.
In the latter, which applies to v3, v7, vll, and v15, the
symmetry is identical for vll and v15, and opposite for
v3 and v7. Finally, if A j g A2, reflection symmetry and
parity are both needed, giving the phase bl b2z if Al

——A2

and b2r if A& g A2. In the former, which applies to v4,
v8, vl2, and v16, the phase is opposite for v4 and v8, and
the same for v12 and vl6. In the latter which applies to
v2, v6, v10, and v14, the phase is the same for v++ and
v potentials (s = 1) and the opposite for v+ and v +

potentials (s = —1).
Examination of Table VI shows that the potentials di-

vide into four groups, depending on their parity and in-
terchange symmetry. These are

singlet (S): P = (—1) = —rl, Pqg ——(—1) ' = g,

triplet (T): P = (—1) = —rl, P&2 ——(—1) = —rj,

(2.103)
coupled(C): 'P = (—1) ' = g, 'Pq2 —

(—1)

virtual (V): P = (—1) ' = rl, 'Pqq ——(—1) = —rI.

(„++ „+-

+
Vl V9

++ +—
4 4

12 12

the triplet matrix is

t v++ v+-
5 13

vJ=
-+

v5 V13

v++ v+8 8

V16 V16

t v++ v+-

and the coupled matrix is

v++ v+ —)3 11

—+
V3 11

++ +-
2 14

„++ v+- I7 15

+
V7 V15

V++ V+
6 10

V2 V14

v++ v+ —)

(2.106)

(2.107)

M =v dkv gM (2.104)

In the (++) sector, with both the initial and final states
on-shell, parity requires that states with the orbital angu-
lar momentum L = J correspond to the usual uncoupled
channels. The singlet states are those with an antisym-
metric spin wave function, which requires P12 ———P,
and the triplet states have Pl2 ——P. The coupled chan-
nels, with J = L + 1, have parity g and are spin triplet
states because P12 —P. Finally, the virtual states would
have J = L + 1 and total spin zero, which is impossible
on-shell. These amplitudes, vl3 —v16, therefore play no
role in the (++) sector, a fact which follows from their
antisymmetry in p, and k„as shown in Table VI.

Since parity and exchange symmetry are conserved by
the equations, the potential matrices which contribute
to each channel can be identified from Table VI and Eq.
(2.103). The equations (2.88) can then be written, for
each channel, in the matrix form

v J

—+
Vg Vl

++ +—
12 12

—+
Vll V

++ +-
10 6

(2.108)

V14 V2

The equations (2.104) —(2.108) are the equations which
are finally solved numerically.

While the construction of the equations presented in
this section relied heavily on the use of the symmetry
relations, they can, of course, be directly constructed by
introducing the linear combinations of Table VI directly
into (2.88).

The remaining task of showing how the relativistic po-
tentials of Table VI are constructed from relativistic me-
son exchange diagrams will be taken up in Part III.

where g is the diagonal matrix III. MESON-EXCHANGE MODEL

and the singlet potential matrix is

(2.105)

The development in Part II was very general, and holds
for any choice of interaction kernel (or relativistic poten-
tial). In this part, potentials constructed from a sum
of one-meson-exchange contributions are discussed in de-
tail. The form of the meson-exchange contributions are
given, and the choice of form factors (or self-energies) is
described. Antisymmetrization of the potentials intro-
duces undesirable singularities, and methods for remov-

ing them and treating them are described. Finally, the
structure of the partial wave expansions of the potentials
is developed.
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A. Meson-exchange amplitudes ia Dirac space

The equations permit one of the two nucleons to be
oH-'shell, and this in turn allows a more general form of
meson-nucleon coupling that is possible when both nu-
cleons are on-shell. These additional degrees of freedom
are described by additional mixing parameters, chosen so
that the coupling to on-shell nucleons is independent of
these parameters. Any dependence of the final results on
these parameters is therefore a direct indication of the
sensitivity of the dynamics to off-shell effects.

The most general form of the direct contribution to the
one-meson-exchange kernel in Dirac space, the first term
in Eq. (2.13), can be written

2 A (» K) A~~ (pz p'z)

xF~(pq, p&)F~(p2, p2) (3.1)

and Fr(p, p') is the meson nucleon-nucleon form factor,
which will be discussed in Sec. III B below.

In this part, only the direct term need be considered;
recall the discussion in Sec. III and Eq. (2.100). How-

ever, it will be necessary to consider both the direct and
alternating amplitudes shown in Figs. 9 and 10. Note
that the potential satisfies the reflection property (2.9),
required for the proof of antisymmetrization given in Sec.
II A.

The vertex functions A will have the following forms
for scalar, pseudoscalar, and vector mesons:

iA(p, p') = 1 (scalar),

5A(p, p') = A;y + (1 —A;) p (pseudoscalar),
2m

(3.3)

A" (p, p') = [I+~;(I —A;)jp" + ' 'io""(p —p')„

where g; and p; are the meson-nucleon coupling constant
and meson mass, respectively, of meson i, b; is a factor
which depends on the isospin of the exchanged meson,

6' = Ty Tg —( 3 I Q for isovector mesons,1 I=1

(3 2)

b; = 1 for isoscalar mesons

which holds only on-shell. For pseudoscalar mesons, A; =
1 gives pure p5 coupling, which couples strongly to "pair"
terms, and for this choice the V+ potentials will be
large. It was less clear before this work began what effect
the vector mixing parameters would have (note that they
have no effect if rc; = 0), and the sensitivity of the results
to these parameters came as a surprise, particularly in
view of the size of the vector meson masses.

B. Form factors

F (p p') = f*(q')h(p')h(p") (3.6)

Furthermore, note that the function h, which describes
the dependence of the form factor I"; on the off-shell nu-
cleon mass, is a universal function, a choice dictated by
the desire to be able to interpret this function in terms
of modifications of the nucleon self-energy.

The connection between form factors and self-energies
follows from the relations

As discussed in Part I, the meson exchange model is
based on the assumption that the physics of low energy
nucleon-nucleon scattering is well described by proper
treatment of the long range or peripheral exchanges, and
that it is insensitive to the short range behavior, as long
as suKcient convergence is provided so that the equation
has solutions. The role of the form factors is to provide
this convergence in a relativistically invariant fashion,
and to parametrize the nonperipheral, short range part
of the interaction. If the assumptions are correct, the
overall results should be insensitive to the details of how
the form factors are chosen, and it is consistent with the
basic philosophy adopted here to treat them phenomeno-
logically in the simplest possible way. Accordingly, the
form factors will be taken to be scalar functions which
depend on three scalar variables.

