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For nearly 100 nuclei, the rms expectation values of three neutron transmission observables sensitive

to parity violation are predicted. Total enhancement factors —10 —10 in comparison to related observ-

ables in nucleon-nucleon scattering are found. To this end, a model of parity violation in the framework

of statistical scattering theory is formulated and worked out in detail. General expressions are deduced

from it, which connect the expectation values of parity forbidden S-matrix elements to average input pa-

rameters, namely, level densities, transmission coefBcients, and spreading widths. The general results are

discussed in terms of the relevant nuclear time scales, and the numerical predictions in terms of a "parity
forbidden strength function" and several enhancement factors. Additionally, the role of Anite energy

resolution, crucial for energy averaging experiments, is studied.

PACS number(s): 11.30.Er, 25.40.Dn, 24.30.Gd, 24.70.+s

I. INTRODUCTION

Less than ten years after the discovery of parity (P)
violation in P decay, there was a first hint that the order
of magnitude of parity forbidden effects in neutron in-
duced reactions is astonishing. The "strength ratio" of
the weak to the strong force is of the order of 10, lead-
ing to parity forbidden interference effects of the same or-
der of magnitude. But Abov et al. [1] found in the reac-
tion "Cd(n, y)" Cd a parity forbidden asymmetry

cr-l/(cr++a )=(3.7+0.9)X10, where o+
and o are the (n, y) cross sections in some direction and
its mirror image, respectively. This surprising result was
met with doubt by other researchers, but nevertheless led
to the first theoretical investigations of possible enhance-
ment mechanisms, also concerning time reversal (T)
violation [2,3].

We skip the further developments (which can be found
in Ref. [4], together with extensive material on experi-
mental results and methods and different theoretical ap-
proaches) until 1981, when Alfimenkov et al. [5] experi-
mentally confirmed a prediction by Sushkov and Flam-
baum [6] concerning P violation at the percent level: the
helicity dependence of neutron transmission through a
'3 La target attained —10%, when the neutron energy
was swept through a resonance located at 0.75 eV, and
the size of the effect closely followed the resonance line.
This effect recent1y found renewed interest in a quite so-
phisticated form: in a double target experiment, the pari-
ty violating forces were used both to polarize and to ana-
lyze an initially unpolarized neutron beam [7]. The
findings of Alfimenkov et al. prompted a series of
theoretical investigations [8—10] going beyond the quali-
tative prediction of Ref. [6]. The comtnon mechanism in-
voked in all these papers was the existence of pairs of
long-lived, closely spaced compound resonances with op-
posite parity. Their mixing was shown to be enhanced by
the smallness of d (level spacing) and the largeness of 1/I
(inverse level width) as compared to the mixing of single
particle resonances. This approach offered quite a de-

tailed understanding, suffering from one drawback only:
In order to evaluate the resulting formulae quantitatively,
one had to know the parameters of the individual reso-
nances as spin and parity, widths, and spacings. There is
no way to calculate the wave functions (and their proper-
ties) of resonances in the highly excited ( —8 MeV) com-
pound nucleus, and the measured data sets are notorious-
ly incomplete, particularly spin/parity assignments and
p-wave neutron widths.

At this point, a second line of thought enters: the sta-
tistical approach to nuclear properties. In 1985, this ap-
proach had found a formulation [11] based on a sound
theoretical foundation and connecting the statistics of
spectral properties with those of scattering properties,
thus largely summarizing prior knowledge. Its Anal re-
sult was an equation for the correlation function of
scattering amplitudes for arbitrary numbers and values of
transmission coefficients, which, together with the aver-
age level densities, were the only necessary input parame-
ters. It was then considered whether or not it is possible
to include parity (and other symmetry) violations in the
framework of this formalism, and the present work shows
how to do so and what results from it. Combining parity
violation and the statistical description one gets rid of the
individual resonance parameters and gains a description
of average parity violation effects in nuclei.

The purpose of doing so is twofold: First, parity viola-
tion in itself is still an interesting subject, especially when
it is studied systematically, as it is here in a large number
( —100) of nuclei. In this sense, the present work for the
first time exploits the general predictive power of Ref.
[11]in a context of fundamental, not applied science. We
feel encouraged about this motivation by a recent mea-
surement [12] of parity violation in U, where efFects on
the percent 1evel were found and, for the first time, an ex-
perimental value of the average perturbation strength
was given. Second, studies on enhanced I' violation,
where much is known, may guide and encourage studies
on T violation. Much theoretical work on the latter was
already done [13—17] and experimental work is under
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way [18,19]. It is with this and other possible extensions
in mind that we have included extensive lists of input
data. For T violation, a systematic quantitative study
similar to the present one appears feasible and could
make use of the data presented here. In the present
work, however, we have restricted ourselves to parity
violation and assumed that time reversal invariance
holds.

In accordance with these points, the present article is
organized as follows: Sec. II gives a phenomenological
explanation of parity forbidden observables in neutron
optics and of enhancement effects of symmetry violation.
Section III contains the precise definition of our model
and most of the technical material necessary for its evalu-
ation. The final results are contained in Eqs. (3.12)
through (3.24). Section IV is an interpretative discussion
of several general features of the model outlined in Sec.
III. In Sec. V, the problem of finite energy resolution —a
prerequisite for any energy averaging experiment —is
treated in some detail. Section VI contains the applica-
tion to the concrete case of neutron scattering on 99
different nuclei. The general formulas of Sec. III are spe-
cialized and numerical results presented, which then are
discussed in terms of a rule-of-thumb estimate. The va-
lidity of various statements and approximations made in
the text is also discussed. The Appendixes A —D contain
technical material pertaining to Secs. III—VI, respective-
ly. Appendix D additionally contains tables for the vari-
ous input data, which are necessary for a check of relia-
bility as well as any further use of the results presented in
Sec. VI in different contexts. For a reader mainly in-
terested in the results, Secs. II A, IV A 2, and VI B offer a
quick way of reading.

II. PHENOMENOLOGY: OBSERVABLES
AND THEIR ENHANCEMENT

We start by introducing those of the parity forbidden
observables which we theoretically investigate in the fol-
lowing sections. A broader range of observables can be
found in the literature [4]. Then we give an explanation
of the enhancement mechanisms.

A. Parity forbidden observables in neutron optics

In the present work, we restrict ourselves to the
theoretical description of three parity forbidden observ-
ables occurring in neutron transmission experiments.
They are performed with longitudinally polarized,
transversally polarized, and unpolarized neutrons in the
entrance channel, respectively, and all are closely analo-
gous to optical phenomena. It should be clear, however,
that in the case of neutron scattering, the phenomena are
connected with a true parity violation (due to the weak
force), whereas in the case of light scattering the
left/right discrimination is already built into the spatial
shape of the scattering center, i.e., into the chirality of
molecules or of crystal structure. The truly P-violating
nature of the different neutron observables is pointed out
by giving the corresponding pseudoscalar quantities.

