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Pion dressing of nucleons and nuclear forces:
A nonperturbative approach
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We develop a nonperturbative method for obtaining pion dressing for strong interaction through
minimisation of total energy. As an illustration, using coherent states we consider the pion-

nucleon system with the physical nucleon represented by the bare nucleon and a calculable meson
cloud. We next extend the method to obtain pion dressing for the two-nucleon system with deuteron
as an example. The analysis de facto replaces the scalar-isoscalar potential in nuclear physics by
multipion condensates and yields approximately correct results.
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I. INTRODUCTION

Obtaining nuclear forces at a microscopic level is an
important problem, since it shall be the basis for nucle-
ons in finite nuclei as well as in nuclear matter. Such a
problem is not yet solvable if we consider a quark-gluon
description with nuclear forces emerging as an effective
residual interaction. The alternative approach is to tackle
the problem through meson interaction. This also entails
a major technical problem with G&~N /4s = 14.6, which

makes perturbative methods unreliable. A nonperturba-
tive method through the mean-field approximation has
also been developed [1], which is theoretically attractive
and also gives reasonable results. This however suffers
from two defects. Firstly, the meson fields are classical.
Secondly, it has to bring in the hypothetical o meson,
which could be an effect of multipion exchange. Thus on
aesthetic as well as phenomenological grounds, alterna-
tive methods shall add to our understanding.

It was recently seen that for the description of nuclear
matter pion scalar isosinglet pairs [2, 3] which are off
shell can simulate the effect of cr mesons. This is not sur-
prising since the coherent state [4] type of construction
is a very natural quantum mechanical formalism for clas-
sical fields. Such a construct also includes higher order
effects [2—5]. The method has also been applied to a few
other problems with interesting results indicative of its
versatility for different type of problems [6]. It would be
desirable to develop the same for finite nuclei.

When the interaction is strong, it is clear that the phys-
ical particle will always be dressed. We shall here con-
sider a state for a physical nucleon with an off mass shell
coherent state of scalar isoscalar pion pairs in a manner
similar to Ref. [2] and obtain the "dressing" by minimis-

ing energy. We then construct the bound state of two
nucleons which naturally changes the pion dressing and
again minimise energy to obtain the structure of the two

body bound state. In this paper we develop the algebra
for this dressing. We consider here one pion exchange and
~ repulsion in addition to dressing through pion pairs.

The paper is organised as follows. In Sec. II we de-
velop a general approach for the construction of the phys-
ical or "dressed" nucleon along with the algebra for pion
dressing. We demonstrate here that the dressing of the
nucleon with pion pairs becomes equivalent to a space-
dependent Bogoliubov transformation. In Sec. III we

obtain the energy expectation value of a single nucleon
as a functional of pion dressing. In Section IV we con-
sider the single nucleon with pion dressing as determined
through energy minimisation. Section V is devoted to
the consideration of two-nucleon bound system. In Sec-
tion VI we calculate the energy expectation values for
deuteron. In Section VII we minimise the energy and
calculate some physical properties of deuteron.

The present analysis is a t;heoretical examination of
a new nonperturbative approximation scheme in quan-
tum field theory as applied to nuclear physics, as well as
the consideration of possible signatures of the same in
a realistic environment. It is an extension of mean field
approach of Walecka where classical fields are replaced
by quantum coherent states. It is also different from the
meson exchange or similar attempts [7] in the sense that
cr-meson exchange is replaced by off shell pion quanta.

II. GENERAL THEORY

The Lagrangian for the pion nucleon system is taken

1
& = 0(tv"rIu —M+Gvsb)@+ [(rlp4 )(&"4*) r—n'4'4"]. —

(2.1)

We shall consider the same in the nonrelativistic limit.
Then, the Hamiltonian density for the nucleons with the
interaction is given as

' Electronic address: spmisraiopb. ernet. in.

'R(x) = 'giv(x) + 'g;„„(x)+ 'RM(x)

with

(2.2)
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~2
)(nr(x) ='A(x) (M )4f( ) (2.3a)

+ Qr(x)tP, (x)P;(x)gr(x),

along with the meson term as

&M{x) = 2.(~o4 (x))'+ (r7& (x))'+ m'(& (x))'].
(2.3c)

We note that here we are to take the ordered products for
the above expressions, so that the vacuum energy den-
sity is zero. In the above, gr(x) is the nonrelativistic two
component spin and isospin quartet nucleon field oper-
ator and the matrix P is given as P = 7;P,(x). In the
present analysis, we shall consider only the second term
on the right hand side of equation (2.3b) in a nonper-
turbative manner, and shall retain as usual only the per-
turbative contribution for the first term. We shall first
construct the theory with the above, and later include
the eR'ect of other mesons.

We expand the field operator P, (z) in terms of the cre-
ation and annihilation operators of oA-mass-sht:ll mesons
satisfying equal time algebra [5] as

{2.3b)

& (*) = (a;(z)t+ a;(z)) (2.4a)

and

P;(z) = i —'(a;(z)t —a;(z)).
2

(2.4b)

In the perturbative basis we have cu, = (m2 —~2) '. We
shall still use this, but we note that since we shall take
an arbitrary number of pions in U(x) in equation (2.7)
as given later, the results shall be nonperturbative. We
then substitute [2]

1
B(x) = — f(x;zq, zq)a;(zq) a;(zq) dzqdzq.

2

We also take

P(x) = B(x)t —B(x).

(2.5)

(2.6)

Clearly P(x) is an anti-Hermitian field operator. We now

consider the matrix

U(x) = exp(P(x)). (2.7)

We note that U(x) is a unitary operator which, operating
on vacuum, creates an arbitrarily large number of scalar
isospin singlet pairs of pions corresponding to squeezed
coherent states. Also, for the sake of simplicity, we shall
here take f(x; z), z2), which is clearly symmetric in the
arguments zi and z~, to be a real function. From transla-
tional invariance, f(x; zq, z2) shall be a function of x —zq

and x —z2. We now construct

and, including the term with the contact, interaction [2],

+int(x) —t gr(x) (~W4(x))0r(x)
. G
2M

above, e.g. , o, stand for both the spin and isospin indices.
Summation over repeated indices as usual is understood.
Clearly the above state contains one nucleon along with
a coherent cloud of mesons. In contrast to Refs. [2]
and [4], we have defined here the space of the meson
cloud through unitary operators, which, as we shall see,
considerably simplifies the calculations. We also further
note that from equation (2.8)

1
I I, —

(2 ),], e' '
@ (x) U(x)dx

~
vac & .