It turns out that convergence of the equations requires
damping in all three of these scalar variables. Antici-
pating the applications of these calculations to electro-
magnetic interactions, where it is convenient to interpret
the form factors as self-energies, the form factors will be
written in a factorized form

-(1 —A;)K; (vector),(p+ p')"
2m

where, for vector mesons, the product in (3.1) includes
the vector meson propagator

p,' —q& p,' —q + 11;(q&)

h2(p~) 1

m —P rn —P+ E(p)

(3.7)

A~ g A2 ~A, A, g„„—(p —p')~(p —J').
2

Pg
(3.4) which give

Note that if both the initial and final nucleons are
on-shell, the pseudoscalar and vector couplings are
independent of the mixing parameters A;. For the vector
case, this follows from the familiar Gordon decomposition

W

E(p) = (m —P), , —1 .
1

Q2 p2

(3.8)

u(p)
2 q.u(p') = u(p) ~" —

2
u(p')

W

(3.5) This interpretation suggests that the f; and h should
satisfy the following requirements.
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(i) f; should be only a function of q~, and li a func-
tion only of p . [This condition is what lead to the
factorization assumption(3. 6).]

(ii) f; should decrease at most like a power of q2 as

q ~ oo, and have no zeros, so that II; can be
regarded as satisfying a multiply subtracted dis-
persion relation with no infinities on the real axis.
Similar conditions should hold for h.

(iii) f;(p, )=l, and h(m )=1, so that the residue of the
propagator at its pole is unity, and the coupling
constants are fully renormalized.

A simple form which satisfies these conditions is

g2 2 2

f ( 2) ( I Pl) (3.S)
(A2 —q~)~ + A.

where n=1 was chosen. The parameter A, is fixed by
the requirement that the logarithmic derivative of f;(q~)
at q =0 be the same as the logarithmic derivative of the
pure multipole

2 2 A

(3.10)

This gives A; = 3;, giving a relativistically invariant
form factor depending on a single parameter. This pa-
rameter was chosen to be 3, a universal number for all
mesons. The final meson form factors are therefore

(A2 ~2)2 + A4

(A2 q2)2 + A4

2A~ (A~ —p2) y p4

2A' (A' —q') + q4
'

The second form for f, shows that in the nonrelativis-
tic region, when —q2 q ~ (( A~ (and assuming

p; (( A~) the form factor (3.11) approximates the
monopole form factor commonly employed in nonrela-
tivistic calculations. 1A'hen q2 is large, the monopole form
(3.11) goes like q . However, since the relativistic form
of q2 goes only like a single power of momentum at very
high momentum the form (3.11)also falls off' like the non-
relativistic monopole at large q 2. Hence the form (3.11)
behaves in many ways like its nonrelativistic counterpart

g2 2
fNR ii (3.12)32+ q2

(3.11)

which facilit;ates comparisons with nonrelativistic treat-
ments.

For the nucleon form factor h the same considerations

apply, except that A is chosen to reproduce the derivative
of a pure monopole at p = rn . This gives

C. Singularities and their removal

Unfortunately, the alternating diagram, Fig. 10, corre-
sponding to amplitudes where particle 2 in the final state
is on-shell, has singularities in the physical region. One
of these is natural and expected; it is due to the pos-
sibility for physical meson production and occurs only
when S' & 2m + p;. However, the other is spurious, and
arises from the process of separating out terms in which
alternate nucleons are on shell. In this section the origin
of this singularity will be described, and methods for its
removal explained.

In the c.m. system, the denominator of the meson
propagator corresponding to the alternating term is

D(z) = p + (p+ k) —(W —Ep —Eg)
= p2 —2m2 + 2E Ey —2pkz

—(W —2')(W —2Et)
= D( z) —(W——2')(W —2Ei, ) (3.14)

W = Ep+ EI, +~p (3.15)

where ~z I, is the on-shell energy of the meson. These
singularities arise from t,he two time ordered contribu-
tions to meson exchange, shown in Fig. 11. The one
in 11(a), corresponding to the plus sign in (3.15), is due
to the possibility of real meson production. Specifically,
when W & 2M + p, for any p there exists a k such
that the exchanged meson can be physical, and integra-
tion over k in the integral equation will cross the pole at
D = 0, producing an imaginary contribution to V which
includes some of the imaginary terms needed to describe
real meson production. While this singularity is physical
and welcomed, it is not particularly helpful since other
production mechanisms, such as those shown in Fig. 12,
are needed to consistently describe inelastic processes.

W —E
p

E„ W —E
p EI

where z is the cosine of the angle between the two mo-
menta p and k, and D(z) is the denominator of the direct
term. The alternating term difI'ers from the direct term
in that the sign of the relative energy of the final state
is changed, which produces the additional energy depen-
dent term (W —2E&)(W —2Ek) It is thi. s energy depen-
dent term which produces the singularities, and it follows
that these singularities are absent unless both the initial
and final states are oK-shell (W g 2E„and W g 2Et).

The singularities occur at the zeros of 0, which are at

h p
2(A~ —m )' '=(A. -") +('.--)

2(A~2 —m )~

2(A2 m2)[A2 p2] + (m2 p2)2

E

which again shows that, in the nonrelativistic limit when

m —p (( m'-, h behaves like a pure monopole, but that
at large p it falls like p 4, providing additional needed
convergence.

FIG. 11. Time ordered contributions to the alternating

diagram shown in Fig. 10: {a) gives rise to real meson pro-

duction, and {b) gives the spurious singularities discussed in

the text.
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I I
k

W-E
P

r~
E

I W-Ek

FIG. 12. Self-energy contributions which also contribute
to the real meson production singularities. FIG. 13. Time ordered diagram which generates singular-

ities which cancel the spurious singularities arising from Fig.

Hence this singularity will be eliminated in this work,
but will be restored in the future when these equations
are extended to treat inelasticities.

