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A generalization of the continuum open-shell r-space linear response random-phase approximation
method to finite temperatures (i.e., TDRPA method) is applied in a study of the systematics of the elec-
tric double giant dipole resonance (DGDR) in magic and open-shell nuclei covering a wide range of nu-

clear masses. Viewing the DGDR as a single-phonon vibration in a hot nucleus, whose temperature cor-
responds to the centroid energy of the ground-state (zero-temperature) GDR, the TDRPA equation has
been solved for the eleven nuclei whose DGDR state has recently been investigated in pion double-
charge-exchange (DCX) experiments. The expected general features of a collective vibration in hot nu-

clei, particularly the broadening and the downshift of the GDR excitation energy due to increase in tem-

perature, were found to be small, yet quite distinguishable. Except for the lighter nuclei, a reliable esti-
mate fpr the DGDR energy wpuld be E =2E+ " and the estimate fpr its width wpuld be
I ~ =&2I 6 . However, the changes in the integrated cross sections pf the DGDR due to finite

temperature are found to be much more significant. An exact A ' power law for the DGDR energy is

suggested by the TDRPA solutions. A gratifying agreement between the TDRPA predictions and ex-

periment has been established for the Q values of the relevant pion DCX reactions after taking into ac-
count the proper Coulomb and symmetry energy corrections.

PACS number(s): 21.10.Re, 21.60.Jz, 24.30.Cz, 25.80.Hp

I. INTRODUCTION

Until recently, the investigation of giant resonances su-
perimposed on highly excited states of a nucleus has
mainly been done by deep inelastic heavy-ion nuclear col-
lisions [1—5]. The large excitation energy dumped into
the nuclear system through many degrees of freedom by
the colliding heavy ions and the fast thermalization of the
hot nucleus produced in the collision justify the incor-
poration of statistical theory considerations in interpret-
ing the ensuing collective vibration of the hot nucleus,
both experimentally and theoretically. An abrupt change
in the exponentially falling curve describing the observed
photon spectrum is the signature for the existence of a gi-
ant resonance vibration. The main features of electric gi-
ant dipole resonance (GDR) exposed in such experiments
are a broadening of GDR as well as a downshift of its en-
ergy with increasing temperature of the hot nucleus.

The two main drawbacks of heavy-ion collision as a
tool for investigating giant resonances superimposed on
highly excited nuclear states are the poor selectivity of
the collision process (i.e., the incapability of choosing the
excited state, upon which the giant resonance is to be
built) and doubt regarding the presumed global equilibra-
tion of the hot nucleus, stemming from a large back-
ground of high-energy photons as well as bremsstrahlung
photons accompanying the measured y spectrum.

A special case of selective excitation of a giant reso-
nance in a hot nucleus is that of double giant dipole reso-
nance (DGDR), i.e., GDR superimposed on the ground-
state GDR. The possibility of exciting the DGDR and
higher multidipole states has been widely discussed in re-
cent years in several theoretical papers and experimental
proposals in the context of relativistic heavy-ion col-

lisions [6,7]. However, the first experimental verification
[8] of the existence of DGDR has been achieved utilizing
the highly selective reactions of pion double charge ex-
change (DCX). Since the DCX reactions (rt+, m. } and
(~,m+) are inherently at least two-step processes in
which the isotensor (bT=2, hT, =+2) states are
reached, it is most suited for a DGDR study since the un-
derlying structure of that state is predominantly two-
particle —two-hole (2p-2h} in nature.

The standard theoretical tool to describe DGDR is the
quasiboson equation-of-motion method [9], which views
DGDR as a two-phonon state, whose intrinsic structure
is determined by diagonalizing the p-h residual interac-
tion in the composite space of the 1p-1h and 2p-2h
configurations. However, beside the vast numerical com-
plications stemming from the large dimension of the 2p-
2h subspace, the equation of motion for two-phonon vi-
brations su8ers from internal defects. The coupling be-
tween the 2p-2h and 1p-1h hampers the validity of the
quasiboson approximation, which is the pillar of the
whole method, and extreme simplifications have to be in-
troduced to enable a practical application of that method.
An extreme schematic model based on presumed degen-
eracy of all 1p-1h energies has recently been applied to
investigate DGDR in double-magic nuclei [10]. An
SU(3) limit to the interacting boson model (IBM) has also
been recently applied to DGDR states in deformed nuclei
[11].