The first observable is the "helicity dependence of

transmitted intensity" and operates with longitudinally
polarized neutrons. It is given by

N+ —NA=
N+ +N

vl———Ao-'
2

= —2m.—Im(b,f (0') },vl

k
(2.1)

4 = —kl Re(b n) = —2n —Re(hf (0') )
vl
k

(2.2)

(in units of rad), where k, I, v, bf are as before and
An =n+ —n is the difference of the indices of refrac-
tion for the two different helicities. The second [20]
equation comes from the neutron optical relation between
index of refraction and scattering amplitude [21]. The
transverse polarization in the entrance channel is a
coherent mixture of the two longitudinal polarizations
(helicities); if the index of refraction and thus the wave
vector inside the target is different for the two different
polarizations, there will be a phase shift leading to a rota-
tion of the transverse polarization. The effect can be un-
derstood in terms of a parity violating force proportional
to s;ok, and the optical analogy is optical activity: two
different values of the index of refraction for the two
different circular polarization states of light.

The last parity violation observable in our context is
"polarization of the emitted particle, " [20] operating with
unpolarized neutrons in the entrance channel and given
by

N+ —N
P = = —2m —Im(b,f (0'}},

N++N k
(2.3)

where N+ are the counting rates for neutrons with
different helicities in the exit channel and the related
pseudoscalar is sfokf. In distinction to N, we are deal-

ing here with an incoherent mixture of polarizations with
equal weights in the entrance channel. Again, if the in-
teraction is different for the two helicities, they will be
scattered out of the beam differently, leading to an unbal-
anced mixture and thus to a net polarization in the exit
channel. The two quantities P and A are numerically
identical and their main difference is that for A the ex-

where N , o.——are the counting rates (in the forward
direction) and total cross sections for the two different
polarization states (helicities), b,o' is the difference
~+ —cr, and v and l are the number density and thick-
ness of the target. The third step in (2.1) is an expansion
of A up to first order in vlho'. The last step follows by
virtue of the optical theorem with b f (0')
=f+(0') —f (0'). The corresponding pseudoscalar is

s;ok;, where s and k are the spin and the wave vector of
the neutron and i denotes the entrance channel. The cor-
responding optical phenomenon is circular dichroism:
different values of the absorption coelcient for the two
different circular polarization states of light.

The second parity violation observable is "spin rota-
tion" or "neutron optical activity, " [20] operating with
transversely polarized neutrons and given by



45 PARITY VIOLATION IN NEUTRON STATISTICAL SCATTERING 1957

perimental setup is that of an analyzer, and for P that of
a polarizer.

The raw effects are thus all expected to rise linearly
with the target thickness [cf. Eqs. (2.1)—(2.3)]; on the oth-
er hand, the statistical error increases with decreasing
counting rate. Hence, there is an optimum target thick-
ness,

A

1, , =21 =2/vo',

where 10 is the mean free path. This results in

A,p, =P,p,
= —4m, Im(b f (0')),1

4, , = —4m Re(b,f (0') ) .1

cr'k

(2.4)

(2.5)

FIG. 1. Scattering scheme with a parity forbidden transition.
The meaning of the symbols is as follows: li } (lf)), initial
(final) channel; n, parity, lp), scattering resonance; A, Z, tran-
sition and decay amplitudes. See Sec. II B for further explana-
tion.

It now clearly appears that all parity violation observ-
ables in neutron transmission are closely related to one
and the same difference of scattering amplitudes. The
calculation of this difference in the framework of statisti-
cal scattering theory is the subject of the following
chapter. Before that, we briefly turn to the very reason
motivating the whole work.

B. Explanation of enhancement mechanisms

The discovery and description of these mechanisms al-
ready dates back more than 20 years to early work of Er-
icson [2] and Shapiro [3],where clear explanations for all
but one of them can be found. Shapiro also introduced
the relative measure of interaction strength of the weak
perturbation H to the unperturbed Hamiltonian H,
which is at the same time the order of magnitude of the
parity violating scattering amplitude on the level of the
nucleon-nucleon interaction:

' 1/2

F „Tr[(H )') =1.50x 10-'.
Tr[(H ) ]

(2.6)

This order of magnitude is well established [22—24] and
the precise value we have taken is from proton-proton-
scattering experiments [23]. Physically such an ansatz
measures the strength of an interaction (with respect to
another one) in the sense of an rms element, because for
an operator H with dimension A we have

(Tr[H ]) ~

Dim [H]
H2 ' 1/21

pv

(2.7)

Also mathematically (2.6) is an expression for the
"strength" of an interaction operator, because
(Tr[H ])'~ is a matrix norm (the so-called Frobenius
norm, a special case of the Holder norm [25]}.

All enhancement effects express themselves in the oc-
currence of parity violating amplitudes in nucleon-
nucleus scattering, which can be much larger than (2.6).
Possible mechanisms are as follows.

Kinematic and structural enhancement. Consider the
scattering scheme in Fig. 1: an incoming scattering wave
li ) with parity m couples to a metastable resonance lp )
with the same parity, which, in turn, decays back with
amplitude Z+ to a final scattering state lf„) with still

z
=exp(iargZ+) lf )+A

I

lf ) (2.8)

where we have assumed IA I
&(1. Now, the ratio of

Z /IZ+ I can, under certain circumstances, be much
larger than 1. This is for reasons both of specific nuclear
structure (Shapiro [3] discusses the example of a pair of y
channels as mentioned above} and of kinematics (playing
an important role in the neutron scattering experiments
we have in mind here). Note the difference between A
and FttN introduced in Eq. (2.6): A is a transition am-
plitude between resonance states, Fzz is a scattering am-
plitude between continuum states. Their connection will
become clearer below.

Dynamic enhancement. In perturbation theory—
certainly applicable to the weak interaction —the transi-
tion amplitude is proportional to the ratio of perturbation
( w) to level distance (d), i.e.,

oc-w

d
' (2.9)

Here, w shall be a typical matrix element of H". In (2.9)
it is not divided by a typical strong matrix element [as in
(2.6)] but by the level distance. For highly excited and
heavy nuclei, d can be very small, down to fractions of an
eV. Thus we see that already the weak transition ampli-
tude A" inside the compound nucleus is an "enhanced"
quantity.