The second singularity, shown in Fig. 11(b), and cor-
responding to the minus sign in Eq. (3.15), is spurious.
It is due to the fact that the oR'-shell nucleons can have
energies less than m, and if their energies are sufficiently
small there is the possibility that the physical on-shell
nucleon could decay into a real meson and one of these
low energy, oR'-shell nucleons. This vertex instability sin-
gularity, which also produces an imaginary contribution
to V, is however not really present in the full theory be-
cause it is cancelled by another unphysical process shown
in Fig. 13. This is identical to Fig. 11(b),except that the
meson is an-shell, and as k = [lc[ increases in the initial
state, the energy of particle one, which is W —Ez+~, in-
creases until it equals EI„ the on-shell energy of particle
1. At this point the pole in the propagator of particle 1 is

I

encountered and there is a singularity, and a correspond-
ing imaginary contribution to the integral equation. It
can be shown that the two singularities from Fig. 11(b)
and Fig. 13 cancel, but since mechanisms corresponding
to Fig. 13 have not been included in the integral equation
described in Part II, the cancellation cannot occur.

The solution to this problem is clearly to add addi-
tional contributions to the integral equation so that the
unwanted singularities are cancelled. Before describing
this, it will be demonstrated that the two singularities
do indeed cancel. To see this, consider the box diagram
shown in Fig. 14. Here the initial state is on-shell, for
simplicity, so that E&i —W/2, and the final state has
particle 2 on shell. To see what happens, it is sufficient
to treat scalar particles, in which case the box is

d4k

(2~)4 [rn~ —(—+ k) —ic][m~ —( ~
—k~)2 —ie](p' —q&' —ie)(p2 —q22 —ie)

Consider the k, integration. There are 8 poles in the
complex k, plane, as shown in Fig. 15 for the case
when p' 0, p and k are both small, but p ) k, and
W ( 2'. The alternating contribution to the poten-
tial, arises when the k, contour is closed in the lower half
plane and the pole at k,=Ey W/2, which co—rresponds to
particle 1 on-shell, is retained. (Remember that antisym-
metrization requires that the nucleon pole contributions
resulting from closing the contour in both the upper and
lower half planes be retained —were it possible to keep
those in the upper half plane only, there would be no
spurious singularities. ) Retaining this pole does give the
leading contribut;ion, but when 8' & 2m+ p, the me-
son pole in the upper half plane can overtake the nucleon
pole. This happens when

which is the condition (3.15) with the plus sign, corre-
sponding to real meson production. However, when both
p and k are large, the meson pole in the lower half plane
can also overlap the nucleon pole. This occurs at

which is (3.15) with the minus sign. This is the spurious
singularity, and it is clear that it will be eliminated if
bo/h the nucleon and meson poles in the lower half plane
are retained. Alternatively, the two pole contributions
correspond to the diagrams of Figs. 11(b) and 13, and

W —E
P

I
I

I
I

w
2
— +k

w——k2

I
I

I
I

W
2

~ If

E W)

W
2 2

EP

I
4 ~

W
k 2

w
k~

FIG. 14. Box diagram used to prove the cancellation of
spurious singularities.

FIG. 15. Location of the singularities in the complex k
plane of the box diagram shown in Fig. 14.



2122 FRANZ GROSS, J. W. VAN ORDEN, AND KARL HOLINDE 45

2

V =
~

' —i~~(D(z))
~

= V

& D(z) —ic D(z)
(3.16)

Note that the direct term has no singularities, so the
principle value has no effect on this term. For the al-
ternating term, the delta function cancels the imaginary
part of the meson propagator, leaving the real principal
value. This does not eliminate the singularity entirely,
but the resulting potential is real and the singularity is
integrable, ensuring that the M matrix calculated from
such an interaction is smooth. When calculating the
two-meson-exchange potential, the 6 function would be
restored. The prescription (3.16) for removing the sin-
gularity is the principal value prescription referred to in
Part I.

It is useful to test the numerical differences between
alternative prescriptions for removing the singularity. To
this end, and in order to produce a potential independent
of the total energy 5', use may be made of the fact that
a sufBcient condition for the Pauli principle to hold for
the half off-shell amplitude, is that it hold for the half
off-shell po/ential. This follows from the discussion given
in Sec. II A, where it was shown that the final state was

properly antisymmetrized provided only that the initial
state was antisymmetrized, and that the potential satis-
fies the reflection property (2.9).

One prescription which meets these requirements is to
choose

since they arise from singularities in the same half plane,
they give canceling singularities when both are retained.
Note that the same cannot be said of the production
singularity, it pinches the nucleon pole and gives rise to
the cut associated with meson production.

While it might be desirable to eliminate the spurious
singularity by retaining the full meson pole contribution,
this would complicate the equations by coupling to am-
plitudes in which both nucleons are off-shell. A simpler
prescription is to subtract the most singular part, which
occurs when both the meson and nucleon are on-shell.
For spin zero mesons, this gives

(w+ p;)~
4

(3.18)

For the worst case ( W=2m, p=p ) this happens at

p 367 MeV (3.19)

which is far off-shell in a region heavily damped by the
wave function.

The numerical procedure for calculating the principle
value of the potentials is explained in Appendix B.

D. Partial +rave decomposition of the potentials

of the principal value and energy independent prescrip-
tions. Since the denominators for the direct and alternat-
ing terms are equivalent whenever the initial and/or final
nucleon pairs are on the mass shell, the two previous pre-
scriptions can be combined by using the principal value
prescription for momenta below the on-shell point and
the energy independent prescription for momenta above
this point. The physical meson production singularities,
which may occur at momenta below the on-shell point
are thus treated as in the principal value prescription.
The unphysical singularities, which always occur at mo-
menta above the on-shell point are totally eliminated by
using the energy independent prescription. This "mixed
prescription" was used in the models labeled A, and pre-
viously reported in Ref. [10].

These three treatments of the Pauli principle give very
similar numerical results, showing that the singularities
in the "principal value" prescription are not numeri-
cally important. However, in applications the "principal
value" prescription is preferred; it gives a realistic de-
scription of the mesons near their mass shell, which can
be probed in electromagnetic interactions.

The fact that the singularities of the "principal value"
prescription are not very large numerically follows from
the observation that they only occur at relatively high
momenta. If p = k, the singularities first occur at

D(z) = D(z) (energy independent prescription).

(3.17)

This choice completely eliminates all singularities and
any energy dependence from the denominators of the
meson propagator. It works because it holds if either
the initial or final state is on-shell [recall Eq. (3.14)],
and because it does not violate the reflection property
(2.9). In the realistic case with spin, this prescription is
applied only to the meson denominators in Eq. (3.1); the
numerators are treated the same way in both cases.