In the present study we would like to utilize an alterna-
tive viewpoint by considering DGDR plainly as a single
E1 phonon vibration built of a coherent superposition
1p-1h excitation in a hot nucleus, whose temperature cor-
responds to the excitation energy of the ground-state
(zero-temperature) GDR. Hence, in the framework of
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the temperature-dependent random-phase approximation
(TDRPA), the starting point for determining the DGDR
state is the solution of the temperature-dependent
Hartree-Fock (TDHF) equations, which determine the
changes in the nuclear mean field with increasing temper-
ature. The TDHF+ TDRPA approach to collective
motion was widely used in studying the GDR state in hot
nuclei [12—16] and in interpreting the data accumulated
in the last decade in deep-inelastic heavy-ion experi-
ments. Most of those applications of the TDRPA
method center on the temperature dependence of GDR
in double-magic hot nuclei.

Since the first verification of the existence of the
DGDR, an extensive experimental exploit of pion DCX
reactions [17—21] produced an impressive amount of data
on DGDR covering a wide range of the nuclear mass
table. We believe that the avai1able data are already quite
sufhcient to investigate the systematics of DGDR regard-
ing its energy, width, and intergrated E1 total cross sec-
tion. Since the available DGDR data are mainly on
open-shell nuclei, it is imperative to match the TDRPA
method to that particular problem. To this end we em-

ploy in the present study the most comprehensive, yet
simple to apply TDRPA method [16],which constitutes a
generalization of the T =0 r-space linear-response
method of Shlomo, Bertsch, and Tsai [22,23] and the
open-shell linear-response (OSLR) method of Bar-Touv
and Moalem [24,25] to finite temperatures. The main in-
gredients added to the TDRPA method by that generali-
zation are the inclusion of the whole continuum in the
TDRPA integral equation and the possibility of the
effective replacement of a complex configuration mixing
of an open-shell hot nucleus by a set of fractional occupa-
tion parameters having a Fermi distribution shape.
Moreover, the imposition of 1p-1h excitations on partial-
ly occupied single-particle states amounts to a straight-
forward coupling of the 1p-1h states to the higher-order
p-h excitations, hence leading to the inclusion of part of
the spreading width usually missing from a standard ap-
plication of the RPA.

This paper is organized as follows: In Sec. II we
present an updated summary of the results of pion DCX
experiments performed recently at LAMPF. Section III
is devoted to a brief outline of the TDRPA method and
the manner in which it has been applied in the present
study. Detailed systematics of DGDR resulting from the
TDRPA theory and a comparison with experiments are
the topics of Sec. IV. A summary and conclusions are
given in Sec. V.
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FIG. l. Schematic energy-level diagram of the single dipole
in the ATz = —1 mode (GDR) and double dipole (DGDR) ob-
servable in pion single- (SCX) and double-charge-exchange
(DCX) experiments, compared with double giant dipole reso-
nance in the target nucleus (b, Tz=0 mode) calculated using
RPA and TDRPA methods. The listed numbers are the
strength ratios estimated from simple isospin-coupling argu-
ments for the case of" Ba and assuming the same reduced ma-

trix elements for the various isospin members.
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displayed in Fig. 1 ~ The data indicate that the newly ob-
served DGDR's are common phenomena in all nuclei
and the GDR IAS states are a common feature in nuclei
with N —Z ~1. Figure 2 shows a typical DCX spectra
from a LAMPF experiment, in which the isotensor dou-

II. AN OVERVIEW ON EXPERIMENTAL RESULTS

Experiments carried out at the Los Alamos Meson
Physics Facility (LAMPF) discovered the existence of
two previously unobserved collective modes of the nu-
cleus: the isotensor GDR built on the isobaric analog
state (GDR IAS) [17,18] and the isotensor DGDR
[8,19,20,21]. A schematic representation of single giant
resonances (AT = 1, b, T, = —1) and of double giant reso-
nances (b, T=2, b, T, = —2) reached in pion single-
charge-exchange (SCX) and pion DCX reactions is

0.0
1p 20 30 40 50 60

—q (Mev)

FIG. 2. Double-di8'erential cross-section spectra measured
recently at LAMPF for the (m+, ~ ) reaction of a Nb target at
T =292 MeV and 0&,b