(2.10)

This has a convenit, ional normalisation of

& pn I
p', n' &= ~ ~(p p). (2.10')

We note here a basic feature of the expression for the
physical nucleon state in equation (2.8) above in contrast
to the conventional picture. The single dressed nucleon
does not have all its momentum carried by the bare nu-

cleon, and the meson cloud does not enter as a wave
function renormalisation. These carry some momentum
through the meson creation operators in U(x), and thus
in the context of momentum carried, or through other
interactions, the mesons may make t,heir presence felt in
specific reactions. The distinction thus is not only con-
ceptual, but shall have experimental consequences as will

be seen later. The energy expectation value of the nu-

cleon at zero momentum for the interacting nucleon is
given as [9]

h(f)b = (2z.) ( O, n' i'R(z)
i O, n & . (2.11)

As indicated, the above energy expectation value is a
functional of the meson dressing f, and, due to trans-
lational invariance, h{f) above shall be independent of
z. Evaluation of the quantities will necessitate obtain-
ing some expressions involving the operators U(x)t and
U(x) along with the basic operators of mesons in equa-
tions ('2.4). We now proceed to discuss such expressions
as above which will be needed to obtain the matrix ele-
ments for the dressed nucleon as in Eqs. (2.8) or (2.11),
and discuss the corresponding algebra as will be used
later.

A. The algebra of pion dressing

We shall now develop the formalism for the evaluation
of expressions like those needed in equation (2.11). For
notational simplicity, let us now suppress x in f(x; z&, zq)
and thus write

( vac
i grp

' (x')@I "' (x) i
vac &= b(x —x')6 p

(2 9)

so that the physical nucleon states have the usual orthog-
onality relation. Now we have to use the above ansatz for
the states to calculate the matrix elements, which, as we
shall see, will involve some complicated but straightfor-
ward algebra. From equation (2.8), we define a "dressed"
single nucleon state of momentum p as [8]

~'l(x)t
~

vac &= gr (x)tU(x)
~

vac & (2.8)

as an ansatz for the state of the physical nucleon. In the

f(zi, z2) = f(x;zt, z2).

We wish to evaluate first the

(2.12)

expression



45 PION DRESSING OF NUCLEONS AND NUCLEAR FORCES: 2081

U(x)t a;(z) U(x), for finding the expectation values oc-
curring on the right-hand side of equation (2.11). Again
suppressing x we define, for any real A, U{A) = e"~&"&,

and substitute

d2F A =f' ( )' ( )

—:f' F(A)

(2.24)

(2.25)

F(A) = U(A)ta;(z)U(A).

We then obtain that

= U(A)t a;(z), Bt U(A),

(2.13)

(2.14)

We have used here that the matrix f commutes with
U(A). The nice feature about the above equation is that
the operator parts and the integrations over the func-
tion f(zi, z2) with appropriate modifications correspond-
ing to the commutator algebra have become separated.
Equation (2.25) can be easily solved and yields t,hat

and that

= U(A)t B, a;(z), B U(A)

F(A) = cosh(Af) a;+ sinh(Af) at.

(2 15) Hence substituting A = 1 we obtain that

(2.26)

We note that the substitution F(A) is made in a generic
way for evaluating some specific expressions, and the def-
inition for the same mill change depending on what we
wish to derive. We use that f(zi, z2) is symmetric and
real. We then obtain from equation (2.5) that

a;(zc), B(x) = f f(z), zs)a;(zs) dzs. (2.16)

(2.17)

We now define the generalised matrix f continuous corn

ponents zq, z2 given as

f(zlsz2) —f(zls z2)

We thus have, e.g. ,

f (z z )=cJsf(z~, z )dzssf(zs zs).

(2.18)

Clearly the matrix f is symmetric and real. We also
regard a; as a generalised vector with continuum compo-
nents z, such that we substitute

Proceeding in the same manner as above, we next obtain

'B'a;(zq), , B '= f 'f(zc, zs)dzsf(zszs)a;(zs)dzs, .

and the x dependence is hidden in f through equation
(2.12).

With U(A) as earlier, let us now define

F(A) = (8;U(A)t)(o);U(A)). (2.29)

U(x)t a;(z) U(x) = ((cosh f)a;)(z)+((sinh f)at)(z),
(2.27)

which we shall call a generalisation of the Bogoliubov
transformation. The dependence of the right-hand side
on x is hidden in f through equations (2.12). The ma-

trix structure of f is given by equation (2.18). Equation
(2.27) will be repeatedly utilised to obtain the expecta-
tion values in equation (2.11)for given 'R(x) which will be
known polynomials of the meson fields and their deriva-
tives. We also have the parallel equation for the meson
creation operator given as

U(x)t a;(z)t U(x) = ((cosh f)at)(z) + ((sinh f)a;)(z),
(2.28)

so that naming this as a generalised Bogoliubov transfor-
mation becomes transparent. In the above equations we

may note that, e.g. ,

((cosh f) !)(zh)= fc(cosh f)(z~, z)(a(z )(d z,(

a;z =a; z. (2.19)
We then easily see that

We shall also have a parallel equation for a, (z) t . We can
then write equation (2.16) as = (O'P(x)) .(0 U(A) )U(A) —U(A) (8 U(A)),

*( ) ' = ( ')( ).
Similarly equation (2.17) becomes

[B, a, (z), Bt, = (f' a;){z).

(2.20)

(2.21)

(2.30)

F;(A) = ((9;U(A) )U(A) —U(A)t(B, U(A)) . (2.31)

We now omit these components and write equations
(2.13), (2.14), and (2.15) as equations for generalised vec-
tors as

We then have

dI";' = —2(0;P(x)). (2.32)

F(A) = U(A)t a; U(A), (2.22) With appropriate boundary conditions at A = 0 we then
obtain that

and

{2.23) F;(A) = -2A(0;P(x)).

and hence from equation (2.30)

(2.33a)
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F(A) = —A (0;)9(x))((9;P(x)).

This yields that

(2.33b)

(0;U(x)t)(B;U(x)) = —(cl;P(x))(D;P(x)). (2.34)

and that

III. EXPRESSION FOR THE ENERGY
FUNCTIONAL

(o), U(x) )U(x) = —U(x) (B,U(x)) = —(0;P(x)),

(2.35)

where we have used that B,(U(x)tU(x)) = 0.

ent manner with equal time algebra, which makes the
contributions calculable while retaining basically nonper-
turbative "higher order" effects without any truncation.
Clearly at present we are concentrating on the relevant
attractive channel corresponding to a' meson earlier [1],
without using the above unphysical "particle. " The pic-
ture is also completely quantum mechanical instead of
classical, and this will have additional effects which we
shall discuss later. We shall here first discuss the me-
son dressing of a single nucleon with a relatively simple
ansatz for meson dressing for the function f(x, zi, z2)
in equation (2.5). This gives rise to a position-dependent
generalised Bogoliubov transformation explicitly given in
equations (2.27) and (2.28) which greatly simplifies the
evaluation of the matrix elements.

