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We calculate an energy-independent nucleon-nucleon potential using the folded-diagram expansion
following closely the philosophy for selecting one- and two-meson-exchange terms that led to the suc-
cessful Bonn energy-dependent interaction. Coupling parameters are very similar in the two cases, as is
the reproduction of the scattering phase shifts and deuteron properties, including the electromagnetic
form factors. We also present a simpler one-meson-exchange folded-diagram potential. We study the
properties of the many-body system using the two energy-independent interactions. The triton is under-
bound by about 1 MeV, and nuclear matter underbinds at a saturation density considerably above the
empirical density, suggesting the need for intrinsic three-body forces. These are considerably different
from the properties attributed to the energy-dependent Bonn interactions, reflecting our earlier observa-
tion that numerous higher-order corrections need to be considered in the energy-dependent scheme to

obtain comparable many-body results.

PACS number(s): 21.30.+y

I. INTRODUCTION

The Bonn potentials determine the nucleon-nucleon in-
teraction in terms of meson exchange. There exist a
variety of Bonn one-boson-exchange potentials (OBEP),
so called because they are built up from single exchanges
of mesons. The most complete (‘“full”’) Bonn potential [1]
contains, in addition to one-boson-exchange terms corre-
sponding to the known mesons of mass less than 1 GeV,
two-meson-exchange pieces that provide the main source
of the intermediate-range attraction in the interaction.
These potentials generally provide an excellent reproduc-
tion of the two-body data.

The full Bonn potential is derived from meson theory
using Bloch-Horowitz [2,3] many-body perturbation
theory and, as a result, it is energy dependent in addition
to having a nonlocal character. Solving the two-body rel-
ativistic Schrodinger equation using this potential is a
tractable problem, and the solutions have been thorough-
ly studied. However, in many-body (n >2) systems the
situation becomes much more complicated. The
difficulties arise from the energy dependence of the in-
teraction. As the potential must be evaluated many times
in solving such problems, the calculation can become
unacceptably long, especially when two-meson-exchange
terms are included.

For the reasons stated above, we will seek to simplify
the Bonn potential. We will do this using folded dia-
grams [4], the method being based on an expansion lead-
ing to an energy-independent (or instantaneous, but non-
local) interaction. Because of its lack of energy depen-
dence, the folded-diagram potential will be advantageous
to use in the many-body problem. The method has the
additional desirable features that the bookkeeping is ex-
pressed diagrammatically and that the diagrams have a
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close connection, both physically and technically, to
those appearing in the Bonn potential. This means that
we can make maximal use of the insight gained with the
full Bonn potential in constructing our instantaneous po-
tential. Furthermore, the two-body equation of motion is
the same in the two cases, which would not be the case
with some other well-known methods. Even more impor-
tantly, as we showed in a recent paper [5], the conver-
gence of the folded-diagram expansion appears to be
enhanced over that of energy-dependent schemes: there
exist fewer diagrams to evaluate, and pairwise cancella-
tions reduce the sizes of some of these. For example, the
“extrinsic” three-body forces (those which depend on the
details of the definition of the potential) are very small be-
cause of such a cancellation, which does not occur in the
energy-dependent scheme. Analogous cancellations
among folded-diagram contributions to effective
exchange-current operators arise [4], and these appear to
make the expansion of observables simple as well.

Folded diagrams have been developed as a tool for the
nucleon-nucleon interaction in a series of papers begin-
ning with a general development [4], followed by a nu-
merical study of the convergence of the folded-diagram
expansion for the nucleon-nucleon interaction [6] and a
detailed comparison of the structure of the many-body
theory with energy-dependent and energy-independent
interactions [5]. The retardation that occurs through the
energy-dependence in the Bonn potential is reinstated in
the instantaneous potential by folded diagrams. In prin-
ciple, one might expect to pay a price for eliminating the
energy dependence, namely, that expansion would not
converge to give the correct observables near thresholds.
However, rapid convergence to the correct observables
has been shown to occur in practice at energies below
meson-production threshold in cases where the exact
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answer is known [6]. If desired, extension of folded dia-
grams to the case of inelastic processes can be carried out
by going to coupled channels.

In Sec. II we explain the model, discuss the folded-
diagram classification, and indicate how we have made
our calculations of the folded diagrams. In Sec. III, we
present the results, giving the parameters of our energy-
independent version of the full Bonn potential together
with a simplified OBEP. We also give results obtained
with these potentials, for NN scattering below pion-
production threshold and for the deuteron state, compar-
ing them to experimental data. In Sec. IV we present re-
sults for nuclear matter and the triton with the new in-
teractions. Finally, in Sec. V we summarize our results
and draw conclusions.

II. MESON-THEORETICAL TWO-BODY MODEL

In this section, we discuss the physical content of our
nucleon-nucleon potential and show how the folded dia-
grams are evaluated for the potentials used in the calcula-
tions that we present in Sec. III. The physical content
can be expressed in terms of an underlying field-
theoretical Lagrangian. For the Bonn potentials (and ex-
tensions to other hadronic systems [7-9]), the Lagrangian
is constructed from a selection of mesons and baryons,
which interact through specific choices of the meson-
baryon and meson-meson couplings. Scattering ampli-
tudes and other observables are expanded perturbatively,
and the extended hadron structure is taken into account
by including form factors at the meson-meson and
meson-baryon interaction vertices.

