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Partial restoration of chiral symmetry in nuclear matter
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Recent work of Cohen, Furnstahl, and Griegel has advanced our understanding of the behavior of
quark and gluon condensates in nuclear matter. We make use of their analysis to discuss the role of
chiral condensates as they appear in relativistic Brueckner-Hartree-Fock theory. We find some support
for assumptions we used to discuss the properties of nuclear matter in our earlier work. We also find
that a rather consistent picture emerges from these studies, when we relate the parameters of the boson-
exchange model of nuclear forces to an underlying field-theoretic description of nuclear matter.
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I. INTRODUCTION

Some time ago, we discussed the role of quantum field
theory in understanding the properties of nuclear matter
[1]. In particular, we associated the large scalar fields,
found in the phenomenological analysis of nucleon-
nucleus scattering and in studies of nuclear matter, with a
partial restoration of chiral symmetry at finite baryon
density. To create a theoretical framework to discuss the
role of chiral symmetry breaking in the nuclear many-
body problem, we made use the the Gell-Mann —Levy sig-
ma model [2], with nucleon and meson degress of free-
dom. (The sigma field of that model is identified as an or-
der parameter describing chiral symmetry breaking. )
Our approximations led to the expression

GcrNNps
2m

thereby setting up a linear relation between the sigma
field in matter and the value of the nuclear scalar density,
ps. (Note that ps depends on the value of the medium-
modified nucleon mass, mN. ) Further, f =93 MeV is
the pion decay constant and G NN is the sigma-nucleon
coupling constant. Values of about 10 for G NN are usu-
ally used in the boson-exchange model of the nucleon-
nucleon interaction [3]. If we take the Gell-Mann —Levy
model seriously, and put G NN

——10, we have
m~=G N~f =930 MeV in vacuum. Also, if we use
m =600 MeV, ps=0. 16 fm, and 6 NN =10 in Eq.
(1.1), we find a 44% reduction of the vacuum value of the
sigma field and of the nucleon mass in nuclear matter.

Since the work of Cohen, Furnstahl, and Griegel [4]
provides some support for the use of a linear relation be-
tween the order parameter and the scalar density, we re-
view some aspects of their analysis in Sec. II of this work.
In Sec. III, we discuss the role played by the sigma field
in relativistic Brueckner-Hartree-Fock theory (RBHF}
[5] since the authors of Ref. [4] only presented a rather
schematic discussion of how their results might be used
in a field-theoretic description of nuclear matter. (For ex-
ample, in our earlier work, we were able to discuss the

role of exchange diagrams and short-range correlations in
determining the properties of nuclear matter. In addi-
tion, we included the full array of mesons used in the
boson-exchange model of the nucleon-nucleon interaction
in our calculations [5].) In Sec. IV we provide some fur-
ther discussion and summarize our conclusions.

II. CHIRAL SYMMETRY ORDER PARAMETERS
AT FINITE BARYON DENSITY

In this discussion, we will often follow the notation
used in [4]. We denote the average current quark mass as
me [m~ = ( m+ m)d/2]. The constituent quark mass will
be M~ in vacuum and M in nuclear matter. In Ref. [4]
the assumption is made that mN=3Mq and mN=3Mq, so
that the coupling constant of a quark to the sigma field,
g, is seen to be one-third of G NN, if we use the relations
mN=G ttttf and M =gf =310MeV.

First, we quote a model-independent relation, which is
valid at low density [4],

pttlqq ptt pti

olqqlo& p
(2.1a}

+N
pit (2.1b)

Here, o iv =2m~ & N I qq IN ) is the nucleon sigma term and

pN is the baryon density. The matrix element
& pz lqq Ip~ ) denotes the value of the scalar density in nu-
clear matter. We have

& p& I qq I PN & = & 01qq I
0 & +p~ & N

I qq I
N & .

One question that arises relates to the range of validity of
Eq. (2.1). That issue is addressed in Ref. [4] via the study
of some simple models and a study of QCD sum rules in
matter.