With 'R(z) as in equations (2.2) and (2.3), the energy
operator is

H= z dz. (3 1)

As stated earlier, the energy functional is given by h(f) as
in equation (2.11). We are thus to find the expressions
corresponding to equations (2.3) to obtain the energy
functional h(f) The a. dvantage of the present approach
is that with a single ansatz function for the pions, we
include an arbritrary number of pion pairs in a coher-

A. Nucleon kinetic term

l
HN = 2~ (cl &r(z)')(cl &1(z))dz. (3.2)

We then need to evaluate the matrix element from equa-
tions (2.10) and (2.11) as [9]

Let us first consider the contribution from the nucleon
kinetic term of equation (2.3a). We ignore the mass term
and then choose an equivalent symmetric form so that we
have

1
6 z ( vac

l
U(x')t((9,*b(x' —z))(0,*|I(x—z))U(x) l

vac & dxdx' (3.3)

1
~ - & vacl(& U(z)')(& U(z))l»c & .

Since we are considering the nucleon to be at rest, the
conventional kinetic energy as above vanishes. However,
an extra contribution from the meson dressing arises as
written in equation (3.4). Thus from equation (2.34) we

have that the additional contribution h~&)(f) to kinetic
energy is given as f(x, zi, zz) = afi(x —zi) fi(x —z2), (3.7)

meson dressing of the nucleon, in additon to the con-
ventional contribution to kinetic energy.

Let us approximate f(x, zi, zq) as a factorisable ex-
pression with translational invariance given as

(f) = — ( vacl(cl;P(z))(cl, P(z)) Ivac & . (3.5)
where a is an arbitrary dimensionless constant and the
function fi is spherically symmetric. We normalise the
function fi such that

From equations (2.5) and (2.6) we then easily have
(fi(x)) dx = 1. (3.8)

h~)(f) = ( vacl((9, B(x))(0;B(x)t)lvac &
2M

1
(8;f(x; zi, z2))((9;f(x; zi, zq))dzidz2.

(3.6)

From equation (3.6) we then obtain that, using rotational
symmetry for fi(z),

h~ (f) = ( z )2 (();f, (z)) (f, (z')) dzdz

Through translational invariance as stated earlier, the
above function is independent of x. Thus the nucleon
kinetic term of equation (3.2) generates a contribution
through the differentiation of the functions describing where

(3.9)
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X dX. (3.10) c2 —— k ~ k dk. (3.12)

Thus in a sense the extra contribution from fermion ki-

netic term is proportional to the inverse size of meson
dressing. With B. Interaction term

f, (x) = ',(, jfr(&)c'" &k'
2ir ')'2

we have from equation (3.10) that

(3.11) We now calculate the matrix element corresponding to
'8;„1 of equation (2.3b). From equations (2.10) and (2.11)
we then obtain in the same manner as earlier,

&;„r(f)= f & vac
)
U(x') rl'r (x')')(;„r(z)r(rr (x)(r(x) )

vac & dx dx' (3.13)

Since U(x) only contains pion operators, from the above we easily obtain that

h;„1(f) = & vac
~
U(x): p;(x)p, (x): U(x)

~
vac & . (3.14)

We then use that with equation (2.4a)

: P;(x)()(;(x):= a'(zl) ai(z2) + a'(z1)a'(z2) + 2a'(*1) a'(z2) ~s~ ss x—— —— (3.15)

Hence from equations (2.27) and (2.28) and the definition of f we obtain that

& vac
i U(x)t: P;(zi)g;(z2): U(x) i

vac &

1
& vac

~ ( (sinh f)a; (zi) (cosh f)a; (z2)
-t

/2(zfs~ 2(afs~

+ (cosh f)a; (zi) (sinh f)a; (z2) + 2 (sinh f)a; (zi) (sinh f)a; (z2) } ~
vac &

(3)(2) (cosh f sinh f)(z 1, z2) + (sinh f)(zi, z2)

~

~

~ ~

2(rfs, 2(a)ss

3 e —I zg, z2.1
(3.16)

In the above we have substituted

I(zi, z2) = b(zi —z2). (3.17)

From equations (3.7) and (3.8) for the specific form of
f(x;zi, z2) we clearly have

Let us substitute

1
C, = fi(Z) is=Og2~,

1 1
1 k dk.

(2~)s~2 g2 (k)
(3.21)

z1 z2 — z1) Z2

With equation {3.7) this clearly yields that

3.18
Equation (3.20) then yields that

(e —I)(zi, z2) = (e ' —1)fi(x —zi) fi(x —z2)

{3.19)

h;„(,(f) = 3(e ' —1)c,.

C. Meson kinetic term

(3.22)

where the x dependence of f has explicitly appeared on
the right hand side above. Hence with the present ap-
proximation for meson dressing equation (3.16) simplifies
to (3.23)

With the meson field operator expansions as in equa-
tions (2.4), we may write equation (2.3c) as

&M (z) = a*(z)'~* a*(z).
h;„1(f) = 3(e ' —1)

1
X y X —Zy y X —Z2+2cu„2~„

(3.20)

We may note that through a Bogoliubov transformation,
in fact, the function u(k) of equations (2.4) in field ex-
pansion might change [10], and thus we may heuristi-
cally assume that taking the meson field Hamiltonian as
in equation (3.23) may not involve any real loss of gen-
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erality. In any case, it corresponds here to taking the
perturbative basis for the meson quanta.

In order to apply as before equation (2.11) for the en-
ergy expectation value from 'RM(x), we now note that

& vac
~
U(x)ta, (z)t(d, a;(z)U(x)

~

vac &

density of pions, it should vanish when ~x —z~ approaches
zero or infinity. With this in mind and ensuring normal-
isation as in equation (3.8), we take the ansatz

= 3u, (sinh f sinh f)(zi, z)
Z$ Z

The Vourier transform of the above becomes

e2a + e 2a
~,f(zi, z)

4 a Z$ —Z

3 2= —(e
' + e ' —2)fi(x —z)~, fi(x —z).

4

(3.24)

(3.25)

3 2.hM(f) = —(e '+ e ' —2) fi(x —z)~, fi(x —z) dx
4
3 2-= —(e" + e "—2)cM,
4

(3.26)

where

In writing down equations (3.24) and (3.25) we have used
the specific ansatz as in equation (3.7). Equation (2.11)
with equation (3.23) now yield that

11 1
c2(RM) =-

1o ~M
(4.3)

Hence from equation (3.9) the contribution from the nu-
cleon kinetic term becomes

(4.2)

The minimisation of energy now is to be taken for the
two parameters a and RM. We now proceed to evaluate
the corresponding expressions. From equation (3.11) we
obtain

cM = ~(k)
~ fi(k) ~' dk. (3.26')

lla 1" ('™=
10M R' (4.4)

We note that hM(f) is positive and increases very fast
with an increase in the magnitude of the constant a.