Our expansion of the potential is guided by the obser-
vation that the longest-range components of the interac-
tion correspond to the exchanges of the lightest mesons.
This means that the one-boson-exchange (OBE) part of
the interaction is built from single exchange of mesons of
mass less than 1 GeV, namely, 7, 1, p, ®, 0’,and 8. The
&' meson is a representation of 77 interactions (in the 0"
channel) and is therefore different from oogg (used in
OBE potentials), which effectively parametrizes also un-
correlated (i, )+ (7,p) contributions; see Ref. [1]. The
two-meson-exchange terms are built from double ex-
changes of the following pairs of mesons: (m,7), (m,p),
(m,0'), and (7,0). For (m,7) and (7,p), we include nu-
cleon as well as A intermediate states. As in Ref. [1], we
omit (,7) and (7,8) because they are quite small, and
also (p,p),(c’,0’), etc., because they are of much shorter
range and because other higher-order terms of the same
range are also omitted. Our treatment for (7,0) ex-
change is slightly different from that in the full Bonn po-
tential, where the more strongly coupled o g was used
in (7,0) exchange. Since we want to avoid problems
when going to the equivalent (elastic) NN interaction
(0 opg> according to the above definition, does not have
well-defined G parity), we do not follow that procedure
here, but use o’ throughout. Antinucleons are omitted,
which seems to be a good approximation, at least for
pions with pseudovector coupling to nucleons [10].

For the purpose of enumerating the folded diagrams,
we use the general classification scheme of Ref. [11]. The
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lines that occur in diagrams fall into two categories: ac-
tive lines (the nucleons), which span the model space, and
passive lines (mesons and the A), which correspond to ex-
citations outside the model space. Folded diagrams then
provide a systematic method for evaluating an Hermitian
effective interaction and the corresponding effective
operators that act in the model space. Because the in-
teraction is Hermitian and instantaneous, the eigenfunc-
tions of the effective Hamiltonian may be chosen ortho-
normal, which is one technical advantage over the
energy-dependent schemes. The eigenvalues of the
effective Hamiltonian give the physical bound-state ener-
gies, and the phase shifts give the physical S matrix.
Other observables are calculated with the aid of the
folded-diagram expansion of effective operators [4,11].

The basic elements of the potential, called “boxes” in
the notation of Ref. [11], are connected sets of passive
lines. The simplest box is a single meson connecting two
nucleons. This fulfills the definition of a box because it is
trivially connected. Figure 1 gives the folded diagram
corresponding to this box [4]. The complete expression
for the folded diagram is found by multiplying its corre-
sponding energy denominator by the appropriate
numerator, consisting of meson-nucleon couplings at the
vertices. The numerators turn out to be the same as
those in Ref. [1], even for the vector mesons [4], if we fol-
low the simplifications of Appendix B of Ref. [1]. The
energy denominator, however, is completely different. In
the center-of-mass system, it is, for the exchange of
meson I,

1
Epe— (2.1)
where q is the three-momentum of the meson and m; is
its mass. The potential acts at the time base placed half-
way between the times of emission and absorption of the
meson as indicated by the horizontal dashed line.

At the two-meson-exchange level there are two types of
diagrams that we need to consider. These are the two-
meson single-box diagrams and the two-meson double-
box diagrams. An example of the former is the “delta
box” diagram shown in Fig. 2. This is a single-box folded
diagram because the mesons and the A form a completely
connected set of lines. We also include, following Ref.
[1], the two-meson-exchange diagrams containing two
A’s, shown in Fig. 3. All time orderings should be includ-
ed when evaluating these (and the other) two-meson-
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FIG. 1. Folded diagram corresponding to the one-meson-
exchange potential. The horizontal line is the time base, which
denotes the time at which the instantaneous potential acts rela-
tive to the time of emission and absorption of the exchanged
meson.
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FIG. 2. Single-box folded diagrams containing one A: (a) A
box diagram; (b) a A crossed-box diagram. These contribute to
the full folded-diagram potential.

exchange folded diagrams.

Figures 2(a) and 2(b) [and Figs. 3(a) and 3(b)] are called
“delta box” and “delta crossed-box” diagrams, respec-
tively, in Ref. [1]. These may be evaluated by a straight-
forward application of the rules found in Ref. [4], in
which case each diagram of Fig. 2 is found to consist of a
product of energy denominators expressed in terms of
four off-shell energy variables conjugate to the times at
which the vertices act. Placing the time base at the aver-
age of the four times of the vertices corresponds to re-
placing these off-shell energies by specific combinations of
the on-mass-shell energies E, and Eq:(ququ-mﬁ) of
the nucleons appearing in the initial and final states, re-
spectively, of the potential matrix element. The resulting
expression can be rearranged in a convenient fashion to
facilitate comparison to the Bonn potential. After this
rearrangement, these energy denominators can be
identified with the time-ordered diagrams found in Egs.
(B.17) and (B.18) of Ref. [1] for the A box and Eq. (B.20)
for the A crossed-box diagrams. The single-box A folded
diagrams are equivalent to these terms if we fix the off-
shell variable z at

z=E,+E, . (2.2)
The diagrams have the same numerators as in Ref. [1].
The difference between evaluating the two-meson single-
box diagram either as a folded diagram or as a term in
the full Bonn potential then becomes just a choice of z.
For example, the instantaneous potentials corresponding
to D' [Eq. (B.17) of Ref. [1] is

D'i'=(z _Eqr_Ek_Cl)qr_k)(Z _Ek _E]:)

X(Z _Eq_Ek '—a)q_k) 5 (23)

Gt

(@) (b)

FIG. 3. Single-box folded diagrams containing two A’s: (a) a
A box diagram; (b) a A crossed-box diagram. These contribute
to the full folded-diagram potential.
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with E}?=k2+m3 and with z given by Eq. (2.2).