We are interested in seeing what relation might exist
between Eqs. (1.1) and (2.1). Such a relation may be
developed following the study made in [4]. For example,
we consider the analysis made there for the Gell-
Mann —Levy sigma model. The assumption is made that
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m'„f o = —2m, (p~~qq~p„) . (2.2)

This equation is consistent with the relation in vacuum,

system of quarks and meson fields in Ref. [4]. The
Langrangian of the model is

m'f'= —2m, (0~qq~0) . (2.3)

[If (qq )„„=—(250 MeV), m =138 MeV, and f =93
MeV, we obtain m =5.36 MeV. ] Thus, we have

Z(x) =ivy~a„e g—e(o+il, r.~)q+ ,'a„-oa&o

+ ,'a„-a —U,(, ) —U„( ),
with

(2.8)

& p~~qq ~p~ &

(o~qq ~0)

M

M

(2.4)

(2.5)

(2 6)

and

U, tr(o )=—N, Nf goin
16m f

2

Uo(o, m)= (o +m f —
)

8f
(2.9)

g'f '.—(o' f '. }—

Then, for densities where ps =pN, one has
3g4(o2 f2 )2 (2.10)

o. Ps + I ~ ~

p4
(2.7)

upon using Eqs. (2.1) and (2.4).
We note that the Gell-Mann-Levy model is used for a

I

Here N, is the number of the colors and Nf is the num-
ber of fiavors. Further, U,s(cr ) is a correction to the po-
tential calculated at the one-loop level [4]. We quote the
equation for the o. field obtained by minimizing the ener-
gy [4]

(o —f )cr — go. goin g'(cr' f'„)— —

gN, (gcr)— , kF+(kF+g o )'
kF(kF+g o ) g o ln

go
(2.11)

The second term on the left-hand side of Eq. (2.11) arises
from U,z, while the term on the right-hand side is pro-
portional to the quark scalar density, which is calculated
for a quark gas with a constituent quark mass, Mq =go. ,
and with the Fermi momentum of nuclear matter, such
that pz=(Nf I3n. )kF with Nf =2 (Note that. there are
three quark distributions, one for each color. ) While the
calculation made for the quark scalar density is question-
able, we proceed with a discussion of this model. Equa-
tion (2.11) is used in Ref. [4] to derive an equation such as
Eq. (2.7), except that p$ is now given by [4]

N, M
( r )

] c
(2.12)

We may compare Eq. (2.12) with the model-independent
result [Eq. (2.1)] and find

2

~N
m

(2.13}

G~xxPs
(2.14)

if mN=N, M . Thus, upon using Eqs. (2.1}, (2.4), and
(2.13), we have

Here, we have put mN =G zNf and have replaced p~
by ps, the nucleon scalar density. (If we are interested in

a theory with hadronic degrees of freedom, the source for
the o. field has to be the nucleon scalar density. To lowest
order in kF, we have ps =p~.)

Now let us check that the above analysis makes sense if
we use empirical values of m and 6 ~~. We have al-

ready noted that, for boson-exchange models, G~zz =10,
so that m&=G zzf =930 MeV. Now consider the
value of o ~ obtained from Eq. (2.13). With the common-

ly used value of m =550 MeV [3], we have cr~ = 59 MeV
and with m =600 MeV, we have o&=50 MeV. (See
Fig. 1.) The most recent evaluation of o~ [6] yields a
value of 45+8 MeV and, if Eq. (2.13) is valid, we have
m =630 MeV. We see that the theoretical picture ob-
tained is in reasonable accord with phenomenological
models. One may also take the attitude that Eq. (2.13) is
correct for conventional values of m and for values of
o.

N within the range of the values suggested in the litera-
ture [6,7]. That means that Eq. (2.1) may be rewritten as
Eq. (1.1). What is then needed is an argument for using
the resulting linear relation for values of the nucleon den-
sity as large as that of nuclear matter (pNM=0. 17 fm 3}.

As noted above, this issue is discussed in Ref. [4], where
some justification for using the linear relation over a
range of values of p& is given on the basis of the behavior
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FIG. 1. The dash-dotted line shows the dependence of o /f„
on the nuclear scalar density in the RBHF theory [5]. We have

used the relation 0/f =1 G~—zzpzlm~, with G~~~=9.45

and m =550 MeV. The short lines represent the model-

independent result evaluated for o.&=30, 40, 50, and 60 MeV
with the uppermost line corresponding to 0.&=30 MeV, etc.
The slope of the short line would be equal to the slope of the
dash-dotted line if oz= mf G NN/mi. For the parameters,

G» =9.45 and m =550 MeV, we have cr& =55.3 MeV, while

the latest theoretical analysis yields u&=45+8 MeV [6]. [The
range of validity of the model-independent result (short lines) is

not known, although the work reported in [4] suggests that a
linear extrapolation to higher densities may be a good approxi-
niation. ]