=5, 10, and 20'. The arrows indicate the
three double resonances observable in pion DCX: (1) the dou-
ble isobaric analog state (DIAS), (2) the giant dipole built on the
isobaric analog state (GDRIAS), and (3) the double giant di-
pole resonance (GDR GDR).
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ble resonances were studied. The figure presents Q-value
histograms measured for the Nb(n+, m ) Tc reaction
at 292 MeV at three different scattering angles [19].
These spectra were taken in long DCX measurements in
order to accumulate good statistics. They also cover a
wide range of excitation energies. The double isobaric
analog state (DIAS} appears at Q = —21.9 MeV and is
clearest in the 5 spectrum. In addition to the DIAS, two
wider peaks are apparent in the spectra: the GDRIAS
and DGDR peaks. The first appears at Q = —35.8 MeV
and the latter at Q = —49.9 MeV. The fits shown use
I DiAs 0.8 MeV, I DGR, ~s=5. 8 MeV, and I DGDR=8. 8
MeV. At 20' the GDRIAS peak vanishes, but shows

up clearly at 10'. DGDR has a different angular distribu-
tion. Full angular distributions for the resonances have
been measures on Ca, Nb, and Fe [19]. A detailed
analysis shows that while the GDR(3)IAS has a dipole
shape, the higher DGDR has a quadrupole distribution.
Its identification as a DGDR is based on its energy (being
about twice the energy of the single-step GDR), angular-
ciistri5ution, and cross section.

In the following three paragraphs, we outline the main
experimental features of the DGDR as they have
emerged from recent DCX experiments performed at
LAMPF on a wide range of masses.

(a) Energy: In (n+, m ) SC. X data, the GDR appears at
about 25 MeV. It is remarkable that the GDR energy is
very weakly dependent on A [26]. This feature is due to
the near cancellation of two terms: The E1 vibrational
energy goes down with A (e.g., like 1/A '~3 or 1/A '~s);

however, the Coulomb energy involved in the SCX pro-
cess goes up with A, leaving the charge-exchange GDR
around 25 MeV and nearly unaffected by A. The DGDR
observed in pion DCX appears surprisingly close to twice
the energy of the single GDR [i.e., around Q = —50 MeV
for a wide range of masses (Table I)], as would be expect-
ed, if we neglect the isospin splitting of the double dipole,
discussed later.

(b) Width: Until now the DGDR has been observed on
target nuclei covering a wide range of masses (Table I}.

do
}DGDR

NZ ~ 2 28

g 2/3

where (NZ/A ) is the dipole transition strength de-
duq~~. fr~~. thy g 1. r.l~j~l. C.gm. t.pyle &nd y

—2.28

A-dependent attenuation factor for the incoming pions.
Table I summarizes the observed quantities for DGDR in
11 nuclei ranging from ' C to ' Au [8,19,21]. Also listed
are rough estimates for the angle-integrated cross sec-
tions extracted by normalizing distorted-wave impulse
approximation (DWIA) calculations (using the code
NEwcHop [28]) to the experimental cross section at
8&,b=5' and using the equation rr„,=2ngrr(8; ') sin8;d8;.

III. OUTLINE OF THE CONTINUUM
TDRPA METHOD AND ITS APPLICATION

TO DGDR IN OPEN-SHELL NUCLEI

We hereby bring a brief outline of the generalization of
the T =0 OSLR method [24,25] to finite temperatures. A
detailed account of that generalization was given in Ref.
[16].

In the context of the HF-RPA approximation, the
OSLR method is designed to take into account a possible

The data indicate that DGDR has a full width at half
maximum (FWHM) of about 8—10 MeV and is larger
than the width of the single GDR [19) by a factor of
1.5 —2.0. This was found to be in a good agreement with
simple theoretical estimates for the width of the double
dipole in terms of two-phonon states [19,27].

(c) Cross section: It was found [19]that the peak cross
section for DGDR increases by about a factor of 2 from

Ca to ' Au. A qualitative argument to understand this
' feature was given in Ref. [19] by breaking the cross sec-
tion for DGDR into a product of strength times an at-
tenuation factor due to the distortion of the pion waves
inside the nuclear medium. It was found that the 5' cross
sections for DGDR in pion DCX are well represented by
the function

2

TABLE I. Systematics of double isovector giant dipole resonance from pion double-charge-exchange
experiments at LAMPF.