The remaining two-meson folded diagrams are double-
box diagrams. There are two types, true-correcting and
model-correcting folded diagrams. These are both illus-
trated in Fig. 4. They are not single-box diagrams be-
cause they are not completely connected by lines lying
outside the model space. Figure 4(a) is true correcting,
meaning that it is not generated by an iteration of a
single-box folded diagram. The model-correcting dia-
gram, Fig. 4(b), is a piece of the iteration of the single-box
folded diagram that is not a valid time ordering of the
corresponding Feynman diagram. As such, it must be
evaluated and subtracted as a separate term in the poten-
tial. As explained above, our model consists of double-
box folded diagrams for the following pairs of exchanged
mesons: (7,7), (m,p), (7,0'), and (7,).

The denominator structure of the true-correcting fold-
ed diagram of Fig. 4(a) is identical to the A crossed-box
diagram in Fig. 2(b) [or Fig. 3(b)], the only difference be-
ing the masses of the intermediate particles. These bear
the same relationship to the Bonn potential as did the
two-meson-exchange single-box diagrams and can be cal-
culated as discussed in connection with Eq. (2.3). Its
numerator is identical to the crossed-box diagrams of
Ref. [1] for the same set of mesons. The model-
correcting folded diagram, Fig. 4(b), is discussed in detail
in Refs. [4] and [6]. The short horizontal lines cutting
the individual meson lines in the figure are the time base
of the one-meson exchange in Fig. 1; the relative time or-
dering of these lines must be maintained in evaluating
this diagram, as must the sense of the internal folded nu-
cleon line (running backward in time). An expression for
this folded diagram is found in Refs. [4,5]. As also dis-
cussed there, the stretched-box diagrams as defined in
Ref. [1] are automatically included in the iteration of Fig.
1 when the time base is chosen as it is in our work.

It is clearly seen from Egs. (2.2) and (2.3) that the dia-
grams of Figs. 1-3 and 4(a) on shell (z =2E,=2E_) have
values identical to the corresponding diagrams of the
Bonn potential [the folded diagram, Fig. 4(b), has no
counterpart], and the integration over intermediate mo-
menta in the two-meson diagrams encounters no singu-
larities. However, when they are used as potentials in the
two-body scattering equation, they must be evaluated
half off shell, and at these points the corresponding terms
in the folded diagram and Bonn potentials are no longer

(a) (b)

FIG. 4. Double-box two-meson-exchange folded diagrams:
(a) a true-correcting double-box folded diagram; (b) a model-
correcting double-box folded diagram.
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equal to each other. For certain off-shell points, the ener-
gy denominators in the folded-diagram potential develop
zeros. The occurrence of these zeros is connected with
the existence of meson-production thresholds, and the
proper way to handle the singularities was specified in
Ref. [4], namely, the poles must be integrated as a princi-
pal value. When this is done, the overall potential
remains finite. The remaining “pole” piece of the dia-
grams corresponds to meson production and is therefore
justifiably neglected in the energy region below meson-
production threshold.

The principal value causes no problem in principle, but
in practice it makes the diagrams lengthy to evaluate.
Results evaluated in this fashion were obtained in a stable
calculation and presented in Refs. [4,5]. In the present
work we found that the calculation of some of the dia-
grams became more difficult to stabilize, due to the merg-
ing of two singularities in the (three-dimensional) integra-
tion over the intermediate momenta in Figs. 2—4. For
this reason, we have looked for approximation schemes
that allow us to evaluate these folded diagrams quickly
and accurately on the computer.

One can see technically the origin of these zeros by
looking at a typical energy denominator in a higher-order
diagram [see Eq. (2.3)],

1
z _qu_Ek _wq'_k )

2.4)

When z is replaced as in Eq. (2.2), this denominator be-
comes

(2.5)

The problem arises in Eq. (2.5) when g becomes very
large compared to ¢’. In this case, the denominator can
vanish for some value of the loop momentum k. This can
be avoided if E, is replaced by E,.. It can be shown that
denominators occur in pairs with E, and E . appearing
symmetrically, so that after this approximation the po-
tential retains the Hermitian character of the unapproxi-
mated folded diagram. In general, there remain slight
changes in the off-shell matrix elements of the potential;
however, their effect on NN observables turns out to be
almost negligible for the cases that have been compared
to the exact principal-value integration. This is not
surprising, since off-shell contributions occur only in
higher-order interactions, which we know to be quite
small.

We have found that one additional problem occurs in
connection with the A box diagrams. If we follow the
prescription outlined above, the size of the folded dia-
gram becomes radically larger off shell than that of the
corresponding term of the Bonn potential. We have
traced this difference to a rather strong energy depen-
dence of the box diagram near A production threshold,
which arises from the term z —E;, — E} in the box propa-
gators of Eq. (B.17) of Ref. [1] [cf. also Eq. (2.3)]. The ad-
ditional energy dependence generated by the other two
terms in the propagator is quite weak throughout the
whole energy range. We therefore divide the box into

two contributions, a main contribution (defined by setting
z=2my in the term z —E;, — E}}) and a remaining piece.
The latter piece, however, is quite small below threshold
for A production and can therefore safely be neglected.
We then replace the smooth energy dependence, stem-
ming from the other two terms in the propagator, by an
instantaneous potential according to the folded-diagram
procedure. Indeed, we find that below meson-production
threshold, this procedure reproduces the results of the
full Bonn potential to within a few percent. We would be
able to do a complete folded-diagram calculation, includ-
ing the neglected piece, by enlarging the model space to
include A’s. This would lead naturally to coupled chan-
nels, which we consider in a future publication.