Resonance enhancement. Consider the transition be-
tween two resonance states lp+ ) and lp ) with different
parities. It is described by the evolution operator
exp( iHt/fi} with H=H—+H, where H connects
lp+ ) and lp ). Let the resonances have (for the sake of

the same parity. If there is parity violation, there is a
second branch in the reaction scheme: a parity violating
coupling A of the first resonance to a second one lp )
with opposite parity; the latter one then decays with the
amplitude Z to a final scattering state

If ) with pari-
ty n. (If ) —and lf ) can be, e.g., electric and mag-
netic multipole radiation of the same multipolarity 1.)
This leads to the following final state:

Z+If )+A Z If
v'Iz, l'+IA z I'
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simplicity) equal widths I, corresponding to a lifetime
A/I . Introducing the latter one for t and expanding to
lowest order in 0 /I one gets for the transition ampli-
tude:

1 I 1

gf (0o) — g 2' 2 + g 2' 2

k 2I+1 ' 2I+1

kR « I . (3.2}

gw~(
~

i(H +H )/I
~

)~+ =r (2.10)

It is thus clear that narrow resonances with long lifetimes
enhance the effect, motivating the notion of "lifetime
enhancement": we have two channels with a small "cross
talk. " The longer this cross talk holds on, the more sig-
nal will be accumulated in the "wrong" channel.

After this qualitative reasoning, we now turn to a
quantitative model.

Still simpler is the expression for target spin I =0:
1 1

bf (0 )=—S)'()' (3.3)

2. Connection scattering matrix —Hamiltonian

We start out from the equations [27]

We now turn to the construction of the S matrix in
terms of the Hamiltonian.

III. FORMALITIES: MODEL AND RESULTS Sg~ =5,~
—2mi Vg G ~ V (3.4}

A. From the scattering amplitude to the Hamiltonian

Here, there are three steps: first, the helicity-
dependent difference of the forward scattering amplitude
is given in terms of the scattering matrix; second, the
scattering matrix is expressed in terms of the Hamiltoni-
an; last, the Hamiltonian with its statistical and parity
violating features is given.

I. Connection observables —scattering matrix

The relevant helicity dependent difference of the for-
ward scattering amplitudes for a spin- —, projectile, imp-

inging on a target with spin I is given by

4f (0') =f+ (0') —f (0')

2l 2J+1
k )~, I J=i 21 2(2I+1—)

J
where we have used the coupling scheme j = I +—,',
J =j+I and where b,l J J stands for the selection (trian-
gle} rule ~I —

j~ ~J ~ I+j; i.e., it is 1 for the selection rule
fulfilled, 0 otherwise. [The calculations leading to (3.1)
are lengthy and involve cumbersome notations, but they
are conceptually uninteresting and thus omitted. For a
check we mention that (3.1) coincides with a result pub-
lished elsewhere in the literature [26].] The dynamics re-
sides in the neutron elastic scattering matrix element S»',„
where from the complete channel index c only I,j,J have
been retained: j, J as superscripts, indicating that we
have to take diagonal elements of S in these labels (as in
the omitted labels as well); and l, l'=1 —1 as subscripts,
indicating that parity violation is connected with a
change of angular momentum: the parity forbidden S-
matrix element connects partial waves, which differ by
just one unit of I and thus have different parities
2r=( —1)'. In the following, from the complete channel
parity m, =m. , ;~„,m.

I only the parity factor of the par-
tial wave is retained.

For nucleons up to 10 keV the centrifugal barrier fac-
tor is kR «1 and thus the restriction to s and p waves
fully justified ("p-wave approximation"), leading to the
following simple expression:

where a, b =1, . . . , 1V and p, v=1, . . . , A,

G =(E H+in—VV )

where the orthogonality relation

(3.5)

g V„,V„b=V,&&Vb =AU, 5,b
P

(3.6)

GVV G'= ——Im(G),1
(3.7)

where unitarity in the common form SSt=1 follows by
combining it with (3.4). Third, we have the analytic
property

shall hold. Here, Vis a rectangular matrix describing the
coupling of A metastable compound nucleus states or
bound states embedded in the continuum (greek sub-
scripts) to N scattering channels (latin subscripts}, its
columns V, =( V„, . . . , V„,) are the "coupling vectors"
to a specific channe1, AU, are their norms, and 6 is the
Green function or "propagator" in the subspace of the
compound states.

There are some approximations inherent in the form
(3.4)—(3.6): First, we have neglected direct interactions,
which is entirely justified for slow neutrons ("slow neu-
tron approximation"); formally, this leads to Eq. (3.6).
Note that this relation is, in its essence, a statistical one:
if the coupling vectors V, are mutually uncorrelated, the
sum in (3.6) runs for a&b over random-sign terms, and
we have A 'V, o Vb U, ubl&-A, whereas A '~V, ~2 is in-

dependent of A. Taking the limit A~Do, we are led to
(3.6). Second, no energy dependence of the coupling V
whatsoever has been assumed, which, in particular, pre-
cludes threshold effects. Thus, the forthcoming results
are numerically reliable only in some distance to the neu-
tron threshold. Third, we should have included the po-
tential scattering phase shifts; but they drop out of our
final results and so we omitted them from the outset.

Four important properties of the S matrix or Green
function shall be noted in connection with Eqs. (3.4) and
(3.5j. First, causality: formalIy this is ensured by the fact
that all poles are lying in the lower half of the complex
plane. Second, unitarity: formally, this can be seen from
the form of the so-called Ward identity [11]
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G = — G,a
az (3.8)

analogously for higher powers and O'. Fourth, symme-
try: S=S holds, if we take H and Vto be real; this is
ensured by time reversal invariance, which we will as-
sume throughout the present work.

Together with the expressions in Sec. II we now are at
the end of the sequence "observables ~ scattering ampli-
tude ~ scattering matrix ~ Hamiltonian. " Next we
turn to the formulation of both the statistical nature and
parity violation of compound nucleus scattering on the
level of the underlying Hamiltonian.

B. Statistics and parity violation in the
compound nucleus interaction

To describe parity violation, the Hamiltonian occur-
ring in Eq. (3.5) is assumed to have the following form:

H+ 0 H++ H+

0 H H + H
H=H +H

+ + A* +2H„+-~„+-.„.=, (d +)'(5„„5., +5„„5„-„),
7r'

(3.10)

H„~„„=w (5„„5„+5„„.5„„). (3.11)

Here, A* and d* are the numbers and average level dis-
tances of the compound states with a given parity, and
w is the strength parameter of the weak interaction.
(With H and H acting—within a subspace of given J
they had to carry, in principle, an additional superscript
J, as well as all related quantities, e.g., d * and so on.
The following considerations holding for fixed J, we drop
this superscript for notational convenience. In Sec. VI,
when we have to discriminate between different J, we
shall resume the extended notation. ) The somehow
artificial way of defining the variances of H —+ is for the
mere sake of convenience: we want to be in accordance
with the article of Verbaarschot et al. [11],which is fun-
damental for the present work. In Ref. [11]also a more
extensive motivation for the use of random Hamiltonians
may be found, as well as an introduction to the
mathematical techniques. An important point of the
whole ansatz is an ergodic hypothesis: averages over
quantities (cross sections, correlations, and so on) fluc-

The blocks H+, H are restricted to the subspaces of
given parity and thus describe the parity allowed interac-
tion within such a subspace, whereas H connects all
states with each other, the blocks H+, H + describing
the parity forbidden interaction between subspaces of
different parity. Both H and H respect rotational sym-
metry and thus connect resonances of the same total an-
gular momentum J.