D. Number density for the meson

We would like to have an intuitive picture for the me-
son dressing with pion pairs for the nucleon, For this
purpose we note that the number density at z for off-
shell mesons with the nucleon at x is given as

& vac
~
U(x)ta, (z)ta, (z)U(x) ~

ac &

= -(e'+ e "—2) [fi(x —z)]',3 2

4
(3.27)

the derivation of the above being similar to that of equa-
tion (3.25). We also get the average number NM of the
off-mass shell pions in nucleon to be given as

3 2.
1VM = -(e '+ e ' —2).

4
(3.28)

The above expression gives an intuitive quantitative pic-
ture regarding the constant a as describing the pion num-
ber in the nucleon. Further, from equation (3.27) the av-

erage distance of mesons from the centre of the nucleon
is given as R „where

2R [fi(z)] z dz. (3.29)

IV. DRESSED NUCLEON

We shall now discuss the dressing of a single nucleon
by minimising the energy for the physical nucleon as de-
rived in equations (3.9), (3.22), and (3.26). Here a is a
free parameter and we do extremisation over the func-
tion fi subject to the condition of unit normalisation as
in equation (3.8). For this purpose we shall parametrise
fi(x) and extremise over the parameter space. As from

equation (3.27), since [fi(x —z)] is proportional to the

We further note from equation (4.4), (3.22), and (3.26)
that h~(a, RM) and hM(a, RM) are positive and even in

a, where as the function h;„((a, RM) is negative when a
is negative. Clearly

h(a, RM) = h~(a, RM) + h;„,(a, RM ) + hM(a, RM)

(4 5)

We take I = 140 MeV, M = 940 MeV and then try
to find a and RM by minimising the expression (4.5)
numerically.

For a fixed negative value of a of sufticiently small mag-
nitude, we note that h(a, RM) decreases indefinitely to
minus infinity as RM ~ 0. This is effectively the reflec-
tion of the fact that self energy of the nucleon is negative
infinity, and arises because of the pointlike structure of
the pion and the nucleon in the effective Lagrangian. As
shown earlier [4], we have to retain in a phenomenological
way the fact that the hadrons are extended and compos-
ite objects, and hence when they tend to come close to
each other an effective repulsion between them will be
operative, and this is to be included.

The extra energy involved when a pion comes indefi-
nitely near the nucleon due to their composite structure
is at present not calculable. It is however clear that this
structure will not permit RM to go to zero. We shall
include this effect by adding to the Hamiltonian density
an effective contribution as due to pion nucleon repul-
sion arising from the composite nature when they come
together. This contribution is taken as

Z. , (x) = f er(x)'er(x)Z(x —z);(z)'z;(z) az.

(4.6)

Parallel to the derivation of equation (3.14), we then ob-
tain the extra contribution to energy for the dressed nu-
cleon to be given as
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h, (f) = f g(x —z) & vac) U(x) ta(z)~ a(z)U(x) )
vac & dz = 2f g(x —z)(eiah f)(z z) dz (4.7)

g(x —z) = g(k)e'"~" *& dk.
1

{2z)s

We then obtain that in equation (4.8)

f (z)(f (z)) dz

(4 9)

g(k) 1 —sRMk y s'oRM(k )
(2 )s . s 60

xexp( —4RMk ) dk.

We now take a simple expression for g(k) as

(4.10)

Using equations (3.7) and (3.18) we then obtain that

h„„(f)= —(e '+ e ' —2) J g(x —z)(f (cx —z)) dz.
4

(4 8)

Since the integrals earlier are defined in the Fourier trans-
form space, we now take

(4.11) or (4.13) as input and then minimise the energy
expectation value to determine the variational parame-
ters RM and a. We note that by equations (3.29) and
(4.1), the average pion distance from the nucleon is given

by R, = /3. 5RM.
As an example we may note that for G2/4z = 14.6,

and A = 0.1 fm, through a minimisation we obtain
that RM ——0.926 fm with R „= 1.73 fm, and, a =
—4.23 x 10 along with the "interesting" signal that
the average meson number for the dressed nucleon with
squeezed coherent state as in equation (3.28) becomes
about 5.4 x 10 5. Also, the contributions to energy from
h~, h;„&, hM, and h„„become 0.96 x 10 ", —0.252,
0.013, and 0.105 MeV, respectively, with the contribution
to self-energy of the single nucleon being about —0.133
MeV. With this in mind we now proceed to calculate
the two nucleon potential. We shall see later that even
though the approximation is crude and heuristic, it shall
have testable characteristic conclusions.

g(k) = A (k )z. (4.11) V. TWO-NUCLEON STATES AND PION
DRESSINC

In the above our objective is to construct phenomenolog-
ically a sufticiently repulsive term at small distances to
neutralise the stated instability for small RM. In fact,
the integral of equation (4.10) simplifies to

32 A
g(z)(fi(z))'dz =

R7 (4.12)

which we shall see corresponds to an adequately strong
repulsion for small RM. From the above and equation
{4.8) we then obtain that

h„„(a,RM) = -(e ' + e ' —2)c„~„.
4

(4.13)

The above repulsion in h„„has been our objective for
the formal choice of the expression for g(k) in equation
(4.11). We may note that since RM is a measure of
the distance between the nucleon and the pion, the phe-
nomenological repulsive term is such that the energy due
to repulsion varies inversely as the seventh power of the
distance, which in a way is simitar to the repulsion of
atoms at short distances and was a part motivation for
our choice.

We now replace equation (4.4) by

h(a, RM) = hfv(a, RM) + h;„2(a, RM) + hM(a, RM)

+h„„(a,RM), (4.14)

and then minimise h(a, RM). The relevance for the re-
pulsion term as given by equations (4.13) with the ansatz
(4.11) is that this term corresponds to an increase in en-
ergy for small distances, which prohibits the instability
for RM going to zero. This choice is mainly governed
by heuristic considerations, and the function g(k) is not
calculable. We now take the parameter A of equation

We shall now find the two nucleon bound states with
a generalisation of the above type of nucleon dressing,
parallel to what has been considered earlier [5]. For this
purpose we shall first define the two nucleon states in
a manner which shall be more convenient for field theo-
retic calculations and then consider the energy expecta-
tion values as in the last section to obtain the nucleon
wave function and the meson dressing. Clearly the two
pion dressing as earlier will correspond only to the scalar
isoscalar part of the two nucleon potential usually taken
phenomenologically or generated through the hypotheti-
cal 0-meson exchange. We shall add to this the one pion
exchange contribution and the repulsive part of the po-
tential to make it realistic. One objective here is to show
that such a picture of nuclear structure with Walecka's
model generalised to include quantum two pion conden-
sate can be a viable alternative, and we need not take
separately a o meson.