III. RESULTS FOR THE NUCLEON-NUCLEON SYSTEM

A. Parameters

In this section, we construct two potentials: a ““full”
folded-diagram potential including two-meson-exchange
contributions, FULLF, and a one-boson-exchange ver-
sion of it, OBEPF. The full folded-diagram potential was
obtained by fitting the meson-nucleon coupling parame-
ters appearing in the expressions of Sec. II to the two-
body observables. To obtain OBEPF, the two-meson-
exchange terms of the full potential were replaced by a
fictitious scalar meson o ggg, and small compensating ad-
justments were made in some of the parameters of the
other one-meson-exchange terms. We would naturally
expect that the meson-theoretical couplings found for the
full potential would be closer to their true values, but we
establish in Sec. IV that OBEPF is nevertheless useful as
an expedient for exploring the implications of the full in-
teraction in the many-body problem.

The resulting meson parameters for our full folded-
diagram potential are given in Table I, together with cor-
responding values of the full Bonn potential [1]. As we
would expect from correctly executed perturbation
theory, the parameters of the folded-diagram potential
differ only slightly from those of the full Bonn potential.
(The only exception is the NAm cutoff mass. Since, for
stability reasons, we now use a dipole form factor for
both NAm and NAp vertices, we have to increase the
NAm cutoff mass to 2 GeV in order to obtain the same
realistic isobar contributions as in the original Bonn po-
tential.) This fact is reassuring, leading us to conclude
that both interactions are acceptable representations of
the same underlying meson-nucleon field theory.

Although the lack of energy dependence is an advan-
tage of the full folded-diagram potential, its two-meson-
exchange terms are still lengthy to calculate, so we have
developed a simplified one-meson-exchange version of it,
OBEPF. The construction of OBEPF is similar to that
for OBEPT in Ref. [1], except that OBEPT is energy
dependent like the full Bonn potential. In both interac-
tions the complicated two-meson-exchange terms of the
full Bonn potential are eliminated in favor of a much
simpler but fictitious scalar-meson-exchange term. It is
not possible to retain the same meson-nucleon coupling
parameters, because the two-meson-exchange terms also



45 FOLDED-DIAGRAM NUCLEON-NUCLEON POTENTIAL FOR . ..

2059

TABLE 1. Meson parameters applied in our full folded-diagram interaction FULLF. Numbers in
parentheses denote corresponding values of the full Bonn potential, when different. Nucleon mass

m =0.938926 GeV; mass of A isobar=1.232 GeV.

IJ% Meson mass Cutoff mass
Vertex of meson m, (GeV) gi/4m(f,/8.] A, (GeV) Na
NN 1(07) 0.13803 14.4 1.2 1
(1.3)
NNp 1(17) 0.769 0.74 [6.6] 1.25 1
(0.84) ([6.1]) (1.4)
NNo 0(17) 0.7826 25.0 1.6 1
(20.0) (1.5)
NN (o) 0.983 1.9984 2.0 1
(2.8173)
NN’ 0(0™") 0.560 6.7761 1.8 1
(0.550) (5.6893) 1.7
NAw 1(07) 0.13803 0.224 2.0
(1.2) (1
NAp 117) 0.769 20.643 1.5 2
(20.45) (1.4)

contribute to the tensor force. Therefore, the tensor
force in the one-meson-exchange terms must be
strengthened. This was achieved in OBEPT by increas-
ing the cutoff mass in the pion-nucleon form factor from
1300 to 1750 MeV.

The parameters of the OBEPF potential are shown in
Table II. Again, these are quite similar to those of
OBEPT, shown for comparison in the same table. In par-
ticular, the range of the pion-nucleon form factor (1.75
GeV) is the same in the two cases. For both OBE ver-
sions, we use a slightly higher mass for oggg in I =0 than
in I =1. The reason is that the two-meson-exchange con-
tributions, effectively parametrized by oggg, are
definitely shorter ranged in 7 =0. (For example, the rela-
tively long-ranged NA box diagrams are absent in I =0.)
Note, however, that the I =1 parameters given in Table
IT also fit the 7 =0 phase shifts and all deuteron proper-
ties. Only the accurate description of the triplet-S low-
energy scattering parameters (see below) require the
higher o g mass.

TABLE II. Parameters for our folded-diagram interaction
OBEPF. The number in square brackets denotes the tensor-to-
vector coupling ratio. Where the values for OBEPT differ, they
are given in parentheses. For the definition of the parameters,
see Ref. [1]. The parameters for ogge given in the table apply
only to the I =1 NN potential. For I =0 we have m,=0.740
(0.615) GeV, g2 /47 =18.8742 (11.7027), and A,=2.0 GeV.

Mass A,

Meson (GeV) gi/4r (GeV)

T 0.13803 14.4 (14.6) 1.75

n 0.548 8 5.0 1.5
O0OBE 0.550 7.9864 (8.8543) 2.0

8 0.983 3.6276 (1.1585) 2.0

p 0.769 0.86 (0.92) [6.1] 1.5

[2) 0.7826 20.0 1.475(1.5)

B. NN scattering phase shifts

The resulting NN scattering phase shifts, derived from
the folded-diagram potentials FULLF and OBEPF, are
shown in Fig. 5 for J=0-2 and energies below pion-
production threshold in comparison to Arndt’s phase-
shift analysis [12]. This figure also contains the corre-
sponding predictions for the energy-dependent version
OBEPT. (The results for the full Bonn potential can be
found in Ref. [1].) Obviously, both folded-diagram po-
tentials describe the data fairly accurately; the reproduc-
tion is at least of the same quality as in case of the
energy-dependent version OBEPT. In some partial waves
(e.g., 'D,) there are minor discrepancies at higher ener-
gies; however, we will demonstrate in the next section
that they do not have any impact on the results for the
many-body system derived from these potentials. (Note
that application to the many-body system was the pri-
mary aim for constructing these folded-diagram poten-
tials.)