Target
nucleus

12C

13C

A1
32S

4oC

56Fe
59CO

93Nb
115I b

138B

'"Au

Q (DGDR)
(MeV)

—48.2+2.0
—46.5+2.0
—49.1+0.5
—49.6+2.0
—54.0+0.5
—54.4+0.6
—48.6+0.8
—49.9+0.8
—49.1+2.0
—49.8+0.8
—52.1+0.8

I (DGDR)
(MeV)

10.0+3.0
12.0+3.0
8.4+2.0
9.0+2.0
9.0+1.4

10.0+1.5
8.2+2.0
8.8+2.6
8.0+2.0
8.5+2.6

10.0+2.0

der/dQ (DGDR)
(pb/sr)

0.86+0.18
3.20+0.53
2.41+0.23
0.98+0.31
2.6+0.2
3.12+0.31
4.05+0.75
3.48+0.47

12.4+3.7
4.2+0.5
5.7+2.0

CT t t (DGDR)'
(pb)

6.7
25.2
18.6
5.0

12.9
15.2
19.7
17.8
66.3
23.6
41.2

Ref.

[19]
[191
[20]

[8,19]
[20]
[19]
[19)
[19]

[19]
[19]

'Angle-integrated cross section for the double dipole obtained by normalizing the DWIA calculations
to the experimental peak cross section at 8„b=5'. o„,=2mgo(8;) sin8;d8;.
Preliminary results.
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complex configuration mixing in the ground-state wave
function in a straightforward manner, while calculating
the excited states of a nucleus. The two main ingredients
of the OSLR method are as follows: (i) The excited states
of a nucleus are related to the poles of the RPA Green's
function [22,23]

G/PA g(P) 1 G(P) (2)
Bp

where G' ' is the unperturbed Green's function and
BV/Bp is the derivative of the HF mean-field potential
with respect to the HF nuclear density. (ii) A set of
single-particle occupation parameters can effectively
represent a possibly complex configuration mixing in a
correlated ground-state wave function. The contractions
made in linearizing the RPA equations are thus per-
formed with a single-determinant wave composed of fully
and partially occupied single-particle orbitals. Assuming
that the main properties of DGDR (energy, width, and
El strength distribution) are practically independent of
the particular value of the ground-state angular momen-
tum and isospin, the 1p-1h excitations leading to the col-
lective dipole vibration may be superimposed on the HF
intrinsic determinant without projecting the total angular
momentum or isospin. Obviously, this conjecture would
be justified a posteriori by the predictions of the model
discussed later. Hence the simplicity of the uncoupled
spherical I scheme is preserved in all the states of the
HF and RPA calculations.

The two aforementioned conjectures are combined into
a modified unperturbed Green's function [16],

G' '(r, r', E)= —+8hgh(r)[g (r, r', Eh+E)

+g (r, r', ehE)]gh(r')+b, ,

(3)

where Oh is the occupation parameter for a hole state and

g is the single-particle Green's function obeying the prop-
er boundary conditions for all energies (negative and pos-
itive). b, is a Pauli correction term included to avoid dou-
ble counting of p-h excitations among the partially occu-
pied states.

The temperature dependence is readily propagated
through the HF mean field and RPA equation by utiliz-
ing a Fermi distribution to represent the occupation pa-
rameters 8, (T), i.e.,

8 ( T) = I 1+exp[(c, —p)/kT]]

c - is the single-particle energy of the temperature-J
dependent HF (TDHF) field and p is the chemical poten-
tial serving as a Lagrange multiplier for the number of
particle constraints. The generalization of the RPA
equation [Eq. (2)] into a TDRPA equation is readily
achieved by expressing the unperturbed Green's function
of Eq. (3) in terms of the predetermined TDHF single-
particle basis and occupation parameters. Temperature
dependence is also carried to the residual p-h interaction
by identifying V h as the derivative of the TDHF poten-
tial with respect to the temperature-dependent nuclear
density.

SF(E,t)= ——Im(FG F) .1
(6)

IV. APPLICATION OF THE TDRPA METHOD
TO DGDR IN MAGIC AND OPEN-SHELL NUCLEI

The search for DGDR in a particular nucleus begins
with a proper choice for the trial ground-state
configuration to be used in solving the HF (T =0) equa-
tions. For all 11 nuclei investigated in the present study
(Table I), we have taken the simplest shell-model
ground-state configuration [29]; e.g. , 52Nb4, taken as

I szNb4, ) =
I qoZr~o)12d s/2 ), I lg9/2 )p

with the corresponding open-shell single-particle occupa-
tion parameters 8„(2d~/2) =

—,
' and 8~(lg9/2) ~()

With
such predetermined occupation parameters, the HF mean
field and ensuing GDR are calculated using a zero-range
Skyrme I (SKI) force [30]. The same set of occupation
parameters is used as a starting point for the TDHF solu-
tion, ending with the dispersion of occupation into a
larger set of single-particle levels around the Fermi sur-
face. The TDHF solution, whose total energy equals the
energy of the RPA ground-state single GDR, is used in
solving the TDRPA equation [Eq. (2)]. As mentioned
above, the DGDR state is considered as single GDR su-
perimposed on that finite-temperature HF solution.