A. Two nucleon states

We shall first reorient the description for two nucleons
with field operators so that we can conveniently take en-
ergy expectation values parallel to the last section. We
shall now note that the nucleon field operator is 2)'df (x)
for both proton and neutron with n = (+z, +z) stand-
ing for both isospin and spin indices. We then define the
charge conjugate operator @f (x) as

@f (x) = (o2rg) p@fp(x) . (5 1)

From the nucleon field operator anticommutators we then
have
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(5.2)

It is our purpose here to illustrate the present method-
ology with the application to a simple physical problem.

]

With this in mind, we shall consider as an example the
state corresponding to the deuteron. VVith the above
notation we then write the deuteron state of zero mo-
mentum as

ID (o) &= 1

2 2 (27r) 2
Ql(xi) U "(xi —x2)o'„@1(x2)U{xi,x2)dxidx2

~
vac & . (5.3)

In the above with r = x~ —x~ we have substituted

U "(r) = [b "u, (r)cosP+P "(1)ud(r)sinP],

fact we may rewrite equation (5.6) as

U(xi, x2) = exp(B(xi, x2) —B(xi,x2)), (5.10)

where parallel to equation (2.5) we have
(5.41

with

P-"(.) = (3.-." —b-").1
{5.5)

B(xg, xz) = f f(z~, zz)a;(zq) a;(zz) dz&dzz (5.11)

In the above, u, g(~xi —x2~) are the conventional two-
nucleon s and d wave functions, P is the mixing angle,
and U(xi, x2) describes the meson dressing. In fact par-
allel to equations (2.5)—(2.7) we take U(xi, x2) as

U(xi, x2) = exp(P(xi) + P(x2)), (5.6)

~u, ()")
~

dr = ~ug(p)
~

dr = 1. (5.7)

We again apply [9] equation (2.11) to obtain the energy
expectation value of this two nucleon system. Minimisa-
tion of the same will simultaneously give both the meson
dressing as well as the two nucleon wave function. In fact
we have here

h(f)S " = (21r) ( D"'(0)~'R(z)~D" (0) & . (5.8)

where P(x) is given by the same equations (2.5) and (2.6).
In the above the s and d wave functions have the usual
normalisation given as

f(zi, z2) = u fi(xi —zi)f1{xi z2)

+fi(x2 zl)fl(x2 z2) (5.12)

We furt, her define the function

f ' (zi, z2) = a [ fi(xi —zi) fi(x2 —z2)

+f1(xi —z2) fi(x2 —zi)]. (5.13)

with the function f(zi, z2) now given by equation (5.9).
It is easily seen that equation (2.28) for the Bogoliubov
transformation of a, (z) t remains unaltered, with the only

change that the matrix elements of f are now given by
equation (5.9). With the same change in f, also equa-
tion (3.28) remains unaltered when we replace U(x) by
U(xi, x2).

We now consider the parallel of equation (3.18) for the
simplification of f", which undergoes a drastic change.
With the factorisable ansatz of equation (3.7), we may
rewrite equation (5.9) as

As earlier, the evaluation of the above will be our objec-
tive. This will include both the effect of the nucleon wave

functions and the effect of meson dressing. The space
coordinate dependence of the energy expection value en-
ables us to identify a potential [5]. Because of the choice
of the interaction the potential here can only correspond
to the scalar isoscalar part of the two nucleon potential.
However, as we shall see later, the concept of potential
will have limited validity, since nucleon wave function
and meson dressing get determined simultaneously.

We then note that

f (zq, zz) = f f(zq, z )dzz fz(z z )zz
= af(zi, z2) + ahfI'I(zi, z2),

where we have taken

b = b(xi —x2) = fi(xi —z)fi(x2 —z) dz

(5.14)

(5.15)

B. The algebra of pion dressing

f(zli z2) = f(xlI zi) z2) + f(x2I zi) z2). (5 9)

Let us now recapitulate the algebra for meson dressing
as in Section II. A. For this purpose we now substitute as
in equation (2.12),

We have also utilised the normalisation condition of equa-
tion (3.8) such that b(0) = 1. In fact with an obvious
notation we may symbolically write equation (5.14) as

(5.16)

In a parallel manner a straightforward integration will

yield that

We then define the operator f with its matrix elements
as f(zi, z2) of equation (5.9). Some identities established
in Section II.A then remain unaltered with U(x) of equa-
tion (2.7) now replaced by U(xi, x2) of equation (5.6). In

ff& & = f~ 1+ bf
Let us substitute

(5.17)

(5.18)
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We then easily have

f"+' =f(f")= f(u f+ g."f")
f" = a" ((1+bri)" )„f(zi, z2)

+((1+ br, )" '-)„f ' (z, s z, )j . (5.22)

=a[(g-+ ba")f+(4 +~."f")
Hence in equation (5.14) we obtain that

9 +i = a(g + bp& )(e)

go+i = a(& +b& )

(5.19)

(5.20a)

(5.20b)

The above equation, which is the parallel of equation
(3.18), is not as simple as the earlier equation, but is
reasonably simple to enable us to obtain corrections cor-
responding to arbtitrary powers of b(xi —x2). We shall

now illustrate t, his with the simplification of the expres-
sion (e I —I)(zi, zq) to obtain the parallel of equation
(3.19). Corresponding to equation (5.22), let us define
the 2 x 2 matrix

Also, g~ ——1 and g&' ——0, and, as a particular case of the(~)

above equation, g2
——a and g2' ——Qb. In fact the general(~)

solution may be easily seen to be given as

A = Q+Q6Ty.

We then have

and

-= "-'((1+b )"-')„, (5.21a)
(1 —bri)
a(1 —b2)'

From equation (5.22) we obtain

(5.24)

gl'& = a" '((1+ br, )" '), , (5.21b)

In the above, T~ is the usual isospin matrix. We note
that the above coefBcients are functions of r = xq —xq
through b as in equation (5.15). From equations (5.18)
and (5.21) we thus obtain that

(e —I)(zi, z2) = (A (& —I)) iif(zi, z2)

+(A-'("" —I))„ft'(, ).
(5.25)

A straightforward matrix simplification now yields that

A (e —I) = ((e cosh(2ab) —1) —be sinh(2ab))
1

a(l —b')

+ri (e
' sinh(2ab) —b(e ' cosh(2ab) —1)) (5.26)

Hence we obtain that

(e —I)(zi, z2) = ((e
' cosh(2ab) —1) —be

' sinh(2ab)) f(zi, z2)a(1 —b~)

+(e ' sinh(2ab) —b(e ' cosh(2ab) —1))fl' (zi, zq} . (5.27)

For the above matrix element, the z~, z2 dependence is
explicitly noted, and the dependence on x~ and x2 occurs
implicitly in the functions f and f& 1 and in b(xi —x2) as
in equations (5.12), (5.13), and (5.15), respectively. We
shall now make use of the above identities to evaluate the
matrix elements.