In order to model the "unpredictable" and "uncalcul-
able" residual interaction in the highly excited compound
nucleus, both H and H shall belong to a Gaussian or-
thogonal ensemble (GOE), i.e., their matrix elements are
uncorrelated Gaussian variables with their variances
given as follows:

S=S (3.12)

s"=o
pm (3.13)

av
pm( p'm') Qpp Qmm 5pp'5mm' & (3.14)

Qpp=2M[(V+) G+(G+)'V+] (3.15)

where S is the unperturbed scattering matrix obtained
by setting H=H in Eq. (3.5), G+ and V+ are as in Eqs.
(3.5) and (3.6), specialized to the positive parity subspace,
and Qpp [or Q with the replacement +~—in Eq.
(3.15)] stands for a threefold integration of the type of
equation (8.13) of Verbaaschot et al. [11],which will be
explicitly given below. Before that, some comments on
Eqs. (3.12)—(3.15): (i) All of them are true up to second
order in the perturbation H ("weak interaction approxi-
mation") and to zeroth order in A ' ("many resonance
approximation, " which has already been used in the un-
derlying work [11]). (ii) The average S matrix remains
unchanged [Eq. (3.12)]; this is important for the transmis-
sion coefficients T„which are closely connected to S„.
(iii) In particular, there is no parity violation on average
[Eq. (3.13)]. This is reasonable, because, at a given ener-

gy, the parity forbidden effect is due to interference of the
strong and of the weak interaction; if the energy is
changed, the phase of the compound nucleus states and
thus the sign of the interference effect should fluctuate in
a random manner, leading to a vanishing average value.
If this argument became questionable by recent experi-
mental findings (see Sec. VII), our model still remains val-
id for the fluctuating part of S alone. (iv) Due to simi-
lar arguments, scattering matrix elements for different
pairs of entrance and exit channels are uncorrelated.

For the observables of Sec. II one has to know either
the real or the imaginary part of hf as it is given by Eq.
(3.1). In the framework of the statistical model developed
here, we now ask for averages and variances of Im(bf)
and Re(b,f). It is not diScult to show that no other
quantities are needed than those already given in Eqs.
(3.12)—(3.15):

Im(b f)=Re(b f)=hf =0,
Im (b,f)=Re (hf)= —,'~b,f~

2 2J+1
2(2I + 1)

J

(3.16)

2 j=l —2,J 2
I

(3.17)

We finish this section by giving the explicit form of the
two-point functions Q occurring in (3.14) and (3.15)

tuating with energy are replaced by averages over the en-
semble of random Hamiltonians. We now restrict our-
selves to cite a series of successful applications of the
GOE [28—30], especially to other questions of symmetry
violation [31,16,17] and to give the result for the parity
forbidden scattering matrix element in the language of
Verbaarschot et al. [11] (in the following, p and m stand
for two channels with opposite parity):
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(given for channel p, m is analogous; for a derivation see
Appendix B):

Q =—f dA, f dA~ f dl, p(A) gr (A)q (A),

(3.18)

energies and excitations of the residual nucleus. It is im-
possible to know all the individual transmission
coefficients of these channels. But there is a way out of
this problem: let l =1, . . . , Nl be a subset of channels
with the property

where A is the vector (A&, Az, A. ),p is the "measure" func-
tion

N,
-N, '«1 for l, l'=1, . . . , Nl . (3.25)

p(A) =
Q(1+X,)(1+X,)QX,X,(X,+X)'(X,+X)' '

(3.19)

and g the product function of Verbaarschot et al. :

N 1 —T.k
T(A)=

p'=f +1+T A)+1+Tp A2

(3.20)

4x,
T.= (1+x, )

with

(3.21)

with p' running over all channels with the same J as the
channel p. The transmission coefficient T, of channel c is
connected with the coupling V as follows:

Then it can be shown that to a very good accuracy (see
Appendix A) the following "lumping" approximation
holds.

NI 1 —T

+1+T(A, ,+1+Tt A.~

~ ~1+~2+ 2k ) TL /2
7 (3.26)

N

QT, «1. (3.27)

i.e. the product function of Eq. (3.20) containing many TI
can be replaced by an exponential containing only their
Sum TL.

The second approximation is connected with the fact
that later on we shall apply our results to slow neutron
transmission experiments. Physically, this is the case of
isolated resonances or "weak absorption" with

2

X =1T
d

(3.22)

q (A) =2~ Td+ P

A, ,(1+A, , ) A,2(1+A, 2)

1+T A, , 1+T k2
+

2A.(1—A, )

1 —T A.
P

(3.23)

For later use we introduce a dimensionless quantity relat-
ed to Q:

Note that the numerator in (3.22) is the arithmetic aver-
age of the squared coupling elements Vz, .

The remaining part of the integrand is specific for the
problem under consideration:

This assumption makes it possible to reduce the triple in-
tegration of the type (3.18) to a single one in a quite gen-
eral class of two-point [32—34] and four-point functions
[35]. The result for our special two-point function here is
merely stated, its derivation very closely following the
mathematical way of reasoning of Ref. [33]:

L = f d (1+T ) 'g(1+T ~ )
2 0

(3.28)

with p' running over channels with the same J" as the
channel p. By numerical evaluation of the full threefold
integration (3.18), as described by Verbaarschot [28], ap-
proximation (3.28) was shown to be very good.

The third approximation is a combination of the first
two, and we shall present it in two different forms: (i) As-
suming the lumping approximation for all channels but
the entrance channel, i.e., TL+ =g ~ T,, we obtain

PP

hid+
(3.24)

L =1—xe" ~ f dy e ~ ~, x =NATL+/T (3.29)

where h is Planck's constant. Equations (3.12) through
(3.24) are the formal result of this work. We now come
to some simplifications.