In deriving the p-h interaction V„h with the aid of
Landau's prescription (i.e., V~h=BVH„/BpH„), we em-

ploy for simplicity the total nuclear density p(r)=p„(r)
+p (r) and an average field

VHF(r) =—Vp(r)+ —V„(r),Z

where pp Vp p„, and V„are the calculated HF and
TDHF proton and neutron densities and potentials. We
also replaced the Laplacians entering the p-h interaction
Vp h with the approximate expression

2m *(r)
h

[EHF/A —VHF(r)] .

Using this approximation and the interaction strength
coefficients determined by Tsai [31] for each of the four
spin-isospin components of the p-h interaction

V h =5(r i2 )(F0+For r+ Goo".o +Goer .crt r), -.
we arrive at the following expressions:

Up h(s =0, T =0)=-,'to+-,'t3p+-,'k2(3t i+st2),

(10)

(1 la)

Once the temperature-dependent G' ' and 6 are
determined, the response of the nucleus to an external
field represented by the single-particle operator F is
determined by [22]

gF(E, t)=(FG F)
=Idr, dr2F(ri )F(r2)G(ri, r2, E, T),

and the transition strength by
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V h(S=O, T=1)

,'—t,—(1+2x,) ——,'t, p —
—,'k'(t, —t, ),

Vp h(S =1, T= 0)

(1 lb)

= ——' to(1 —2xc) —,' t3—p —,
'—k ~(t

&

—tz ), (1 lc)

V, „(S=1,T =1)=—
—,'t, —

—,'t, p
—

—,'k'(t, —t, ) . (1 ld)

E "=(344+0 5)A ' MeV, (12)

while the corresponding fit for the experimental GDR en-
ergies gives a very close relation

E =(33.5+0.4) A '~ MeV . (13)

Hence the systematics of the DGDR energies as predict-
ed by the TDRPA method obey the A ' power law

E =(33.5+0.4)A '~ MeV . (14)

A comparison between the theoretical predictions for

The preference of SKI force parameters t0, t„ t2, t3, and

x0 in the present study is quite arbitrary. No effort has
been done to choose among the available different sets of
Skyrme force parameters in order to gain a best fit to ex-
periment.

Table II summarizes the predictions of the RPA and
TDRPA methods in the manner that they have been ap-
plied in the present study. The table also includes the ex-
perimental single GDR energies, integrated E1 cross sec-
tions, and widths measured mainly in photonuclear reac-
tions [32,33]. Considering the aforementioned approxi-
mations used in applying the TDRPA method, a measure
of confidence in the theoretical prediction of that model
for the main features of DGDR is suggested by the re-
markably satisfactory agreement of the calculated single
GDR energies, widths, and integrated E1 cross sections
with the photonuclear data. An A ' power-law least-
squares fit for the 11 calculated ground-state GDR ener-
gies leads to the relation

ERp~ and ETDRpA [Eqs. (12) and (14)] reveals a small
downshift in the DGDR energy due to the finite tempera-
ture of the TDHF mean field, upon which the DGDR
state is superimposed. A similar shift in the GDR energy
with increasing temperature was previously observed in
deep-inelastic heavy-ion experiments [1—5] and support-
ed by other RPA calculations in hot nuclei [12—16]. Yet,
considering the relatively high temperature (T =3.4 MeV
in ' C and T =1.05 MeV in ' 'Au) needed to produce a
TDHF mean field whose excitation energy matches that
of the ground-state (T =0) GDR, the temperature effects
of E are rather small. Thus a good estimate for the
measured DGDR energy would be E =2E

A two-parameter least-squares fit aiming to a power
law for the giant resonances energies, in which the
strength and exponent are free to vary, leads to the rela-
tions

GDR 40 3A 0.206 MeRPA

EGDR =38.3A 0'88 MeVexpt 7

EDGDR —33 8 A
—0. 169 MeVTDRPA

(15a)

(15b)

(15c)

The calculated ETDRpA seem to obey exactly the A

law predicted by the macroscopic two-fluid model for
GDR [34] based on a presumed A ' dependence of the
restoring force of the collective motion on the nuclear
surface area. Figure 3 displays the above po~er laws of
the two-parameter least-squares fits.