C. Deuteron and low-energy parameters

Table III contains the deuteron and low-energy scatter-
ing parameters predicted by both folded-diagram poten-
tials. The excellent reproduction of these empirical data
[13-17] is essential in view of the later application to the
many-body problem. Thus, both versions can be con-
sidered as reliable starting points for meaningful nuclear-
structure calculations.

There is one striking difference between the present
energy-independent and the former energy-dependent
versions: FULLF as well as OBEPF have a considerably
larger D-state probability compared to both the full Bonn
(4.25%) and OBEPT (4.27%) potentials. Since Pj, is not
an observable this difference is not in contradiction to
any data. A larger value was, in fact, anticipated in the
energy-independent scheme by Desplanques [18].

At this point it is instructive to compare OBEPF and
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FIG. 5. Selected phase shifts for n-p scattering. The solid curve is the full folded-diagram potential FULLF; the dashed curve cor-
responds to the one-boson-exchange version OBEPF. The dotted line is the model OBEPT from Ref. [1]. Experimental phase shifts

are from Arndt et al. [12].
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OBEPQ [1] because these are both instantaneous OBE
potentials obtained from somewhat different points of
view. The latter was obtained using the Blackenbecler-
Sugar prescription [19] truncated at the one-meson level.
It was intended to have the same low deuteron D-state

phase shift (deg) mixing parameter (deg)

phase shift (deg)
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probability as the (energy-dependent) OBEPT. This
could only be achieved by weakening the tensor force of
the one-pion-exchange potential, which was accom-
plished by decreasing the value of the cutoff mass of the
NN form factor to 1.3 GeV. (Although this value hap-
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TABLE III. Deuteron and low-energy scattering parameters, predicted by our full folded-diagram potential (FULLF) and by a
corresponding one-boson-exchange version (OBEPF), compared with experiment. The experimental values are taken from the refer-
ences indicated in the footnotes; the low-energy scattering data are from Dumbrajs et al. [17].

FULLF OBEPF Exp.
Deuteron
Binding energy g, (MeV) 2.2244 2.2246 2.224575%
D-state probability P; (%) 5.22 5.66
Quadrupole moment Q, (fm? 0.2796 0.2805 0.2859+0.0003°
Asymptotic S state Ag (fm~!/?) 0.8886 0.8867 0.8846+0.0016¢
Asymptotic D /S 0.0264 0.265 0.0256+0.0004¢

Neutron-proton low-energy (scattering length a, effective range r)

1Sy: a, (fm) —23.76 —23.75 —23.758+0.010
ry (fm) 2.812 2.710 2.75+0.05

3S,. a, (fm) 5.436 5.426 5.424+0.004
r, (fm) 1.766 1.754 1.759+0.005

#Reference [13]

PReference [14].

‘Reference [15]

dReference [16]

pens to be the same as in the full Bonn potential, the ten-
sor force in OBEPQ is likewise weaker since the two-
meson-exchange terms in the full model increase the ten-
sor force, as discussed before.) Indeed, a comparison of
the parameters of OBEPQ (see Table 5 of Ref. [1]) to
those of OBEPF, given in Table II, shows that the most
significant difference is the smaller NN# cutoff mass in
OBEPQ, which is responsible for the rather low values
for the mixing parameter €, at higher energies. We shall
see in the next section that this discrepancy in the tensor
force between OBEPF and OBEPQ leads to sizable
differences in the many-body system.

D. Deuteron form factors

In traditional phenomenological approaches to
electron-deuteron (e-d) scattering, the dynamics is de-
scribed in terms of static, instantaneous NN interaction
models. The deuteron form factors are first calculated in
the nonrelativistic impulse approximation (IA), and then
various corrections, such as relativistic effects (RC) and
meson-exchange currents (MEC) computed from effective
operators, are added. A similar procedure can be fol-
lowed in conjunction with our folded-diagram potentials.

Use of the same meson-exchange current for all instan-
taneous potentials would seem to be inconsistent at first
sight, since according to the folded-diagram approach,
potential-dependent terms should appear in the
exchange-current operators. However, this procedure is
approximately justified by virtue of the strong cancella-
tions that occur among the potential-dependent terms at
the level of one-meson exchange. Moreover, Friar [20]
has calculated explicitly the leading-order (in v/c) non-
vanishing exchange-current corrections in various
schemes, including folded diagrams, and displayed their
equivalence after eliminating the canceling terms. One
has thus tended to use the same exchange-current opera-

tor for all instantaneous potentials, regardless of their ori-
gin. Accordingly, also for our folded-diagram potential
one can take the potential-independent terms from Refs.
[21], but we point out that if one wants to take advantage
of the systematic folded-diagram classification for calcu-
lating corrections at the level of two-meson exchange,
one will want to recalculate the potential-independent
one-meson-exchange terms following the standard
folded-diagram prescription at some future time.