C. Some useful approximations

The first approximation is connected with the fact that
compound nucleus resonances are often coupled to a
large number of open channels; here the word "channel"
has to be understood in the strict sense of labeling pre-
cisely one scattering state, i.e., giving all its quantum
numbers including fragmentation and possible interna1
excitation of the fragments. This especially holds for the
multitude of y channels, corresponding to the different y

T~+=y T, , +2T,
P

and consequently

(3.30)

T
LP T+I

T T

3T+g T ~ gT, (3.31)

P +P P

i.e., essentially the branching ratio of the entrance chan-

(This integral can be found in the literature [36] as
Dawson s integral. ) (ii) Assuming the lumping approxi-
mation for all channels we have to include the factor
(1+T x) ' of Eq. (3.28) in the lumped product function
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nel. The second version in (3.31) exhibits an interesting
feature: the factor 3 multiplying the transmission
coefficient of the elastic channel (p =entrance =exit
channel) is connected in statistical scattering theory to a
quantity known as "elastic enhancement factor, " which
has been thoroughly studied for nuclear [28,37] and light

[38] scattering.
The last form of (3.31) results from applying

T (&g T ~ once more.

of m and hence of the "strength" of the perturbation is
precisely the matrix norm introduced in Eq. (2.6) (or its
generalization to rectangular matrices).

Interpretation. An arbitrary fixed perturbation cannot
be distinguished from a Gaussian one. The dominant in-
teraction (the two GOE's H+ and H ) alone provides
suScient fluctuations to average out a single orthogonal
invariant from a multitude of perturbation elements: the
arithmetic mean of the squared matrix elements.

IV. INTERPRETATION 2. Introdttetion of the spreading width

In the developments so far there are some assumptions
as well as results which deserve further explanation and
interpretation. We start with the following.

A. Form and scaling of the perturbation

The next question is: What ansatz has to be chosen for
the perturbation parameter m ? The answer to this ques-
tion is guided by the investigations of other symmetry
violations (isospin [31] and time reversal [39]) and has
two parts: First, not m, but rather the quantity

1. Wonstatistieal perturbation
2r.'=2~ (d =&d+d ), -

(4.5)

Our ansatz has been a statistical one not only for the
unperturbed Hamiltonian H, but also for the parity
violating perturbation H, cf. Eqs. (3.10) and (3.11). This
latter assumption can be dropped and H taken as a
much more general matrix with nearly arbitrary fixed ele-
ments. This seems astonishing, because how then shall
the multitude of independent matrix elements H„be
condensed in the single parameter m, which is the vari-
ance of the Gaussian ansatz according to (3.11)?

The argument is as follows: H" has to be introduced
into Eq. (3.5), the Green function has to be expanded up
to second order in H, and then the average has to be
carried out, but now over H+, H alone. This leads to
the treatment of two-point functions of the form G„G„' ~

and a following contraction of the indices with H and V.

The result of this contraction is (in leading order of 1/A)

S=S

Spv 1 Tr[H+ (H+ ) ]

(4.1)

(4.2)

Here, only one additional assumption entered, namely,
that the rows of the perturbation operator H are not
correlated with the coupling vectors, i.e. that the follow-
ing estimate holds:

[(v+)'H+- v-],. [(v-)'H-+ v+].,
Tr[H+ (H+ )~] Tr[H+ (H+ )r] A

(43)

w = Tr[H+ (H+ ) ].1

A+A
(4 4)

Here, a formally quite satisfying feature is clearly
brought up: the orthogonal invariant serving as a gauge

This is essentially the random interference argument al-

ready used in Sec. III A 2.
Henceforth, only an orthogonally invariant trace is left

from the nonstatistical H, which allows a "gauging" of
the variance m of the statistical one:

the weak "spreading width, " is widely independent of the
excitation energy and target nucleus and can be con-
sidered, in some sense, as the universal parameter of pari-
ty violation in nuclear matter. An intuitive explanation
of the mere fact of relative constancy can be found in
several articles [2,3,40]. We take I t =1.0X10 eV, a
value recently measured [12] in neutron scattering on
238U

Second, the order of magnitude of I ~ is connected
with the strength of parity violation in the nucleon-
nucleon-interaction [see Eq. (2.6)]:

I t /I i=(H, ) /(H ) =(F ) =2.3X10 (4.6)

Our choice for I and Fzz implies I, =4.3 MeV. This
value satisfactorily compares with the value found from
the study of isospin breaking in compound nucleus reac-
tions: Here, the Coulomb spreading width is roughly
I c~=30 keV and the strength parameter is the elec-
tromagnetic fine-structure constant, (Fftt) =—„',; conse-

quently, from isospin breaking one estimates I ~=4. 1

MeV. It should be kept in mind, however, that the con-
stancy of spreading widths and thus of ratios like (4.6)
holds, in general, only approximately [31,41]. Note that
the ansatz (4.6) is based on a specific many particle struc-
ture: the strong spreading width I,~ being given by the
residual interaction of the strong force, which, in turn, is
of two-body nature, (4.6) means assuming a weak interac-
tion of two-body nature, too. Otherwise, the spreading
width ratio (4.6) could not be independent of the particle
number A. It is interesting that one-body forces, i.e., a
parity violating potential, lead upon averaging to much
smaller typical effects [42] than we have found, namely,
10 instead of 10 (see Sec. VI). Note, however, that
we are going to calculate root-mean-square averages of

parity forbidden observables (given by ~S ~ ), whereas
the authors of Ref. [42) calculated averages as such (given

by S ), which vanish in our model [see Eq. (3.13)] due to
random interference.

In this context, the following consideration is enlight-
ening: As can be seen from (3.14) and (3.24), the "parity
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forbidden cross section" ~S ~
contains a prefactor

d d
(4.7)

which we have rewritten in terms of the weak strength
constant and of a large factor 2+I ~/d, which stands for
dynamical enhancement. Its order of magnitude is
I ~/d-A, i.e., the number of configurations effectively
mixed by the residual interaction. Thus this factor turns
out to be the same as Blin-Stoyle's "number enhance-
ment" [43].

B. Introduction of the interaction lifetime

In Appendix B, we show that the two-point function Q
of Sec. III B is a well defined quantity of general scatter-
ing theory. Using only fundamental requirements such as
causality, unitarity, symmetry, and stationarity, one gets
an appealing interpretation and additionally a completely
independent check of the results in Sec. III B (which first
were obtained by the algebraic methods of Verbaarschot
et al. [11]):

g =in S+ (S+)'B
PP

. PP

B=i% [S+(Ei)(S+) (E~)]PP I =g —g, =P .
BE

(4.8)

r. mlX

we have the following suggestive formula

(4.9)

}SPv}2
2

Tint

Tmix Tree
(4.10)

Note the distinction between average interaction time
and average compound nucleus lifetime: the former one

Remember that the superscript + denotes parity, not
Hermitian conjugation. The quantity under the average
bar on the right-hand side of the first equation has pre-
cisely the form [44,45] of the so-called "collision lifetime"
or "interaction time, " as we shall call it. Its meaning is
that of the delay time, which a particle passing through
the interaction region is suffering with the interaction
switched on in comparison to the delay with the interac-
tion switched 0+ A deduction and discussion of the
properties of this quantity can be found in the above-
rnentioned references; we now turn to the interpretation.