Turning now to the calculated integrated cross sections
for GDR and DGDR (Table II), we note some differences
between the two. Part of the difference in 0.;„,may be at-
tributed to the superiority of the TDHF ground-state
wave function over the simple shell-model configuration
used in solving the T=O HF equations, since the finite-
temperature mean field is free to choose its own single-
particle occupation parameters 8 (T), while those of the
T =0 mean field are predetermined. A second source for
the difference in cr;„t lies in the velocity-dependent com-

TABLE II. RPA and TDRPA predictions for GDR and DGDR in the nuclei investigated in pion DCX reactions (see Table I).
The photonuclear data on the ground-state GDR's are taken from Refs. [32] and [33] and references therein.

GDR (RPA)
E r' 0.;„, SRF EA '

A (MeV) (MeV) (mb MeV) (%) (MeV)

DGDR (TDRPA) GDR (photo)
E I' o;„, SRF EA' E I' cr;„, SRF EA'

(MeV) (MeV) (mb MeV) (%) (MeV) (MeV) (MeV) (mb MeV) (%) (MeV)

12C

13C

27A1

32S

Ca
56Fe
59Co
93Nb
115I

13sB

'"Au

24.2 9.6
22.7 12.6
21.1 7.2
19.1 7.1

18.8 6.5
18.0
17.7 5.0
15.8 4.1

15.1 3.8
14.4 4.8
13.1 5.3

142
166
393
401
580
931
966

1372
1741
1934
2907

79 36 6
86 34 8
97 367
83 340
97 34 8

111 35.2
110 34.9
100 33.6
103 33.3
97 32.7

102 31.6

21.1 12.7
21.0 12.2
19.8 8.3
19.3 6.9
18.8 6.8
17.7 5.5
17.7 5.0
16.1 5.1
14.6 5.0
14.8 4.7
12.9 4.9

139
158
362
423
508
818
847

1002
1722
1569
2707

78 31.9
82 32 2
90 34.4
88 344
85 34 8
98 34 6
96 34.9
73 34 3

102 32.2
79 33.6
89 31.1

23.0 -7.0
23.8
21.4 —7.5
19.6 -7.5
19.9 -6.4
17.6
18.0 -6.2
16.6 5.1

15.6 4.9
15.3 4.9
13.8 4.1

150

400
460
642

884
1331
1875
2190
2967

83 34 8
36.5

99 37.1

96 34.9
107 36.8

34.4
101 35.5
97 35 3

111 34.4
102 34.8
105 33.3

'Estimated by convolution of a single Gaussian distribution to the calculated E 1 cross sections [Eq. (16)].
Sum rule fraction (SRF) = cr;„,/(60NZ/A).

'Estimates from experimental E 1 cross sections and by Lorentzian fits to experiments [32].
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GDR

20

16

12

100
A

FIG. 3. Systematics of GDR and DGDR energies as func-
tions of mass number A. The three curves represent the power
laws [Eqs. 15(a), 15(b), and 15(c)] obtained by two-parameter
least-squares fits to the calculated ERpA and ETDRPA and to
photonuclear data for the isovector GDR. The data points for
these fits are those listed in Table II.

I I I 1 I I

25

20

C RPA+TDRPA

ponents included in the SKI V h interaction (affected by
the parameters ti and tz). In the absence of such a com-
ponent in V h, one expects o;„,to be independent of tem-

perature [14]. In Fig. 4 we plot the calculated cross sec-
tions versus energy for GDR and DGDR in ' C. To
demonstrate more conspicuously the changes in the
DGDR due to an increase in temperature, we have back-
shifted in the figure the DGDR downward by 24. 1 MeV
to coincide with the centroid energy of ground-state
(T =0) GDR. Beside the small shift in the E 1 cross sec-
tion, we note an enhancement of E1 strength just below
the main peak of the GDR together with an expected de-
crease in E1 threshold. A significant overall reduction in

the integrated cross sections of the DGDR state is also
noticed, particularly for the lighter nuclei.