A third possible prescription consists of a combination

The final task is to construct the specific partial wave
potentials given in Table VI from the amplitudes (3.1).
This construction proceeds in three steps, which will be
described in this section. More details can be found in
Appendix C.

We first construct helicity amplitudes for both the di-

rect and alternating versions of (3.1), then project out
the J" partial wave using the inverse of the expansion
given in Eq. (2.85), and finally form the linear combina-
tions given in Table VI.

The first step is carried out using the helicity spinors
defined in Appendix A. The general form of the result is

Vg, g~ g, gl (p, k; P) = ) ' F; & AiA2~AiA& ) I, +zI; + & AiA2. ~o'i . ~r2~AiA2 ) I;(E„+m)(E„+ m) g2b; (~) (~) (3)

p k

(3.20)
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where the sum is over all mesons being exchanged, the
factor g; b, was defined in Eq. (3.1), D; is the denomina-

tor of the meson propagator [either the D or D defined in

Eq (.3.14)], and F; is a shorthand notation for the prod-
uct of form factors F;(pi, ki)F;(p2, k2). The & &'s are
matrix elements of the two component nucleon spinors
defined in Appendix C, and the I~ ) —If ) are angle in-
dependent (but helicity dependent) terms characteristic
of each meson. These terms, and the denominators D;,
are different for the direct and alternating contributions.

It is shown in Appendix C that

Direct

R2 ——i
S, =s
R, =i
Direct

0+ Mesons

0 Mesons

Alternating

8, = —i
S, =s
Rg ———1

Alternating

TABLE VII. The non-zero R's and S's for scalar mesons
from which the I's of Eqs. (3.24) and (3.25) are constructed,

where'= " /, a = ",and b=
&

EI, -W/2 I E],—W/2

where T is either 1 or —3 and is independent of the angle
t)). Hence the two terms in curly braces in (3.20) can be
summed:

I,". ~+ l~'&+ TS~'~ = I. (3.22)

It is convenient to expand the I, (and I; for the alter-
nating potentials) in the following set of basis functions
(which depend on A; and A,'):

4A;A'; p k
8,. =1+

(Eb + m) (E„+m)
'

p++
& &1&2l~i ~2I&1&2 & ~ & ~1~21~1~2 & (32i)

R6 ——1

Rs ———(1 —A, ) (a —a')

S7 ——s

Ss = (1 —Ae)~

R6 ——1

Rs ———(1 —A, ) aa'

R6 —1

R7 = (1 —A;)a'
Rs ——(1 —A;)a

Ss ——(1 —A;)a'

Ss —(1 —A, )'ba'
S& ——s

Ss = (1 —A, )b

R, = —&

R2 ———(1 —A, ) bz

Rs —R4 —(1 —A, )b

2A, p 2A', 6

Ep+ I Ek+ nx

(3.23)

The form of the expansions depends on the p spin of the
potentials. For the ++ or ——potentials, the following
expansion holds:

+lay 42 + ~2gi t 2 + ~s~l ~2 + ~4 1 t 2

+ &sp+b)++&s4+g, + &0, g2++ ~s0, g2.
(3.25)

™10)02 + R201 ~2 + ~3~1 02 + R& 01 02

+ Rs( 1( 2 + R64142 + R74142 + Rs 4'142
(3.24)

and for the V+ and V + potentials, the expansion is

Tables VII and VIII give the R's and S's for the direct
and alternating contribution from each meson. Note that
these terms are mostly independent of z = cos 8; only
the factor o, which appears in some of the vector TT
terms contains one power of z, which must be taken into
account when carrying out the partial wave expansions.
Note also that the off-shell dependence of the potentials
is apparent in the parameters a, a', a;, a';, 6, and c. If both
particles are on shell, all of the a's are zero.

Next, the partial wave projections of (3.20) which are
needed follow from Eq. (2.85)

y~„, „„,(p, k;P) = 2s dz d„,„(8)V„„„,„(p,k;P).

(3.26)

These partial wave amplitudes are expanded in the form

m2
t'~'~ (»»P) =

2EpEy

2
dz d( «(0) ( 4&ql4~'2 ) ) ' ' ' p(~i%, ~(~1) + z~,*(~i, ~2, ~(~'2)) (3.27)

where the I, and I, are independent of 0. Their explicit form can be found by combining Eqs. (3.20)—(3.25), and
using Tables VII and VIII, but we will not record these intermediate results. Equation (3.27) shows that all of the
partial waves can be expressed in terms of angular integrals of the form

A;=2 d; q
Z

(3.28)

where seven angular combinations Az (j = 1 —7) of the form

d~ = z" & A1A2lA, A2 & dq ), ((I)), (3.29)

with n = 0 or 1, are required to evaluate all angular integrals involving the direct and exchange terms for each meson.
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These angular combinations are listed in Table IX. Other integrals which may be required can be obtained using the
relations

„=(—I)" (3.30)

Finally, the linear combinations of potentials given in Table VI can be constructed from the expansions (3.27). The

TABLE VIII. The non-zero A's and S's for vector mesons from which the I's of Eqs. (3.24)
and (3.25) are constructed, where: a = ",a' = ",b = —,a, = ",a', =
b = —c= " and+=pj FA 4 rn~

Direct

V++ R =1
Ag ———T

1 Mesons
Alternating

Rg ——1 —a, a,'

Rg ———T

V+- S =1
S6 ———T

S2 ——1+ bga,'

S6 ———T

R5 ——T
Rg ———T
R6 ———1+ b2

V++
VT

R2 ——2

Rs ———c+ (1 —A, )(a + a')
84 ———c
R7 = A, T(a —a')

Rg ——2A;a;a)
Rg ——2

R3 ———c + (1 —A;)(a + ba;a', )
R4 = —c+ (1 —A;)(a'+ ba, a;')

R7 ——A, Ta
Rs ———A, Ta'

V++

Rz = 4c + n —2(1 —A, )c(a+ a')
—

z A, (a —a')

Rg ———A, a;a';
P

Rz = 4c + n —z(1 —A, )c(a+ a') —2A, (a —a')
+(1 —A, ) [aa' —b a, a,']

As = R4 = —A, (1 —A, )ba, a,'

V+ Sg = —a —(1 —A, )(a' —b)

S3 ———2

S4
E

Sg —A, T~

Sg = -a + (1 —A, )b(1 —a, a'; )
S2 ———2A, b, a,'