The situation is, however, different for OBEPT and the
full Bonn potential from Ref. [1]. The approximate
equivalence among exchange-current operators does not
hold for energy-dependent potentials, so one cannot use
the exchange-current calculations of Ref. [21] for the
aforementioned models. Furthermore, the wave function
nonorthonormality resulting from such energy-dependent
interactions provide even a serious conceptual problem in
connection with these traditional approaches. Therefore
it is clearly advantageous to use our folded-diagram po-
tential also for investigations in the e -d system.

In the following we demonstrate the effect of the ener-
gy dependence (or, equivalently, the wave function
nonorthogonality) by means of an IA calculation. Figure
6 shows the deuteron form factors 4 (g) and B(q) (see,
e.g., Ref. [22] for their definitions) obtained with the
folded-diagram potential FULLF in comparison to the
full model of [1] and experiments [23-29]. In this calcu-
lation we employed the empirical dipole fit given by Gari
and Hyuga [21(b)] for the nucleon form factor. The
curves for the full Bonn model correspond to the deute-
ron wave function given in Ref.[1], where orthonormality
was imposed by simply renormalizing the NN part to uni-
ty (cf. footnote a of Table 3 in Ref. [1]). For both the
electric and the magnetic deuteron form factors the pre-
dictions of FULLF lie above the ones for the full Bonn
potential. This shift has to be attributed to the energy in-
dependence of the folded-diagram potential.
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We want to mention at this point that there is also a
more phenomenological prescription for dealing with
energy-dependent potentials in e-d scattering suggested
by Friar [30]. According to him the effects of the energy
dependence of an interaction model V(E) on the per-
tinent NN wave function ¥ can be eliminated via the
transformation

av

1=3E

172

¥= v, 3.1

leading to an orthonormalized wave function ¥, which
then can be used in the standard way. Indeed, this pro-
cedure was applied to the full Bonn NN model in Ref.
[31]. They found that the elimination of the energy
dependence leads to a shift in the predicted form factors,
an effect which is in fact comparable to the result we ob-
tained by applying the folded-diagram prescription.
Thus, our calculations tend to confirm qualitatively the
findings of Pauschenwein et al. [31]. Clearly, the sys-
tematic removal of the energy dependence via the
folded-diagram expansion is theoretically much more ap-
pealing than the ad hoc prescription of Eq. (3.1), since
only the former does allow a consistent treatment of
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meson-exchange currents (cf. the comments above).

A similar shift in the deuteron form factors was found
also in an analogous comparison of OBEPF and OBEPT.
Note that the discrepancies between the predictions of
FULLF and the data, in particular for higher-momentum
transfer, are not an indication for shortcomings of our
model. After RC and MEC are added to our IA results
shown in Fig. 6 (which can be done unambiguously for
the folded-diagram models), the predictions should come
up to the experimental values [31].

IV. THREE-BODY SYSTEM AND NUCLEAR MATTER

We have found that only small adjustments in the pa-
rameters of the folded-diagram interaction are needed to
achieve the same quality fit to empirical data as the Bonn
interactions. Since this is the case, we can expect [5] that
the properties of many-body systems calculated with the
folded-diagram interaction are equivalent to those that
would be obtained with the full energy-dependent Bonn
potential. (We assume that these small relative adjust-
ments compensate for the higher-order diagrams that
have been omitted.) We are therefore able to bypass the
more complicated many-body theory that occurs in the

10-3

104

10~

10-®

10-®

— FULL F
10710 4+— 'FU'LLl T LA R B B
0.0 2.0 4.0 6.0

q (fm=T)

FIG. 6. Deuteron electric and magnetic form factors calculated in impulse approximation. The solid curve is the full folded-
diagram potential FULLF; the dashed curve corresponds to the (energy-dependent) full Bonn potential given in Ref. [1]. Experimen-
tal data are from Refs. [23-27] [for A4 (g)] and from Refs. [23,27-29] [for B(q)].
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energy-dependent scheme by using our folded-diagram
interaction.

A. Nuclear matter

In lowest order (two-hole-line approximation) the bind-
ing energy E of nuclear matter is given by

E=3 (mlhylm)+1 3 (mn|G(z)imn—nm) . (4.1)

m,n

Here, the first term denotes the kinetic-energy contribu-
tion; the G matrix depends on the starting energy
z=¢,, +¢, and is obtained from a solution of the Bethe-
Goldstone equation

G=V+V*—Q-G ,
z—h

4.2)
in which Q denotes the Pauli projector and A contains, in
addition to the free-particle energy, E,,, single-particle
potentials building up the total single-particle energies
€,,. According to the “standard” or “gap” choice, these
energies are given by

E,+3 (mn|G(e,, +¢e,)|mn) for k,, <kp,

4.3)

&n= |E,, for k,, >kg ,

m

i.e., the G matrix has to be determined self-consistently.
Figure 7 shows the resulting binding energy per parti-
cle, E/A, as a function of the Fermi momentum k.
Both folded-diagram potentials, in spite of their com-
pletely different physical structure, yield quite similar re-
sults, which, moreover, agree qualitatively with those ob-
tained from comparable instantaneous interactions.
Table IV demonstrates that slight differences between the
two model predictions occur in all partial-wave states.
Apart from 35, these can be completely traced to small
differences in the corresponding phase-shift descriptions

T T
] — FULLF
- - OBEPF

-binding energy per nucleon (MeV)

] T T T T T T L T T
1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fermi momentum ke (1/fm)

FIG. 7. The total binding energy per nucleon as a function of
density as measured by the Fermi momentum. Same descrip-
tion of the curves as in Fig. 5. The small box represents the ex-
perimental situation.
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TABLE IV. Partial-wave contributions (in MeV) to the bind-
ing energy of nuclear matter, E / 4, for our full folded-diagram
potential FULLF, the one-boson-exchange version OBEPF, and
the corresponding energy-dependent potential OBEPT at
kp=1.5fm™ .