The variance of the parity forbidden scattering matrix
experiments, according to Eqs. (3.14) and (3.15), is given
by the product of the average interaction lifetimes in en-
trance and exit channel. In order to give an expression
for ~S ~, which is purely based on the different time
scales occurring in a nuclear reaction, we introduce the
following quantities: the recurrence time ( [46], Eq.
(7.10)) h /d and, also in accordance with the current un-
derstanding [47], the mixing time h /I . The latter one
can be interpreted as the time constant of the relaxation
of an originally pure parity state to a parity mixture [46].
Henceforth, with the set of renamings

g [(V+)TG+(G+)'V+]
PP

P

Tl[G+ V+( V+ ) (G+ )*]y+

Tr[ —(1/~)lm(G+ ) ] =2m @/(N+d+ ) .
2m%

X+

(4.11)

Note that this is (within the GOE formalism) a rederiva-
tion of a result found by Lyuboshits in a somewhat more
heuristic way [49,50].

Interpretation. The parity violating cross section is
given by the variance of the parity violating Hamiltonian
elements and the product of interaction times in the en-
trance and exit channel. The longer these interaction
times, the larger is the expected value of the parity viola-
tion effect. Due to the fact that we deal with average de-
lay times and not common lifetimes, both the average
width and the average distance of the resonances are in-
volved: on the one hand, the delay time on resonance is
1/I and ogresonance 1/d (i.e., negligible for d ((I, the
"weak absorption case"); on the other hand, the probabil-
ity to hit a resonance in channel c is proportional to I, /d
(where I, is the partial width). The total effect depends
on both the absolute value of I and on the ratio I, /d.
In this sense the lifetime enhancement incorporates the
resonance, dynamical, and kinematical factors of Sec.
II A.

C. External mixing

So far we have not considered the presence of weak
forces in the coupling V. This deserves a justification.
The most general form of the coupling would (if T invari-
ance holds) look like

0 0
+ (4.12)

The occurrence of the parity violating part, e.g. , V+
has two effects, which can be located in the basic equa-
tions for the S matrix: for the V multiplying G in Eq.
(3.4), they lead to a parity forbidden transmission into the
compound nucleus, i.e., the coupling of a channel with

given parity to a resonance with the opposite parity; for
the V occurring in G through the decay matrix
W=in VV, see Eq. (3.5), they lead to an external mix-

ing. By virtue of orthogonal invariance these two effects
may be cast into the following forms.

is not merely proportional to 1/I, i.e., the reciprocal
linewidth. Quite surprisingly it even can be proportional
to 1/d, i.e., the reciprocal level distance. This can be
shown with the simple model of equivalent channels,
where all transmission coeScients are equal T, = T. The
interaction time in a given channel then can be expressed
by a channel sum, which, in turn, can be evaluated by vir-
tue of unitarity [cf. Eq. (3.7)]:

1
~PP N+ + ~PP

P
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First eject .The direct parity violating coupling leads
to parity forbidden transmission coefficients, which con-
nect a channel of given, say negative, parity to resonances
with the opposite parity. Consider the scalar products
U, oUb of the coupling vectors Uz =((V~+), (U~+ ) )

[where a, b denote any channel of positive (p) or negative
(m) parity]. For a&b they can be neglected by virtue of
the same random interference argument, which explains
Eq. (3.6). Turning to a =b =p (similarly for a =b =m}
and assuming ( I/A ) ~Vz+

~

-( I/A+ )~V~+
~ (FgN )

(note the squares), the coupling constants as defined in
Eq. (3.22) will contain a parity forbidden part

and fixed H+ in Sec. IV A. We already know that the
GOE then averages out an orthogonal invariant [cf. Eq.
(4.4)]:

(w'"') = Tr[8' (IV+ } ],1

A+W-
(4.16)

which in closest analogy to w of H leads to an external
spreading width. It can be written (again in the weak ab-
sorption limit) as

I i, ext def (wext)2

d
'

d

x+ -(F~ ) x+=(Fy ) 77 ~V+~ /A+d+, (Fn~—) g (x+) +g (x )
2 (4.17)

where x+ is the parity allowed part. As long as the
transmision coefficient corresponding to the latter [see
Eq. (3.21)] fulfills T~+ -x+, i.e., x + 5 1, we will also have

-(Fnx)'T (4.13)

Now, cross sections are continuous functions of the
transmission coefficients, which have, according to Ver-
baarschot et al. [11], the general form of a corrected
Hauser-Feshbach expression

os.=T T.(g T, ) 'E(T, T., ),
where E is a correction function of the order of unity. In
the presence of parity-violating transmission coefficients
of the form (4.13}one has

(4.14)

In the case of slow neutron scattering, m is a p-wave
channel, p is the s-wave channel and
o' =g cr —T . Then, we have a ratio
o ~/o' tx T~(g T, ) '(Fzz), which has a multiplying
factor even smaller than 1, meaning hindrance, not
enhancement. An interesting, albeit rather unrealistic,
situation can occur if T+-(x+) ', i.e., ifx+&)1: then,
T+ —T+ is possible. Consider the function
T(x)=4xl(1+x) connecting coupling parameter and
transmission coefficient [see Eq. (3.21)] and write
T, =T(x, ). Equating T(x+)=T(x~+(Fgz) )-T+
yields x+ -(Fg~) ' —10, i.e., for such an extremely ab-
sorptive channel, the strong and the parity forbidden
transmission coefficient may be comparable. The reason
for this surprising behavior is that a wave packet gets
reflected rather than transmitted at any large change of
the potential, even when it is an absorptive well; if, how-
ever, the incoming wave in addition couples weakly to
the resonances of opposite parity, these are seen as a
much shallower well, which is much easier to penetrate.
[A similar consideration shows, that for
x —(I'~& ) —10', one could even have

T,+ -1&)T,+.]
Second eQect. The parity-violating blocks of the decay

matrix have the form

This has to be compared with the corresponding expres-
sion (4.7) for the internal spreading width, thus revealing
that there is no a priori reason to neglect the external
coupling in comparison to the internal one. On the con-
trary, the two effects become equal if the sum of the
squared coupling parameters [the term in large
parentheses in (4.17)] becomes comparable to 2nI old,
which may happen in a region of extremely overlapping
resonances.