III. CHIRAL SYMMETRY RESTORATION
AND THE RELATIVISTIC

BRUECKNER-HARTREE-FOCK MODEL

One aim in this work was to show how the relation
given in Eq. (2.14) is to be understood within the context
of relativistic Brueckner-Hartree-Pock theory. To that
end, we write the self-energy of a nucleon of momentum
p, 2=A+By +y.pC/mz, and suggest that the ap-
propriate relation is

A =6 NNo.
'

2G uNNPS
2m

(3.1)

(3.2)

of some simple models. Probably, a more compelling ar-
gument can be made by considering QCD sum rules in
nuclear matter. For example, in the thesis of Griegel [4)
it is found that the nucleon mass is linearly related to the
value of the quark condensate. To our mind, that result
provides the best justification for the introduction of Eq.
(2.2). Finally, we note that in his discussion of hot and
dense QCD matter, Hatsuda assumes that a linear rela-
tion may exist over a broad range of densities, without at-
tempting further justification [8].

In Ref. [4], the relation of these results for the chiral
order parameter to a relativistic many-body theory that
uses nucleons and mesons as the appropriate degrees of
freedom is only discussed for a very simple model con-
taining nucleons, sigrnas, and pions. In this work we
wish to discuss how these results may be used in relativis-
tic Brueckner-Hartree-Fock theory [5]. That issue is tak-
en up in the next section.

Here A is the contribution of the fluctuating part of the
sigma field, o'=—o f—(with rr'(0), to the evaluation of
the quantity A in the Hartree approximation. We note
that A of Eq. (3.2) is only one element of a complex
(RHBF) calculation that includes the effects of exchange
and of short-range correlations [5]. Also, in our calcula-
tions we have included the contributions of all the bosons
of the boson-exchange model (o,n, ni, p, . . .) [3]. The de-
tails of such calculations may be found in Ref. [5]. For
example, we see that the Fock terms arising from omega
exchange contribute about —135 MeV to the value of A,
the scalar term in the self-energy. Short-range correla-
tions also affect the value obtained for A. Once all these
effects are taken into account, as in Ref. [5], we then use
the relation

m(p) =m~+ —,'TrX(p) (3.3)

=miv+ A (p) . (3.4)

Although, many terms contribute to the value of A (p),
one finds A (0)= —400 MeV, which happens to be rather
close to the value obtained in the Hartree approximation,
A = —391 MeV. (The fact that the result of rather
complex calculations of A and 8 yield values that are not
too different from the values calculated in the Hartree ap-
proxirnation could, in part, account for the generally suc-
cessful phenomenology built on the type of model studied

by Walecka and collaborators [9].)

IV. DISCUSSION

We have followed the work presented in Ref. [4] and
assumed that a linear relation exists between the order
parameter (qq ) and the field o. It then follows that the
model-independent relation given in Eq. (2.1) can also be
used for cr/f . The rate of change of rr/f with density
depends on (p$) ', which, in turn, depends on 0iv. [See
Eq. (2.1).] We have noted that Eq. (1.1) follows from Eq.
(2.4), if rriv is related to m as in Eq. (2.13).

It has been our goal in this work to relate some aspects
of the material presented in [4] to the RBHF formalism
and we have described how such a relation may be ob-
tained. We have also shown how the modification of the
sigma field in rnatter leads to a large scalar potential for
the nucleon. In the RBHF theory, the rnediurn-modified
nucleon mass is then given by mN =mN+ A, where A is
made up of contributions that include the Hartree term
arising from the sigma field, as well as significant contri-
butions from the Fock terms associated with the ex-
change of all mesons. In addition, short-range correla-
tions also affect the value of A.

Finally, we remark that this analysis may be con-
sidered from another point of view. We may argue that
there is a body of empirical evidence [5] that supports Eq.
(1.1) and, therefore, chiral models whose dynamics may
be approximated by Eq. (1.1) should be preferred. As an
example, we may note that the solution of Eq. (2.11) is
well approximated by Eq. (1.1) over the entire range
0(pN &p . However, if we drop U,l., the linear range
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for the solution is approximately 0 &p~ & 0.4p
%hether that result implies that U,& has been calculated
correctly remains to be seen. Clearly, more work is need-
ed to clarify such issues.
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