FULLF OBEPF OBEPT
1S, —19.81 —19.94 —19.28
P, —4.67 —4.84 —4.79
p, 5.47 6.15 5.36
’p, 14.93 14.92 14.87
38, —21.28 —20.48 —23.45
’D, 2.38 2.19 2.11
'D, —3.83 —3.62 —3.79
D, —5.74 —5.83 —6.03
’p, —10.35 —10.26 —10.92
°F, —0.90 —0.90 —0.91
J=3 4.46 4.52 4.42
J=4 —2.50 —2.58 —2.64
5=J=<12 0.76 0.76 0.76
Potential
energy —41.09 —39.91 —44.29
Kinetic
energy 27.51 27.51 27.51
E/A 13.58 12.39 16.77

(compare Fig. 5). A detailed inspection of the situation in
'D, shows that the sizable difference between the phase
shifts predicted by FULLF and OBEPF at higher ener-
gies (E,;, > 150 MeV) does not have any impact on the
nuclear-matter results since this difference would suggest
a lower binding for FULLF in this partial wave. Howev-
er, FULLF provides even more binding, which demon-
strates clearly that the nuclear-matter results are deter-
mined by the behavior of the phase shifts below 100 MeV
only. (Indeed, FULLF provides a larger 'D, phase shift
in that region.)

As expected, in the energy-independent scheme, the
two-body cluster contributions do not provide sufficient
binding and saturate at relatively too high a density. The
situation is different in the energy-dependent framework.
As Fig. 7 shows, OBEPT provides too much binding on
the two-body cluster level. As seen from Table IV, the
increased binding arises essentially from the 3§, state,
due to the drastically smaller deuteron D-state probabili-
ty of OBEPT.

The deviations from the empirical value suggest the
need for three-body (and possibly higher-body) clusters
and three-body forces. More importantly, to the extent
that we are using (essentially) the same meson-nucleon
field theory for the energy-dependent and energy-
independent potentials, leading in principle to the same
result, the discrepancy between the theoretical predic-
tions in both schemes on the two-body cluster level im-
plies that many-body clusters and three-body forces have
quite different characteristics in the energy-dependent
and energy-independent framework. Thus, potentials
defined in different schemes, which lead to different re-
sults on the two-body cluster level, should converge to
the same result as higher-order contributions are includ-
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ed. Conversely, the fact that, in lowest order, an instan-
taneous potential predicts about the same result as an
energy-dependent potential does not mean that the final
results will likewise be the same. In fact, this is highly
unlikely since the higher-order contributions behave
quite differently in both schemes, as demonstrated in Ref.
[5] for the extrinsic three-body forces.

Thus, although OBEPQ provides overbinding compa-
rable to OBEPT on the two-body cluster level (the two
having a similar deuteron D-state probability), we should
expect the final results evaluated from both potentials, in-
cluding higher-order contributions, to be completely
different. In this sense, and in contrast to OBEPF, the
energy-independent OBEPQ potential is not equivalent to
OBEPT or the full Bonn potential in spite of having
about the same (low) D-state probability.

We have some understanding of the many-body cluster
contributions in the energy-independent scheme. These
have been examined by Day [32]. We also understand
from Ref. [5] that one class of three-body forces [33], the
‘“‘extrinsic” ones, is small for instantaneous interactions.
The residual intrinsic three-body forces are very interest-
ing, and our most likely source of information about
them is a comparison between calculations and measure-
ments of ground-state properties of many-nucleon sys-
tems.

Adding the multibody cluster contributions from Day
[32] and taking the extrinsic three-body forces to be
negligible for the folded-diagram interaction [5], we find
that nuclear matter saturates at kp~1.6 fm™! with
E/A~=—18 MeV. Since these are not the empirical
values of the Fermi momentum and binding energy, we
conclude that additional terms, either intrinsic three-
body forces or some other dynamics (e.g., relativistic
effects), must also contribute. These results are, in a
sense, the most important ones of the present paper, since
our previous analysis [5] shows that an equivalent calcu-
lation within the framework of the energy-dependent
scheme is quite difficult and is unlikely to be made in the
near future.

B. Three-body system: the triton

The difficulties caused by the energy dependence be-
come especially severe when the full Bonn interaction is
used for finite systems. Some of these problems were an-
ticipated [1], which is one reason that the energy-
independent potential OBEPQ has been constructed.
This potential and variants thereof have been used exten-
sively in the three-body calculations [34,35]. Since our
folded-diagram potentials OBEPF and FULLF have a
substantially different D-state probability than OBEPQ,
we look at their implication for the triton in this section.

Faddeev calculations for the trinucleon bound state
were performed for the so-called five-channel
configuration (only the 'S, and 3S,-’D, partial waves are
used as NN input). Such a five-channel calculation pro-
vides already the bulk of the triton binding energy and
therefore suffices for the present purposes. Furthermore,
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comparable results for essentially all modern NN models
are available in the literature [35,36]. Higher partial
waves do contribute somewhat differently depending on
the particular NN model; however, they do not lead to
qualitative modifications (in general, they increase the
binding energy by only about 0.1 to 0.3 MeV).