The calculated widths given in Table II are qualitative
estimates for the widths of the GDR and DGDR states
derived by matching a single Gaussian distribution to the
calculated strength distribution SF(E,T) of Eq. (6). A
normal distribution would include 76% of the strength in
the energy range ( —I'/2, I /2). Hence cutting 12%%uo of
the E1 integrated strengths on the lower and upper tails
of the corresponding curve determines the Gaussian esti-
mate for I . As for the true width of the DGDR state to
be compared with experiment, we still have to take a con-
volution of the single and double resonances if we assume
that the excitation of the two corresponds to statistically
independent processes. Hence the theoretical estimate
for the total width of the DGDR state denoted by I,h„,
is determined by

I —[(I GDR)2+( I DGDR )2]1/2 (16)

and

b Ec,= l.44(Z + —,
'

) A ' —1.13 MeV (17a)

where I „pz and I TDRpA are the individual widths of the
two states. Such a qualitative estimate for widths is ex-
pected to be quite reliable for a comparative study of
temperature and mass effects on the giant resonance. Ex-
cept for ' C, all the theoretical widths I,h„, fall in the en-

ergy range determined in the corresponding pion DCX
experiment. Since the individual widths I R~~ and
I LRp~ are roughly equal (except for the lighter nuclei), a
reliable estimate for the DGDR width would be
r, „„=&or„,„.DGDR GDR

%e conclude the present survey of our results in a
comparison of the TDRPA predictions for E with
the energies measured in pion DCX experiments. In do-
ing so, we should recall that the DGDR studied in the
framework of TDRPA theory is a double resonance in
the target nucleus itself (i.e., ET, =O), while a DGDR
reached in pion DCX reactions is a double resonance in a
neighbouring AT„=—2 nucleus. Hence we must take
into account a two-step Coulomb energy correction and
the isospin splitting of the DGDR. The Coulomb energy
correction for the successive transfer of two charges is
determined by the empirical relations [35,36]

10

0

I

I
I i

I

I

l ~
I
I

I
I

I

I
I

bEc~=1.44(Z+-', ) A '~ —1.13 MeV . (17b)

E "-=EG +E G " +(~E„—6)+(~E„—6), (»)

Here Z and A are the charge and mass numbers of the
target nucleus. The combined energy correction due to
the double charge exchange is determined by

0 10 20 30 40 50 60 70

E (MeV)

FIG. 4. GDR and DGDR E1 cross sections obtained from
RPA and TDRPA solutions in ' C. The dashed curve is identi-
cal to that of DGDR, backshifted by 24.1 MeV to eliminate its
energy elevation as a GDR built on the ground-state GDR.
This backshift is done in order to stress the finite-temperature
effects on a GDR state in hot nuclei.

where 5=M„—M =1.29 MeV. As for the symmetry en-

ergy corrections, a simple double-isospin-coupling argu-
ment [35] (assuming all five isospin components of the
d T =2 reaction have the same matrix elements) suggests
that the lowest isospin state (the T —2 member of the
quintet) is by far the dominant state in nuclei with

A & 93 (Fig. 1). Hence the energy shift in the DCX reac-
tion due to isospin splitting may be reliably estimated by
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TABLE III. Reconstruction of the RPA and TDRPA predictions for the double giant dipole reso-
nance Q values.

Eon" EDoD" (bE, —6)' (bE —5)h E*" ' bE bE+ ~Q(DGDR)~'

Target (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

12C

13C

Al
32S

Ca
Fe

"Co

'"In
138B

'"Au

24.2
22.7
21 ~ 1

19.1
18.7
17.8
17.7
15.8
15.1
14.4
13.1

21.1
21.0
19.8
19.3
18.5
17.5
17.4
16.1
14.6
14.8
12.9

1.66
1.56
4.06
5.06
6.21
7.55
8.49

10.77
12.09
13.32
17.26

2.29
2.17
4.54
5.52
6.63
7.75
8.86

11.09
12.53
13.60
17.50

49.3
47.4
49.5
49.0
50.0
50.6
52.5
53.9
54.3
56.1

60.76

1.8
2.1

2.7
3.2
3.6
2.5

2.7
2.9
3.2
3.6
3.9
2.6

49.3
47.4
49.5
49.0
54.0
50.6
49.6
50.7
47.5
48.6
55.7

'Equation (17a) and Refs. [35] and [36].
Equation (17b) and Refs. [35] and [36]. Here Z is the target Z number and 5 =m„—m~ = 1.29 MeV.

'Equation (18).
equations (19a) and (19b) and Ref. [37]. E„=50/A MeV and E,= —0.003 MeV.