Interpretation. A parity forbidden part in the coupling
V leads to two effects. First, of parity violating transmis-
sion coefficients of the order of magnitude (Fgz ) —10
occur. These transmission coefficients enter parametri-
cally in S and ~S~ and produce effects of the same order
of magnitude. There is no lifetime enhancement: the
perturbation acts only during a "penetration time, "
which is much shorter than the average interaction time.
Second, a parity forbidden spreadinz width occurs, which
enters multiplicatively before Q~~ Q . It is (as the inter-
nal spreading width) of second order in the perturbation,
but additionally of fourth order in the coupling to the
channels. Thus this effect does profit, on the one hand,
from lifetime enhancement, but can be, on the other
hand, neglected in the case of isolated resonances.

V. A PREREQUISITE: INCLUSION OF FINITE
ENERGY RESOLUTION

Up to now it was assumed that all resonances and fluc-
tuations in excitation or transmission functions may be
measured with arbitrarily precise resolution, i.e., with
their line width being unaltered by any influence of the
experimental setup. In Sec. IVB we have pointed out
that all parity nonconserving observables decisively de-
pend on the lifetime, i.e., the inverse linewidth. Hence, it
should be intuitively understandable that any form of line
broadening leads to a lowering of the measureable effect.
An answer to the question about the influence of finite en-

ergy resolution is thus an indispensible prerequisite to the
question of feasibility of symmetry violation experiments
with energy averaging.

Our formalism allows one to answer this question.
Finite energy resolution means to measure a signal f (E)
not only at one energy E, but as a summation of the form

IV+ =im[V+(V ) +V+ (V } ] . (4.15)

This matrix plays exactly the same role as an arbitrary f =ff(E')r(F E—'}dE', — (5.1)
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i.e., the convolution with the experimental resolution
function r of given halfwidth AE. We now assume the
function f to be our two-point function, L =d Q~~/h,
cf. Eq. (3.24). Consider Q in the form (3.15), but with 6
and G* taken at two different energies E, , E2.

d+
Lp(Ei Eq—) = Qpp(Ei E~—)

b,E /m.
rt (e)=

e +(bE)
—(~, +~2+2~)T /2I 2 L

e
—e /2(bE)

rG(e)=
i 2m.(b,E)

( A
&
+A 2 + 2A ) TL /2 ( k

I
+ A.2 + 2A )2m'AE /dL I 2

(5.7)

2m d—+ [( V+ ) 6+(E, )[6+(E~ ) ]+ V+
]

(5.2)

—(El+A,2+2k, ) TL /2 —k&+X2+2A. ) TL /2 —~I+~2+2A. ) (vrbE/d)

The fact that GOE averaged two-point functions depend
on the difference e=Ez Ei a—lone is shown in Ref. [11];
more precisely it occurs as a '*Fourier" factor in the final
integrations. These are, in general [11], three-
dimensional in the arguments A, „A,„A, and the energy
dependence reads as exp[ i~—(e/d)(A, , +Az+2A, ) ]; in the
limit of isolated resonances [34], there is only one final in-
tegration in x with a "Fourier" factor exp[ is(e—/d)x. ]
Some of the following considerations apply to both the
general and the limiting cases, and we sha11 use a com-
mon abbreviation 8=m(A, , +A& +2k, )/dor O=nx/d, re-
spectively.

We now imagine an "experimental measurement" of
L~ to consist of two steps. First, a measuring (5.2) with
finite resolution,

E T
TR =2m

2TR
(5.8)

for a Lorentzian and Gaussian resolution function, re-
spectively. The Lorentzian case now allows an intuitively
very appealing interpretation: the sum of transmission
coefficients TL of the lumped channels has to be replaced
by TL+4~4E/d or the corresponding linewidth I L by
I t +2b,E. (The additional factor of 2 here comes from
the fact that we have to apply the resolution function two
times, i.e., we have a double convolution. ) If we imple-
ment the replacements (5.7) in the combined limit of
weak absorption and lumping of all channels [see Eq.
(3.30)], we obtain analytical results for both the Lorentzi-
an and Gaussian cases. Setting

L,(e)' "=-f" f" L (E,' E i )r(E,' E—p)—
X r(E'i Ei )dE&dE—'& (5.3)

the result for a Lorentzian weighting is

T
L =(1+R— '

)P T+ +
L

Note that we have to perform a convolution over both E,
and E2, because both points of the two-point function are
"smeared out" experimentally. Second, extrapolating to
the limit a=0,

for TR+ ))TL+
2TR

and for a Gaussian weighting one obtains

(5.9)

I. — = lim I. (e)E
p pE ~E (5.4)

Tp R+L +— = &nR e +erfc(R )T+ + +
L

It is shown in Appendix C that the Fourier form of the
energy dependence leads to a simple recipe: Lp

—+ is
obtained from L by the following substitution:

II II r'(9), (5.5)

where P is either the product function of the threefold
integration (3.18) in the general case or of the single in-
tegration (3.28) in the isolated resonance case, and r(0) is
the Fourier transform of the resolution function:

r(8)= f e' r(E)dE . (5.6)

We now make two specific choices for r (8) and addition-
ally assume the "lumping approximation.

" Then we ob-
tain an even simpler recipe than (5.5) for the substitution
in Eq. (3.26):

for TR ))TL
(2/&m. ) T„+

(5.10)

X r (Ez Ez )dE~dE', ,
— (5.11)

The first forms of Eqs. (5.9) and (5.10) for T„+~0 (or
R+ ~ 0D ) lead back to the old results without resolution
correction, as it should be (the function
&i' exp(x )erfc(x) tends to 1 with x ~ ~; see Ref. [36],
Eq. 7.1.23. The second form of (5.10) was obtained with
help of Eq. (7.2.7) of Ref. [36]. The ratio
(2/&vr) '.2 '= l. 8 of the Gaussian to the Lorentzian
case reflects the slower fa11off and hence stronger "smear-
ing" of the latter one.

Up to now we had assumed that the measured quanti-
ty, i.e., the function f of Eq. (5.1) is L (E), which means
that L (E) and L (E) are measured separately. But in
transmission experiments, one actually measures the
product L (E)L (E) i.e., one is dealing with a correlated
measurement. This leads to a complication, mathemati-
cally to be stated as follows:

Ll- —+ = L E' L~ 6' 7'E& E&
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where e' =E2 —E', . Technically, this double convolution
generally wi11 lead to an integration, where the arguments
of L and L are no longer independent. In the general
case, this entanglement of arguments leads to an un-

pleasant sixfold integration. Only in the case of Lorentzi-
an resolution one obtains (see Appendix C)

L L E+«=L E+«L E+«
p m P m (5.12)

R
X[e —erfc(R ) —e +erfc(R+)] .