VI. CALCULATION OF ENERGY
EXPECTATION VALUES

A. Nucleon kinetic energy

In the above we ignore the derivative terms of U(xi, x2)
for meson dressing since the calculations of the last sec-
tion seem to indicate that these are likely to be negligible.
Hence in equation (6.1) the dependance on f disappears.
Hence the energy expectation values are functionals of
only U "(r), and that the s- and d-wave contributions
occur additively. On evaluation of equation (6.1) with
equation (5.3) we obtain that

hu(u) = f dx)((),.
' U"'"(x)—z)')(();* (c "(x)—z)).

%'e now proceed to calculate the energy expectation
values. Let us consider the contribution from the nu-
cleon kinetic term from equation (3.2). We then need
to evaluate the matrix element as from equation (5.8).
Using rotational invariance we get

We then have

hiv(u) = I )v(u) + hw(u)

(6.2)

(6.3)

1Ij( hvf)u—:-(27r)' & D (&)~&)v(z)~D (0)3
(6 1)

with

1
hu(u) = I ccs'd f dr~s7u, (r)( (6.4)
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and B. Interaction energy

hu(u) = —v(u' d dr()~ uv(r ) ('+ —r(uv(r) ~')

(6.5)

We next proceed to calculate the matrix element cor-
responding to '8;„1(z)of equation (2.3b). Since U(xi, x2)
contains only pion operators, we then obtain that

-1
h;„1(u, f) = -(2x) ( 17 (0)I'8;„1(z)ID (0) &

Q2
dxi

I
U "(x, —z) I'& vac

I
U(x„z)': y;(z)p;(z): U(xi, z) I

vac & . (6.6)

A factor of 2 has been included in the above since an interchange of x~ and x2 gives an identical contribution. Hence
using equation (3.15) with the changed definitions of U as well as of f as in equation (5.5), we obtain the parallel of
equation (3.16) as

( vac
I U(xi, z):p;(z)p, (z): U(xi, z) I

vac &

(3)(2) (cosh f sinh f)(zi, z2) + (sinh f)(zi, z2)
2(h)z

h 2(h)zz Zy =Zg=Z j Kg =Z

3 e —I zg, z2
Z1=Zg=Z j Kg=Z

(6.7)

The above can be simplified by using equation (5.23) and equations (5.8) and (5.9). In fact, from equation (5.8) we

have

g2~„2~„
1

' ( 1
f(zl z2) —6 fl(xl z) + I fi(x2 z) I

zq —zz —z; xz ——z 2(h)z 2(h) z
(6.8)

=a Fi(r, f)'+ c', . (6 9)

In the above we have substituted r = xi —z and used equation (3.21) for the definition of ci along with the substitution

Fi(r, f) = fi(» —Z) =
s&2 f1(ki)

1

24Jz 2x 2~(ki )

which is a function of r and a functional of meson dressing f Similarly .we also note that from equation (5.9)

(6.10)

1 f(z)(zi Z2)
Z I Zg 1 — 2—

fi(» —z) I I fi(x2 —z) I2~, j ( 2~, )
= 2aciF1(r, f)

(6.11)

(6.12)

Also, by equations (4.1), (5.11), and (5.15), b of equation (5.23) as in equation (6.6) is given as, with r = Ixi —zI,

(6.13)

Hence from equations (5.23), (6.5), and (6.6) we obt, ain that

hu(u, f) = —f dr (U "(r)) (v;, (r f)+ v;„', (r f)j,

where, with b = b(r) as in equation (6.12),

Q2
v;„&(r,f) = [(e

' cosh(2ab) —1) —b e ' sinh(2ab)] [Fi(r, f) + ci]M 1 —b2

(6.14)

(6.15)

and

G2
v;„', (r, f) = [e sinh(2ab) —b(e ' cosh(2ab) —1)]2F1(r,f).M 1 —b2

(6.16)

In the above, the expression for Fi is as in equation (6.9). We also have in equation (6.13)
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3
-IU "(r)l' = c»'P Iu. (r)l'+»n'& Iud(r)l'

We may note the highly nonlinear nature of the contribution from meson dressing.

(6.17)

C. Meson kinetic energy

We shall now consider the contribution from the meson kinetic term. We first note the parallel of equation (3.24)

( vac
~

U(xq, x2) a;(z)ter, a;(z)U(xy, x~) ~
vac )= 3u„(sinh f sinh f)(z, zy) (6.18)

Hence we obtain that

h~(u, f) = -(2s) ( D (0)~'RM(z)~D (0) )1

3

dxgdxg " xg —xg u„sinh sinh z, zy
ZJ~Z

dx) dx~
~

U "(x~ —xq)
~

u„(e + e —2) (z, zq)
4 Z

With the same substitution as in (5.19), parallel to equation (5.21) we now obtain that

(e + e ~ —2)(z, zq) = (A (e "+ e "—2))„f(z, zq) + (A '(e + e —2)),fI l(z, zq).

We further note that

(6.19)

(6.20)

~„f(zg, z2) = a Fq(xq —z) fq(xq —z) + F2(xq —z) fq(x2 —z), (6.21)

where

Fg(x —z) = cu, fq(x —z) =
&z

fq(k)~(k)e'"~" *& dk.
(2s)s~'

Parallel to equation (6.20) we also obtain that

(6.22)

~„f~'l(zg, zg) = a F2(xq —z) fq(x2 —z) + F2(x2 —z) f~(xy —z) . (6.23)

For the evaluation of the expression in equation (6.18), we now simplify the expressions involving the matrix A in

equation (6.19). For this purpose we note that from equation (5.19) we have

2
A (e + e 2 —2) = ((cosh(2a) cosh(2ab) —1) —b sinh(2a) sinh(2ab))

a(1 —b~) .