'For g & 93 the theoretical Q values are corrected for Coulomb and symmetry-energy shifts according

to Eq. (20). For 59Co and 93Nb, Q(theory) is taken as E'" bE +. —

the two shifts of the SCX reaction determined by [27]

and

bE =Er ET,=T—[E,+(2T+3)E,]

bE+ =ET+, ET =bE (T—+1)/T,

(19a)

(19b)

with the isovector energy E„=50/A MeV and the isoten-
sor energy E, = —0.003 MeV. Obviously, no-isospin
splitting should be considered in nuclei of the T=O
ground state. In the intermediate nuclei Co and Nb,
because of a more even partition of the excitation proba-
bility, we include only the hE+ energy shift. Subtracting
the isospin energy shift from the energy sum of Eq. (18)
leads to the following expression for the TDRPA predic-
tion for the Q value of a DCX reaction:

Q(theory)=E'" (bE +bE+) .— (20)

Tables III and IV summarize the calculated ERpA and

ETDRpA of Table II together with the corresponding
aforementioned energy corrections. The resulting
theoretical and experimental Q values for each of the 11
nuclei investigated in the present study are compared in
Table IV. The agreement between the TDRPA Q values
and the pion DCX reaction data is truly gratifying.

V. CONCLUSIONS

We have demonstrated above that the generalization of
the r-space linear-response RPA to finite temperature
(i.e., TDRPA) off'ers a most powerful method to investi-
gate DGDR collective vibrations in magic as well as
open-shell nuclei. The vast practical complexities of the
alternative approach to DGDR suggested by the two-
phonon equation of motion method are simply avoided
by viewing the DGDR vibration as a single-phonon

TABLE IV. Comparison between experimental and theoreti-
cal predictions for the double giant dipole resonance Q values
and widths.

Target
DGDR (TDRPA)'

—Q (MeV) 1' (MeV)
DGDR (Expt. )

—
Q (MeV) I (MeV)

12C

13C

Al
32S

Ca
56Fe
59Co
93Nb
115I

138B

197A

49.3
47.4
49.5
49.0
54.0
50.6
49.6
50.7
47.5
48.6
55.7

15.9
17.5
11.0
9.9
9.4
9.5
7.1

6.5
6.3
6.7
7.2

48.2+2.0
46.5+2.0
49.1+0.5
49.6+2.0
54.0+0.5

54.4+0.6
48.6+0.8
49.9+0.8
49.1+2.0
49.8+0.8
52.1+0.8

10.0+3.0
12.0+3.0
8.4+2.0
9.0+2.0
9.0+1.4

10.0%1.5
8.2+2.0
8.8+2.6
8.0+2.0
8.5+2.6

10.0+2.0

'From Table III.
From Table I.

cl —[(I GDR)2+ ( I DGDR )2]1/2

GDR state in a hot nucleus, whose temperature corre-
sponds to the excitation energy of ground-state (T=0)
GDR. A most sophisticated method, yet simple to apply,
is obtained by incorporating into a single framework the
TDHF and continuum TDRPA methods. A spherical
m-scheme TDHF single-determinant wave function com-
posed of fully and partially occupied orbitals opens the
possibility of investigating DGDR in magic and open-
shell nuclei.

The availability of enough data on the DGDR state re-
sulting from pion DCX experiments of recent years
(Table I) enabled us to put to a stringent test the
TDHF+TDRPA approach to DGDR collective vibra-
tions in a wide range of nuclear masses. The systematics
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in the DGDR energies, integrated E1 cross section, and
widths was studied for the 11 nuclei, whose DGDR state
was observed in pion DCX experiments (Table II).

The expected general features of a collective vibration
in hot nuclei, particularly the broadening and the down-
shift of the GDR excitation energy due to increase in
temperature, were found to be small, yet quite distin-
guishable. Except for the lighter nuclei, a reliable esti-
mate for the DGDR energy would be ETD&&~ =2ERPA
and the estimate for its width would be I TDgp~
=&2I RP~ (see Table IV). However, the differences in

the integrated cross sections of the DGDR due to finite
temperature are found to be much more signi6cant. The
TDRPA predictions for the DGDR energy systematics
suggest an exact A '~ power law [Fig. 4 and Eq. (15c)]
compatible with the old predictions of the two-Auid ap-

proach to GDR based on the concept of a restoring force
being proportional to the nuclear surface area. A most
gratifying agreement between the TDRPA predictions
and experiment was established for the Q values of the
relevant DCX reactions after taking into account accept-
able estimates for a two-step charge-exchange Coulomb
energy shift and a symmetry-energy correction stemming
from the isospin splitting of the DGDR state (Tables III
and IV).
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