S3 ———2

S = — a + (1 —A, )a'[1 —b; ]
S5 ——A, Tb
Ss = —A, Ta'

V+—

Ss ———,
' c(a + a') —n —(-' —A, )bc

S) =
z A, ca' + A;(1 —A, )ba, a,'

S2 ——A, b, a,'

Ss —
—,
' c(a —a') —n —( —' —A;)bc —A, a'

—(1 —A;) b(a' —ba;a;') + -'(1 —A;)(a' —a)a'
Ss = A, (1 —A, )b;a'
S7 ——A, Tba'

V Rg ———2

Rs = (1 —A;)b R3 ——R4 —A, Tb
Rg —2

R6 ———2A, b,

R7 = (1 —A, )b[1 + b, a', ]
Rs = —(1 —A, )b[1 + b;a;]

Rz = —,
'c —n —

2 (1 —A, )bc Rg ——A, Tb
Rs = —~(a —a') + n —A, bc+ (1 —A, ) b (1 —a;a,')
R6 —A2 b2

Rr = —A, (1 —A;)b;a'
Rs = Ai(1 —A )b;a
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TABLE IX. The combinations d~, given in Eq. (3.29), needed for the angular integrals.

d2

d3

d4

dg

d6

d, = z" ( AgA2~A', A2 ) d„I„(8)

dpp ——
z (1 + z)d~, —(1 —z)d,

Zd00
J

(1 + z)dpi + (1 —z)di

s&Il ~d10 ——sin 8d01
2dJ00

zz (1+z)d„+ (1 —z)dg, ij
z sin Hd10 ——-z sin Hd01

J ~ J

P~(z)
zPi(z)

„+, PJ+, (z)+ „+, J i( )

;,",+,
" [P + (z) —P~-~(z))

z' PJ(z)
z[ZJ+, Pg+i(z) + zg+g PJ 1(z))-

z ~J4.+, [Pg4 )(z) —PJ g( z)]

final results can be written compactly in terms of the angular integrals (3.28):
rn2

vt. — h(p3)h(k3) ) g; b; — A~B~t. 6 A~BqI, (3.31)
2EpEy

where A and B refer to A and B evaluated for the alternating terms with po ~ —po, as discussed in sections III and
III C. The Plus sign holds for those Potentials even in P„vs, vg, vs —viz, as shown in Table VI. The rest are odd in P,
and the minus sign in Eq. (3.31) is required. The nonzero elements B&s are shown in Table X. They are sums of eight
independent quantities 8;. For the ++ and ——potentials, these B; s can be expressed in terms of eight independent
combinations of the R's defined in Tables VII and VIII:

B& —
(R& + R2)T+ + (Rs + R4)T + (Rg + Rg) U+ + (R7 + Rg) U

B3 — (R& + R2)T+ + (R3+ R4)T —(Rg + Rg)U+ —(R7+ Rg)U
Bg ———(Ry + R2)T —(R3+ R4)T+ —(Rg + Rg)U —(R7 + Rg)U+,
B7 = —(Rg + R2)T —(Rs+ R4)T+ + (Rg + Rg)U + (R7 + Rs)U+,
Bz — (Rg —Rg + Rg —Rg)Y, B4 —— (Rg —Rg —Rg + Rg)Y,
Bg —— (R4 —R3+ Rg Rr)Y, Bg —— (R4 —R3 Rg + R7)Y.

Similarly, for the +—and —+ potentials, eight independent combinations of the S s are required:
B& —(S& + S4 + Ss + Sg )X„+ + (Sp + S3 + Sg + S7)Xp,
B3 ——(—S& —S4 + Sg + Ss)X„+ + (—S2 —S3 + Sip + S7)Xp,
Bg ——(—S& —S4 —Sg —Ss)X„+(—Sp —S3 Sig S7)Xp

Bs ——(S& + S4 —Sg —Ss)X„+(Sz + S3 Sip S7)X„+)

B3 —(S& —S4 + Sg —Sg)X„+ + (—S2 + S3 + Sg —S7)X„,
B4 ——(—S& + S4 + Sg —Ss)X„+ + (S3 —S3 + Sip S7)Xq,
Bg —(Sg —S4 —Sg + Ss)Xq + (—S2 + S3 —Sg + S7)Xq+,

B7 —( Sj + S4 SQ + Ss)X„+(S2 —S3 Sg + S7)X„

(3.32)

(3.33)

TABLE X. The non-zero elements B~I, expressed in terms of the B s defined in Eqs. (3.32)
and (3.33). T = —3 for Bq, q and Bq s, Bq s, and Bf,j3 ~ T = 1 for all other elements.

B2+ B1.

B3 B3, B4 B4,

B6 B6

Bs Bs.
9
13 BI + B2,

10
14 B4 B4, B3 B3~

11
15 Bg B5

12
16 B7
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These expansions are given in terms of the following
functions:

+ 1 )

&p+ Ea
m m m
Ep Ea

U
Ep —Ey

m rn m
k Ep k

Lq+ = (3 34)

pE~ Xp m2' p rn'
kp
m2

In Table X, the symbol B; denotes the contributions to
B; independent of z, while B;, denotes the contributions
proportional to z, i.e. , B;(z contribution)=zB;, .

To summarize, partial wave amplitudes of the poten-
tials of Table VI are given by Eq. (3.31) with the angular
integrals defined in Eq. (3.28) and Table IX, and the Bzi
expansion coefficients defined in Table X, Eqs. (3.32) and
(3.33), and Tables VII and VIII.

u2(p, 0, 0; A) = (—1) ~ " e ' ~ ui(p, 0, 0; A) (A5)

and then performing the same rotation R„- used for par-
ticle 1. Hence, if Hp ——Rp e ' & Lp,

(2)

u2(p, A) = (—I)'~' "Ht') ui(O, A). (A6)

The description of off-shell particles also requires nega-
tive energy v spinors, but with three momenta in the op-
posite direction, so that the v2 spinor helicity states are
obtained by charge conjugation from uq helicity spinors,
and vice versa:

v2(p, A) = )7(A)C u~i(p, A),

vi(p, A) = b)I(A)C u, (p, A)

(A7)

where b and g(A) are phase factors. We will eventually
fix these at

obtained from those of particle 1 by first transforming
ui(p, 0, 0, A) into u2,
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The reasons for these choices will be described below.
In the applications described in this paper, the scatter-

ing will be confined to the zz plane, with the initial state
particles 1 and 2 moving in the +z and —z directions, re-
spectively, and with the momentum components of par-
ticle 1 in the final state given by p = (psin 8, 0, pcos8).
With these conventions, the actual spinors used in this
calculation are