We solve the three-body (Faddeev) equations in
momentum space by first performing a separable finite-
rank expansion of the NN sector. Such a technique has
been previously studied extensively by one of the authors
(J.H.) [37,38] for the case of the Paris NN potential [39].
In Ref. [37] it was shown that with a separable expansion
of sufficiently high rank, convergence on the three-body
level can be achieved. Indeed, in the meantime the
three-body results obtained with this separable-expansion
method have been confirmed by other groups using
different techniques—for the trinucleon binding problem
[36] as well as for the continuum [40]. For the models
FULLF and OBEPF we followed closely the procedure
described in Ref. [37], and we refer the reader to this pa-
per for further details. Again it turned out that separable
representations of rank 4 for 'S, and rank 6 for °S,-*D,,
respectively, are sufficient to get converged results.

The triton binding energies obtained in our five-
channel calculation are 7.86 MeV for FULLF and 7.83
MeV for OBEPF. These values agree, in fact, perfectly
with the expectation expressed in our preceding paper (cf.
Sec. IV C therein) [5] but are substantially smaller than
the corresponding result for OBEPQ (8.36 MeV) [35]. As
compared to OBEPF the full folded-diagram potential
provides slightly more binding of the triton since its
deuteron D-state probability is smaller. In fact, this effect
could have been more pronounced; it is, however, for the
most part compensated by the somewhat less attractive
1S, partial wave of FULLF (cf. Fig. 4).

Comparable (five-channel) calculations for other in-
stantaneous NN potentials like, e.g., the Paris and the Ar-
gonne V', [41] models yielded 7.30 and 7.44 MeV, re-
spectively [36]. These values deviate to some extent from
the triton binding energies predicted by our folded-
diagram models which, however, can be easily under-
stood. The Paris NN potential has a slightly larger D-
state probability (5.77%) than FULLF and OBEPF,
which is partly responsible for the lower binding energy.
Most importantly, however, contrary to our models its
1S, partial wave is fitted to p-p data; it is known that the
additional attraction present in the ('S,) n-p case pro-
duces an enhancement of 0.3 to 0.4 MeV in the binding of
the triton. The Argonne potential, on the other hand,
has a significantly larger D-state probability, namely,
6.08%.

Again, as in the case of nuclear matter, the number of
higher-order effects that need to be included with the
folded-diagram potential is relatively small, giving us
some expectation that the results we obtain here accu-
rately reflect the implications of the underlying meson
theory. Note also, that now, in contrast to the situation
for OBEPQ, the theoretical trinucleon binding energy is
considerably smaller than the experimental value of 8.48
MeV, so that there is enough room for contributions
from intrinsic three-body forces.
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V. SUMMARY AND CONCLUSIONS

There are several important motivations for construct-
ing nucleon-nucleon potentials. One of these is to deter-
mine the parameters characterizing the underlying
effective meson-nucleon field theory by comparing solu-
tions of the two-body Schrodinger equation to the empiri-
cal data. Another is to facilitate testing the implications
of meson theory for n-body systems.

The first of these goals has been accomplished already
with the full Bonn interaction. To explore the implica-
tions of the full Bonn potential for the many-body system
is, however, a very difficult task. One reason for this is
the energy dependence and the complicated nature of the
two-meson-exchange terms in the interaction, which
make many-body calculations computationally very
lengthy. Another reason is that there are many terms to
be evaluated in the many-body theory.

For these reasons we have constructed alternative po-
tentials using folded diagrams. We have obtained a full
folded-diagram interaction, FULLF, and an approximate
one-boson-exchange interaction, OBEPF. The folded-
diagram method is used because it leads to an energy-
independent interaction. For the two-body problem, we
have found that the values of the coupling constants and
form factors are comparable to those of the correspond-
ing energy-dependent Bonn potentials, confirming that
the same underlying meson-nucleon field theory is being
applied in the two cases. By virtue of its lack of energy
dependence, the computational time involved in many-
body calculations is much shorter with the folded-
diagram interaction than with the full Bonn potential.
The structure of the many-body theory is also simpler in
the case of the folded-diagram interaction because there
are fewer terms in higher order and the extrinsic three-
body forces tend to cancel out of the folded-diagram po-
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tential. For these reasons, we believe that we have made
realistic estimates of the binding energy of nuclear matter
and the triton based on the common meson-nucleon field
theory.

The results of our binding energy calculations for nu-
clear matter and the triton are 12.56 MeV (at kz=1.58
fm™!) and 7.83 MeV for OBEPF, respectively, and 13.73
MeV (at kp=1.55 fm~!) and 7.86 MeV for FULLF, re-
spectively. We note, in particular, that these values are
different from the results calculated earlier [1,35] with
OBEPQ. The difference can be traced to the substantial-
ly lower D-state probability of OBEPQ. We have ob-
tained the larger D-state probability of OBEPF and the
full folded-diagram interaction when we demand the best
fit of the meson-nucleon coupling parameters to the ex-
perimental two-body data.

Since our nuclear-matter and triton observables are
different from the empirical values, we conclude that the
intrinsic three-body forces [33] will be important. One
should calculate these with the parameters corresponding
to the full folded-diagram potential (or the full Bonn in-
teraction) rather than those of the OBEPF, since some of
the parameters of the latter have been renormalized to
account for the simpler structure of the potential. Addi-
tional information about the couplings in the meson field
theory can be obtained from a consistent calculation of
exchange currents and other observables in the few-body
sector. Such calculations are also possible to do within
the framework of the folded-diagram method [4]. We be-
lieve that these extensions are interesting directions for
future research.
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