+7q ( sinh(2a) sinh(2ab) —b(cosh(2a) cosh(2ab) —1)) (6.24)

Clearly in the above b is a function of xq —xq. Let us
now substitute [2]

~„f(z, z) ) dX = 2acM
Zg —Z

(6.26)

1
xy —Z=X+ —I,

2 '

1
x2 —z=X ——r,

2 '

(6.25a) and

(6.25b)
f ee„f ' (z, z) ) dX = 2aFNI(r, f),

Zg Z
(6.27)

and in equation (6.18) change the integration variables
to X and r. In that case, except for the terms arising
from f(zq, z2) and f~'&(zq, z2) as in equations (6.20) and
(6.22), all the remaining terms are independent of X,
which allows us easily to evaluate the integration over
X. In fact equations (6.20) and (6.22) with the above
change of variables yield that [2]

where

FM(r, f) = f u(k))fg(k)) cos(k r)dk. (6.28)

We may note that in the above we have used equation
(3.26') for cM, and that FM(0) = cl. On using equation
(6.16), equation (6.18) then gives that
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(6.29)

(6.30)

iMs( uf) =f dr(cos () )u, (r)( +s'u () ~us(r)l )

x [vM(r, f) + vs(r, f),
where with b as in equation (6.12),

3
vM(r, f) = ( cosh(2a) cosh(2ab) —1)

1 —b2 .

b—sinh(2a) sinh(2ab) cM,

Equation (6.28) is clearly the parallel of equation (6.13)
for the interaction term and FM is given by equation
(6.27). As before, the nonlinear nature of the contribu-
tion for meson dressing may be noted.

D. Meson nucleon repulsion
and

vM (r, f) =
z sinh(2a) sinh(2ab)

1 —b2'
b(co—sh(2a) cosh(2ab) —1)

xFM(r, f) (6.31)

We next proceed to evaluate the contribution from the
repulsion term as in equation (4.14) taken phenomeno-
logically as due to the composite nature of the nucleon
and the meson. As before, here we have

h„~„(u,f)—:-(2s) ( D (0)~'R„~„(x)~D (0) )=1

=2 xqdz g x —z U "
xq —x sinh z, z

1 s A

dxqdz g(x —z) i U "(xq —x)
~ (e + e —2)(z, z). (6.32)

The simplification of the above easily follows from
equation (6.19). For this purpose we may do the z inte-
gration first to obtain that

dz g(x —z)f(z, z)

=a dzgx —z ix) —z + gx —z

Fnrnr( 1 .) + chemi'

where c„~„is given by equation (4.20) and

(6.33)

Fnmr (xl x) dz g(x —z) (f) (xq —z)) . (6.34)

Similarly we have

dz g(x —z)ft'l(z, z)

=2Q dzg x —z y xy —z y x —z

= 2a Fl'1„(x, —x).

(6.35)

(6.36)

Hence from equation (6.31) we obtain that, with equation
(6.16),

( isf) = uf dr (cos
l ()i()u+ sic ()(us(r)l )

and

v~'l„(r, f) =
2 ( sinh(2a) sinh(2ab)

b[ cosh(2a—) cosh(2ab) —1] )
(6.39)x 2Fl'l„(r).

and

6r 2 183~4

M 30 M

p2
xexp( — )

RM

26' 6 2rs

15RM6 15RSM

(6.40)

F„';„)„(r)= c„,„,( i— 57r4

120R4M

2"
15R'q~ 480 Rs

(6.41)

E. One pion exchang, e contribution

We note that c„„is as in equation (4.20), and, with g
as given in equations (4.17), (4.19) and (4.20), we have
from equations (6.33) and (6.35)

x [v„„(r,f) + vl'l „(r,f),
where, with b = b(r) as in equation (6.12),

v„„(r,f) = [ (cosh(2a) cosh(2ab) —1)
3

1 —P
bsinh(2a) sinh(2ab—)]

[F-.( )+ —.]

(6.37)

(6.38)

In the calculations as above, we have included only
scalar isospin singlet pion pairs for the construction of
the off-mass-shell pions. However, we know that one
pion exchange contribution is quite important for the two
nucleon forces, which, for example, generates the tensor
force for nuclear binding. We wish to simulate the off-
shell pion content of the two nucleon system in a realistic



45 PION DRESSING OF NUCLEONS AND NUCLEAR FORCES: 2091

environment. For this purpose we shall consider the so-
lution of the problem for the deuteron with the above
picture of pion pairs, as well add to it the single pion
exchange contribution. This does not involve any double
counting, and in fact in a heuristic way includes both the

I

effects of even and odd number of pions. Thus, we take
into account now the effect of the first term of equation
(2.3b) for the conventional pionic interaction by adding
to the Hamiltonian density the one-pion exchange con-
tribution

G2 rn2 m
Vope(x) =

~ dy: @r—(x)to~ r, gl (x)QI(y)tv; r~4 r(y) (yo(r) + y2(r))

(6.42)

In the above, ::indicates normal ordering r = x —y
and r = lrl, and yp(r) and yq(r ) are given as

We can then obtain the energy expectation value for one
pion exchange as

e -mr
(6.43)

1
hoPE(u) = (2&) + D (0)lvoPE(x)ID (0) 0'

and

(6.44)
where

U "(r)v"" (r)U" (r)dr,
3

(6.46)

This corresponds to the familiar pion exchange potential
given as [11]

G2m2m
v = —(TyTg) [

—(o qo q)yp(r) + sq2yq(r)
4m 4M2 3

(6.45)

2 tn3v"" (r) =
&

[b""'yp(r) + 2V2P"" (f')y2(r) .

(6.47)

We can easily simplify equation (6.44) when we note that

where the tensor force is
pmn pnk pmk+p (6.48)

( 6.43') We then obtain that

G' m'
60PE(u) = dr cos p I" (")I'yo(") +»n' p lua(&) I'yo(&)

+4& 2cosP sin P u, (r)uz(r)yz(r) + 2 sin P Iud(r)l y2(r) . (6.49)

F. Nucleon nucleon repulsion

We shall also include the nucleon nucleon repulsion
term due to cu exchange given as

g2 e m~r
v (r)=-

4m r (6.52)

g2 e m)x —Xl
V (x) = ——:gl(x)tel(x)

24m
'

Ix —yl

x A(y)'@1(y): dy (6.50)

1
U "(r)v (r)U" (r)dr, (6.51)

where

We then have the energy expectation value given as

The value of h (u) for nucleon nucleon repulsion can thus
be obtained by using equation (6.16).