APPENDIX A: STATE DEFINITIONS AND
SYMMETRIES

1. Definition of helicity states

1
u(p, A) = Ni „iA &;,

t 2Ap)

v;(p, A) = N iA &;
t'-2Apl

(A9)

Following the notation in Jacob and Wick [40], we de-
fine helicity spinors for particle 1 from rest spinors (quan-
tized along the +z direction) by

ui(p, A)—:ui(p, 8, P; A) = Hp ui(0, A) (Al)

The rest spinor is

—aPJ, —a8 J„sPJ, (A2)

where Hp: RpLp' Lp is a pure boost in the z direction
which carries the vector (m, 0) into (E&, 0, 0, p), and Rz
is a pure rotation from the z direction to the p direc-
tion characterized by polar angles 8 and P. We use the
convention

TABLE XI. The two component spinors of Eq. (A9).

Initial state

2
1
2

1

withi=l or 2, p= &~+, N =
~

z+ ~, and (A&;

are given in Table XI. This convention differs from that
of Kubis by an overall factor of (E„/m) ~

1
ui(0, A) = iA &i

where

(A3)
Final state
A=— A= ——1

2

—-in &0

2 0 ' 2 1
(A4)

The helicity spinors for particle 2 (in the c.m. frame) are
~A» ( -:)
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2. Parity transformations

First, consider the transformation

$7l Jpp (A10)

For the negative energy spinors, the transformation
laws (A12) become

Y vi(p, 8, $;A) = (—1)& vi(p, 8, 2x —P; —A)
n(A)

g(-A)
where 7 is the parity operator. This transformation
leaves the z-z plane invariant, but changes y ~ —y, and
hence is equivalent to changing P to 2n' —P, and leaving 8
unchanged. Since helicities are invariant under rotations,
it also changes helicities A to —A. Explicit construction
gives, on the Dirac space,

& —io,Y= io y'=—
l

and therefore

Y ug(p, 8, P; A) = (—1)~ "
ug(p, 8, 2s —P; —A),

(A12)

Y ug(p, 8, P; A) = (—1)~+" ug(p, 8, 2n —g; —A),

The Y parity transformation on the two-particle direct
product space (a and P are Dirac indices)

lP 8 4' A1A2 &= &1 (P 8 4 Al) 8 +2P(P 8 4 A2)

(A13)

becomes

Y lp, 8«gj AyAg &= (—1)' "lp«8«2s —Pj —Ag —As &

(A14)

where in a two-particle context A = Aq —Aq (and should
not be confused with the A used previously to represent
generic one-particle helicities).

I

(A15)

and similarly for eq. With the choice of phase (As), the
ratio g(A)/g( —A) = —1, and the transformation laws of
the e spinors under Y parity difi'er from (A12) only by
the presence of an overall —sign. When particle 2 is in a
negative energy state, the direct product representation
ls

lp«8«4'j A1A2 &- —ulcr(p«8«4'j Al) U2p(p«8«kj A2)

(A16)

where the —subscript refers to the —channel (with one u
spinor and one v spinor) and the bar over Aq is used to
mean that particle 2 is off-shell. Since the v spinor can
only accompany an off-shell particle, the identification of
the v spinor with particle 2 in Eq. (A16) is unique. The
Y parity transformation on minus channels is similar to
(A14), but with an extra minus sign

Y lp, 8, y;A, A, & = -(-1)' "lp, 8, 2~-y;-A, -A, &

(A17)

The presence of the additional minus sign in (A17), a
consequence of our phase convention (AS), is a natural
choice in view of the fact that the intrinsic parity of v

spinors is opposite from that of u spinors.
The Y parity results can now be used to obtain Eq.

(2.96) for the transformation of two-particle states under
parity. First, following Jacob and Wick, we define states
with good angular momentum by

2J+1 1 2' 2x
lpJMAi» &+= 2»nPdP do dv DM'i(o 4 ~)R-,u, &lp, 0, 0;AiA~ &+

0 0 0
(A18)

Operating by P = Ro OY, and recalling that 'P commutes with the rotations, gives

PlPJMA~A~ &P= dU DM„(n, P, y)R P,R...Y(P, o, o; A~A~ &g
2J+1

where dU is a shorthand notation for integration over the group elements n, P, 7. Next, introduce

R,p ~ =R p~R,
—1

and note that

(A20)

DMA(~ »7) =).DMA (~' ~' 7')DA A(0 ~ o) (A21)

Hence, using

D~ ~(0 ~, o) = d~ ~(&) = (—1)'+" ~~,-~
the relations (A14) and (A17), and the completeness of the group integration dU, gives finally

(A22)

'PI«»~»»)« ~'( —&)' "y /&&'&M «(~, P', v)(—&) 'R
.p.» I«, o o —» —»

="(-1)' 'lpJM —A, —A, &+ (A23)
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where e' = +1 for + states and —|for —states. This completes the proof.
Finally, if the potential is invariant under parity, then

'P V 'P = V (A24)

Taking matrix elements of this potential in the angular momentum representation, and using (A23), gives immediately

& A1A2 I
I '

I AiA2 & ~f~i & —Ai —A2lv I

—Ai —A2 (A25)

where c'» and c', are final (f) and initial (i) state phases from Eq. (A23). Hence, as in Eq. (2.101), c = e&e'; is + for
V++ and V potentials, and —for V+ and V + potentials.

3. Particle interchange

The particle interchange operator interchanges the momentum (a114 components) and spin of the two particles. In
Sec. III this was accomplished by changing the sign of the relative momentum, p, and interchanging Dirac indices, cr

and P. On the direct product space of nucleon spinors, the interchange is accomplished by interchanging the Dirac
indices only, since this operation automatically interchanges the momentum and helicity of the two particle state.
Hence for the + channel

+12)p& 0& oi A1A2 &—u2a(p& 0& Oi A2) 8 ulp(p 0 0 Al).

Recalling the relation between ui and u2, Eq. (A5),

(A26)

+12 [p& 0& oi A1A2 & — ( 1) e " ula(p& 0& Oi A2) 8 u1p(p& 0& oi Al)

= (—1)"' "'e' ~ r+ rl e ' x uia(p, o, o;A2) 8 (—I)e "'e ' ruip(p, o, o;Ai)

( 1)1+At —Ae &&&«»
)

0 0. A A (A27)

where J„ implies that J„operates only on the Dirac
space with index n and Jz ——J& + J„. In the last step,
use was made of the relation

(A28)

which holds for states with half-integral spin.
For channels with a v spinor, a similar argument gives

7 12lp, 0, 0; AiA2 & = v2 (p, 0, 0; A2) 8 uip(p, 0, 0; Ai).

(A29)

This is to be expressed in terms of the state

Finally, using the definition (A18) of the good angu-
lar momentum states, and the relations (A20) —(A22), we

obtain immediately Eq. (2.97):

7 12 I p~MAi A2 &~= (—I)' '
I» ™2A1 (A32)

The particle interchange operation was used in Sec. II I,
Eq. (2.100), to express the exchange potentials in terms
of direct potentials. In the notation of Eq. (2.100), the
Dirac amplitudes for the direct and exchange potentials
are, from Sec. II A

[ip 0 0 A2A1 &——vi (p 0 0 A2) 8 u2p(p 0 0 Al)
J

~direct +aa', pp'(po& o) &

(A33)
(A30)

Hence we need the relation between vi and v2. Using the
definitions (A7) gives

v2(p, 0, 0; A2) = r»(A) C7'u, (p, 0, 0; A2)

= r»(A) Cp (—1) ~ "'e' ~ u2(p, 0, 0; A2)

= g(A)( —1) ~ -"'e'"'C7'u2(p, O, O; A, )
= b(—1)e-"ee' 'V, (p, 0, 0; A, ).

(A31)

tfeIice the interchange gives

p. —.~p, "., ";A,A2 & = 6(—1)"' ~'e' «"
~p, o, o;A2A»

The choice 6 = —1, Eq. (A8), insures that the + and
—channels both behave in the same way under particle
interchange.

J
Vexchange 7 12 Iidre tc( po& ~o) —+121 direct ~ (A34)

Hence, from (A32) we obtain immediately

h nge

A 1 A2
~

7 121 direct

= (—I) ' & A2Ai I
I dire« I AiA2 & . (A35)

This justifies the results in Eq. (2.100).

J J
~exchange ~Pa', aP'( Po& ~o)

where all unnecessary variables are suppressed. Hence,
if we let the operation 'P12 denote interchange of Dirac
indices only (to avoid confusion)
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4. Time reversal

Time reversal invariance can be used to prove that the
scattering matrix is symmetric. For this purpose it is
convenient to work with the operator Z = e' &T, where
T is the Dirac time reversal operator

and

Z = A (A37)

where Ic is the operation of complex conjugation. Hence,
on the Dirac space

r=C7'1~ =
I I

I&
io'2 y

ZIp, 8, $;AiAg &y= Ip, 8, 2m —P;AiA2 &y .
A36l

Hence, on the angular momentum states

(A38)

2J+1 2'
ZIpJMAiAg &y = sin8d8 dP DM„($, 8, —P) I p, 8, 2z —qt;AiA2 &~4x 0 0

2J+1
sin8d8 dP D~„( y, 8, y—) I p, 8, y;A, Az &y4x 0 0

2JM 2x

d4 DM'~(0 8 -0) I p 8 0; AiA2 &+
4m 0

= IpJMA, Az &+ (A39)

where we use the fact that M and A are integers. Now
since Z is antiunitary, if the M matrix is invariant under
T, then suppressing p, J, and M,

& A'iA2IMIAiAz & =& A, A2IZMZ 'IAiA2 &

=& AiA2IMIA', Az & . (A40)

I

The first term of (B4) is now a smooth function of z
with a removable singularity at z, . The second term is
singular but can be evaluated analytically.

In order to evaluate the second term of (B4), it is con-
venient to express z" in terms of a sum of Legendre poly-
nomials. This can be accomplished by using the identity

APPENDIX B:PRINCIPAL VALUE
INTEGRATION

z"Pc(z) = ) C,",'Pc+„,c (z)
e=0

(B5)

As shown in Table IX and Eq. (3.28), the partial wave
decomposition of the exchange contribution to the po-
tential can be expressed in terms of integrals of the form

dzz" Pc(z)f2 (q2(z) )
D(z)

(B1)

then the integral becomes

Defining z, such that D(z) = 0 or

2pkz, = p —2m+ 2EpEp —(W —2')(W —2')
(B2)

where Cc",' ——0 for E+n 2E' & 0. Re—cursion relations for
the coeKcients of this expansion can be derived from the
recursion relations for the Legendre polynomials. The
recursion relations for these coeKcients are

,c +~
C —1 c

2(n+e) —1 '
(B6)

n+E —2E'
C -i c

2(n+ E —2E') —1

n+ E —2E'+ 1

2( +E —2E')+3 '-' '

1 ' dz z"Pc(z) f~2(q2(z))
2pk Zo

(B3) The starting points for the evaluation of these recursion
relations are

1 dzz Pe z y Q z & p
2pk i z, —z

f; (p ) p
'

d
z"Pc(z)

2pk & zo —z
(B4)

If the form factor mass is much larger than the mass
of the exchanged meson (as is the case in the solutions
presented in this paper), then f; (q (z)) is slowly varying
in the neighborhood of the singularity at z = z, (q~(z, ) =
p2). Note, however, that z"Pc(z) may be rapidly varying
near z„particularly when z, is near the boundaries of
the integration region.

The numerical evaluation of Ie" can be simplified by
using a standard subtraction technique to rewrite Ie as

Co,c l0 for all E',

Cc' —0 for alll') 0.
Using the expansion (B5), the integral

S;(..-) -=P 'd. '"P"'
Zo Z

n 1)-,c Pc (z)
] Zo Ze'=o

= 2 ) Cc", 'qc (z.)
e'=o

(B7)

(B8)



2130 FRANZ GROSS, J. W. VAN ORDEN, AND KARL HOLINDE 45

where Qr is the Legendre function of the second kind.
The use of Qr in numerical calculations involves some

dif5culties. The first of these is that the Legendre func-
tion Qr has logarithmic singularities at z = +1. These
singularities are integrable, but since they are present
in the kernel of an integral equation and cannot be in-
tegrated analytically, it is necessary to require that the
singularities do not introduce convergence problems in
the solution of the integral equation. This can be done
by "smoothing" the Legendre function. This is done by
defining a "smoothed" Legendre function of the second
kind as

1 dz Pz(z) 1 ' dz(z —z) Pr (z)
e,, z =-Re2, z —z+i~ 2, (z —z)' +~'

3 I I I

0.5 1.5

(B9)

The recursion relations for the Pe can be used to obtain
recursion relations for Qr, (z). These recursion relations
appear as a coupled set

FIG. 16. Comparison of the smoothed Legendre func-
tion Qr, (z) (solid) with the normal Legendre functions qr(z)
(dashes) for 0 ( d & 4.