G. Average meson number

In the above we have taken a dressing of the two nu-
cleon system with oR'-mass-shell pions. It shall be desir-
able to have an intuitive picture for this dressing. The
simplest object for this purpose shall be the average num-
ber of oA-shell pions, which we now proceed to calculate.
We shall now consider the average number of mesons
corresponding to a particular dressing for a given two
nucleon wave function. Similar to equation (2.11), this
number is given as
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1
nM(u, f)—:-(2x) & D (0) ~

a;(z)ta;(z)
~
D (0) )

1
dxydx2 (V "(x& —x2)( & vac

( V(x), xz) a;(z) a;(z)U(x&, x2) (
vac )

The simplification of the above is very similar to the simplification of the meson kinetic term in equation (6.18). We
thus obtain, parallel to equation (6.28) that

nsr(u f) = f dr (cos p[u (r)[ +sin p[us(r)[ ) pM(r f)+ ps) (r f)

where

3
pM(z, f) = (cosh(2a) cosh(2ab) —1) —b sinh(2a) sinh(2ab)

(1 —b')

and

(6.54)

(6.55)

pal(r, f) = [sinh(2a) sinh(2ab) —b(cosh(2a) cosh(2ab) —1) FM (r, f), (6.56)

with

FM (r, f) = f [f (k)c[ cos(k r)dk, (6.57)

VII. ENERGY MINIMISATION AND DEUTERON

as parallel to equation (6.27). We shall see later that
the above meson content of the two nucleon system has
a basic conceptual diH'erence from the idea of a potential
and may have testable conclusions.

We take a = —4.23 x 10 and RM ——0.926 fm as ob-
tained from the single nucleon and minimise h(R„,P)
over R„and P. In the above, h, , hd, and h;„are the con-
tributions to the energy from s-wave part, d-wave part,
and s-d mixed part, respectively. Now minimising P in
equation (7.3) we have

h(R ) = —[h, (R„)+hg(R )
1

, (7 4)
(h, (R„) —h. (R )) + h;„(R„)]

We illustrate the present method with the ground state
of deuteron as an example. We have now completed the
framework for dressing of the two nucleon system with
scalar-isoscalar pion pairs. We have also discussed in
Secs. IV E and IV F the one pion exchange contribution,
as well as the nuclear repulsion, not included in pion
dressing. With all these contributions, the situation for
nuclear structure can be realistic. We now take a simple
ansatz for the s and d wave function of the deuteron, and
minimise energy to illustrate the method in a realistic
environment,

We thus proceed to minimise the energy as defined in
equations (6.4), (6.13), (6.28), (6.36), (6.47), and (6.49).
With this in mind we take the ansatz

(z —z())(a(+ —')e )'R", z() & z & zp
Qg = -c~ z)zp, (7.1)

and

(z —z())(ay+ ~)e )'n", z() & z & z„,tld—
1 ~

~~ ~~

~~
~

e ~
~

~~ ~~

~
1

~ s

~ 2

+ nX + {ikd:)~) X

(7.2)

h(R„, P) = h, (R„)cos P+ h~(R„) sin P
+ h;„(R„)cos P sin P. (7.3)

In the above, o. = 0.231, xo ——0.3, && ——10.383, and
aq, bl, a2, and b2 are determined through the continuity
of the two functions and R„ is a parameter to be deter-
mined through variation. Clearly from equations (6.4),
(6.13), (6.28), (6.36), (6.47), and (6.49) we have

h;, (R„)
g(h, (R„)—h, (R ))2+ h', „(R )

(7.5)

pg = 0.879 —0.569 sin P, (7.6)

& rs &= —[cossP f r u, (r)dr+sin P r us(r')dr]

(7.7)

The values of the pion nucleon coupling constant
G /47r is taken to be 14.6. The same value was also
taken in the single nucleon case. We take A, = 0.1

fm as in the single nucleon case. The value of the cou-
pling constant g„/4z is taken to be 4.5 as in Ref. [12).
Then the total energy given by equation (7.4) is min-
imised with respect to R„. This minimisation gives t, he
binding energy of deuter on to be 2.2603 MeV which
is in good agreement with experimental value of 2.2
MeV. The contributions to energy from h, , hd, and h
are 3.975, 61.771, and 39.963 MeV respectively. We
find from equation (7.5) the d-state probability to be
8.87 %. The value of the variational paraITIPtel', R„, is
2.903 fm. The values of al, 6], 02, and 6a determined
through the continuty of the wave function at z = xz are
4.514 x 10 , 0.274, —5.845 x 10 , and 1.497, respec-
tively. Using equation (6.52) the average meson number
is found to be 1.157 x 10 . We next proceed to cal-
culate magnetic moment, the rms radius, and electric
quadrupole moment. We remote that
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P I

p.06-

ace ~

IO

and

Q = ~2cosP sinP u, (r)ud(r)r dr
4x 4

10

——sin P u~r dr).2 2 4

2

(7.8)

Using the equations (7.6), (7.7), and (7.8) we get pd =
0.834nm, &r ) f=2.74fm, andQ=9. 2x10
cm2, compared with experimental values of pg

——0.857
nm, &r ) i =1.95fm, andQ=2. 82x10 ~7cm~. We
note that both & r 2 ) and Q are larger by a factor of 2 to
3 whereas the magnetic moment is properly reproduced.

The s and d wave functions are plotted in Fig. l. In
our calculation we have assumed a hard core at z = zo
so that the wave functions vanished for z & zo. The wave
function is similar to what one obtains otherwise [13,14].

VIII. DISCUSSIONS

Let us consider what is achieved here. Firstly, we have
dressed single nucleons by scalar isoscalar pion pairs by

FIG. 1. Normalized s and d wave functions for deuteron
are plotted as a function of r in frn, after multiplication by
cosP aud siu P respectively.

minimising the total energy. We next consider dress-
ing for the two nucleon system. The algebra is straight
forward but unfamiliar, and is aimed at including ef-
fects of arbitrary order through an infinity of oA'-shell

pion quanta with construction similar to that of coher-
ent states. It thus becomes a generalisation of mean field
approximation of Walecka to a quantum level. We illus-
trate here how the method can be utilised for the case of
deuteron, reproducing features of spectroscopy. We note
that the method indicates the average meson content in
deuteron to be as small as 10 4. The meson cloud is
off-shell, but when excited, the channel x+m ~ 2p will
be available due to electromagnetic interaction of pions,
and the probability of two hard photon in coincidence,
though extremely small as a signal, will not have any
background. It may be possible to measure this.

The specific example of spectroscopy of deuteron how-
ever shall need additional considerations. It is likely that
the 6 resonance may also have a significant contribu-
tion [3, 15]. Further, as it stands, the effective Hamil-
tonian taken here does not have chiral symmetry. We
may visualise that the dynamical modes corresponding
to pion pairs [2, 3] could yield chiral symmetry and gen-
erate the corresponding effective Hamiltonian. This will
be similar to getting eff'ective Ginzburg-Landau expres-
sion from Cooper pairs, but so far we are unable to im-
plement this. Our objective is to show that replacing
potential by quantum coherent states shall have, in prin-
ciple, additional physics output not contained in earlier
methods, and can be applied to strong interactions of
nuclear physics.
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