Qr, (*) = 2Z —1 8 —1
zQe 1, (z) -—

~
Qr ~, (z)

H' —1
e Ar 1,(z),

1 1 1

Qr, (z) = —) Re . , dzz" Pr(z).z+1E

It is convenient to rewrite the integral as

Ar, (z) =

where

28 —1 8 —1
zAr 1,(z) — Ar 2,(z)

2Z —1
Ar 1,(z)

(B10)
1

dzz" Pr(z) =
—1

dz z"Pp (z) Pg (z)

) gn, p

e=o
n

n, o4—2r', r
e'=o

(B12)

dzP„gr (z)Pr(z)

1
' dzP8 1(z)2, (z —z)~+ e2

(B11)
where the orthogonality relation for the Legendre poly-
nomials has been used in the last step. Using

The functions Qr, (z) and Ar, (z) can be calculated for
I. = 0, 1 directly from (B9) and ( Bl1) to give

1 e2+ (z+ 1)2
Qp, (z) = —ln

1 )x+1
Ap, (z) = —tan '

2|.' E

Q1,(z) = zQp, (z) —1+ e'Ap, (z),
A1,(z) = zAII, (z) —Qp, (z).

cp &3

—24—

From the numerical standpoint, one further problem
remains. Although Qr(z) can be easily evaluated from
either explicit analytic forms of recursion relations near
the interval —1 ( z & 1 for the range of E's needed here,
these methods become unstable for arguments of larger
magnitude. However, a series expansion of Qr(z) can be
constructed for ~z~ ) 1. Noting that we can expand the
denominator in (B9) as

—26 ———

0.05 0. 1 0. 1.l 0.'

Z —Z+2E

OO nz
for

(z + tE)n+1 '

n=o

the smoothed Legendre function becomes

z ( 1)
Z+2E

FIG. 17. The scalar scattering length a, as a function of
the smoothing parameter, e. For small e, all phase parameters
are independent of e, and the figure shows that c 0.05 is
suKciently small for convergence.
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1
Re (z+ is)"

where

cos 7l

(z2+'2) 2

gence in e and convergence as a function of the number of
grid points used in the solution of the integral equations.

y = tan ' —
,z

the series expansion for Qr, (z) becomes

1 1
c,.(z) = 4+I28+1(zq+ ~q) 2

zr'~e, o cos [(2E'+ E+ 1) P]

(zz+ ~2)r

Figure 16 shows a comparison between the smoothed
Legendre function Qr, (z) (solid line) and the Legendre
function Qr(z) (dashed line) for 0 & ~ & 4 and e = 0.05.
This clearly displays the smoothing of the logarithmic
singularity at z = 1. The oscillatory part of the func-
tion for —1 ( z ( 1 is also modified by the smoothing,
however. In principle, the phase shift and bound state
calculations are now functions of the parameter e. This
functional dependence is displayed in Fig. 17, where the
scalar scattering length a, is plotted as a function of e.
This scattering length, which is extremely sensitive to the
parameters of the model, is clearly becoming independent
of the value of c for small values of c. The calculations
shown in this paper are performed with e = 0.05 which
is chosen to provide a good compromise between conver-

APPENDIX C: PARTIAL WAVE DETAILS

In Section III D, the major steps in the calculation of
the partial wave decomposition of the relativistic poten-
tials were recorded. This appendix gives a few of the
details.

The first step in calculating the partial wave potentials
is to construct the helicity amplitudes. Examination of
the couplings given in (3.1) shows that this requires com-
puting the matrix elements of the following Dirac oper-
ators: 1,p', gy', y", and rr""q„Th.e resulting matrix
elements can all be easily expressed in terms of the 8,.

and P,
+ introduced in Eq. (3.23), and will not be given

here. Combining these results with the proper factors
and mixing parameters, A;, gives the results summarized
in Tables VII and VIII.

In this calculation the matrix elements

& ~i "2I"1'2 &—& ~i I~1 &i & '21'2 &2o

&»&'1~2 "l&i&2& &&iI&1&i» &»l~l&2&2
(C1)

are encountered. Here the A; are the two component
spinors summarized in Table XI. The first matrix ele-
ment has already been given by Erkelenz [41], and can
be written

1 ( , ) . 1 ~ t' , 1 f , l . 1
& ~i"21&i&2 &= l&i+&ilcos-'+ I

&i —&i l»n-' l&z+&zlcos-' —
l » —&z (C2)

2 ( ) 2)( 2 ( ) 2)
The second matrix element is clearly related to the total spin S of the state, but because the A s are helicities, and
not projections of the spin in a fixed direction, care must be taken. Note that

cri ogle —A )= lA —A )
but that

(C3)

A A &= —lA A &+2l —A —P &. (C4)
Hence the only amplitudes for which T, as defined in Eq. (3.21), is not automatically 1, are those involving linear
combinations of the form & A A lcri oqlA' A' ). Examination of Table VI and Eq. (2.101) shows that the only
amplitudes so affected are vi, v5, vg, and vq3. Furthermore, in these amplitudes the combinations which occur are

11 11 1 1 1 1zl''ll Cl+ zl'zz Cz)doo(2)22 22 2 2 2 2

where C+ appears in vo, vis and C appears in vi, v5. Explicit evaluation gives

(C5)

1111 ( 11 1 1(
Cg —— ———— —Ci+2C2 + —— —— —— 2Cg p Cg dpp 82222 22 2 2( )

1 (—(I+z)
~

—Cl+2Cz ——O —z)12Cl+Cz)) doo(8)
2 2

1( & 1(
(—3)—

l ~i +~a I+ —zl ~i+~2
I doo(~). (C6)

This shows that T = —3 for the term which multiplies the angular integral d~, and T = 1 for the term which

multiplies d~. Furthermore, no additional terms involving z = p ~ k occur together with op . op. This explains why in
Table X, only the terms Bq i, B~ 5, Bp g, and B$ ]3 have T = —3.
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