In the case of Gaussian resolution, this identity does not
hold, but we can get a simple analytical form under the
same assumptions as before (weak absorption, lumping of
all channels). It is (see Appendix C)

TpT R+ R

VI. APPLICATION TO NEUTRON
OPTICAL KXPKRIMKNTS

This type of experiments entails two gratifying features
from the theoretical point of view: First, the data pool is
one of the best available in all nuclear physics; second,
the physical situation is such that the approximations of
Sec. III C can be applied.

A. Transmission coefli.cients and level densities

For low-energy neutron scattering, only two types of
basically different channels are open, namely neutron and

y channels, and all these channels are weakly absorbed.
This limit means that the transmission coefficients, as
defined via Eqs. (3.21) and (3.22), are connected to the
average widths as follows:

(5.13)
r.

T, =4x, =2~ (a =a, l,i,j,I,J,M, n ) .d' (6.1)

In low-energy neutron scattering, we often have the phys-
def def

ical situation where I,+„=I,„=I„„i.e., R+ =R =R.
In this limit, Eq. (5.13) can be rewritten as a derivative
and one obtains (see Appendix C)

L L ~+ += 2R [1 &nR—e" er.fc(R)] . (5.14)

Both (5.13) and (5.14) lead back to the old result L L
for the case of ideal resolution, i.e., hE ~0.

Finally, we again consider AE))I z, i.e., the case of
very poor resolution. (Note, that this is still compatible
with D ))AE.) Then, TL l2Tg ~0 and in this limit Eq.
(5.13) becomes (by means of Eq. 7.2.7 of Ref. [36]):

E+hE PT T-
2T+ T„

(5.15)

Note, that the ratio of (5.15) (correlated measurement)
to the product L + L + given by (5.10} (separate
measurement) is

E+«/L E+«L E+~ =—-0 63&12=
p m P m

7T
(5.16)

1/8', ",'
—=0.71,

1/Z,"~,

which is not very different from (5.16).

(5.17)

This means that a correlated measurement with Gaussian
resolution function reduces the measurable effect more
than a separate measurement and can be understood as
follows: consider F= —,

' (Ez+ 'E&+ +Ez E& —) where all-
arguments shall fluctuate with the same variance hE. If
all arguments are independent (separate measurement)

,'V 4bEz=AE. If, how—ever, Ez+ =Ez and
E&+ =E&, one gets Z,"",= ,''}l8AE =&26E.—Forboth
cases, one has to replace I L in Eq. (3.31) by Z, , in the
limit of very poor resolution and thus one can estimate

E+bE/L E+bEL E+hE
p m P m

T )
= T„o(E}=T„o(1)e'

n 0'2'J
(6.2)

where e is the energy in eV and

T„o(1)=2mSD,

T„,(1)=2m.S,pz10
(6.3)

where p=R l4. 55 fm is the nuclear radius of the target
nucleus divided by the de Broglie wavelength of a neu-
tron with the reference energy 1 eV. Note, that we now
dropped also the labels j, J because the resulting
transmission coefficients do not depend on it. This is the
result of an additional assumption in our extraction pro-
cedure, corresponding to an optical model without spin-
orbit coupling.

The result for the y channels is as follows (it is to be
understood that ~=+1 for s-wave resonances, i.e., when
l =0; and that ~= —1 for p-wave resonances, i.e., when
1=1):

Additionally, we can restrict ourselves to l =0, 1 (p-wave
approximation). From the full channel index a the labels
i,I (projectile spin, target spin) are fixed by the chosen
type of experiment. The transmission coefficients and the
scattering matrix will not depend on the label M due to
axial symmetry. Both the partial widths and level dis-
tances may depend on l,j,J. So we shall write
T, =T

&J z. What .is found in the literature [51,52] are
the so-called "reduced strength functions" S0, S„S&0,
S~, for neutrons and gammas and different partial waves
1 (l =0, 1) which are weighted sums over the quantum
numbers j and J. For l =1 they contain contributions of
different j and for I%0 also of different J. How to get
"quantum number pure" transmission coefficients T,
(with j, J given) from the above strength functions is de-
scribed in Appendix D. Droppping the redundant rr (be-
cause, for a given target, parity is fixed by the angular
momentum of the incoming neutron) the result for the
neutron channel reads as
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T~ J ~=2mSy(/eJ (6.4) d'"=D e, ,1 Jl ~ (6.7)

with

I + I + 1/2 p

lr —s —ir2I
(6.5)

with an extraction factor ez& given by the level densities
for different J,

with the extraction factor from (6.5). It is clear that
d "~D&, because for D& more levels are taken into ac-
count, thus yielding smaller level distances.

By now we have a set of input parameters sufficient for
the numerical evaluation of lifetimes and parity forbidden
cross sections for concrete nuclei.

p
——(2J+1)e ~J+~/2~ / ~

PJ (6.6)
B. Numerical results

which is the spin-dependent part of the usual [53—55] lev-
el density formulas: o is the spin cutoff parameter, for
which we have taken a semiempirical fit formula [55].
The extraction factor is ~1, i.e., T~J &2~S~&, this is
plausible, because the Sz& count the coupling of levels for
more than one value of J.

In distinction to the neutron transmission coefficients
those for the y channels are labeled by the total angular
momentum J. They depend on J because the level densi-
ties do so. We now turn to these.

Again, the literature gives level distances Dp D~ la-
beled by I only; for target spins IAO this means grouping
together levels with different J. What we need are again
quantum number pure quantities d . The connection to
the measured quantities can be established (under reason-
able assumptions; see Appendix C):

It should be emphasized that the y-transmission
coefficients defined in the last section are still not pertain-
ing to one scattering channel; rather they are a sum

N

Ti ~~ QTg— (6.8)

where g runs over y rays of different energies and mul-
tipolarity. Fortunately, the number Nz of these channels
is very high, so that the condition for the "lumping ap-
proximation" (3.26) holds; thus the important parameter
is precisely the sum of transmission coefficients (5.4) and
not the individual transmission coefficients.

We are now in the position to give numerical results
for both the average interaction times and parity viola-
tion observables. The rms values of the following observ-
ables are equal to each other:

def def
=aI =we = (C' —e 2)'"=(a' )'"

opt opt opt opt opt opt

1 15=4m
tk2

(the definitions of 6/I, „b,4, , and the vanishing of their mean values hold analogously) and are given by
2 2 1/2

I

gI+ 1/2 I2+
I

gI —1/2 I2r+-' I +-' ip
2 2

(6.9)

(6.10)

with the parity forbidden cross section

IS&p I
=2m

& LJpLJi,
I
d' (6.11)

approximation ( [51],Eq. (39))

o'=cr~" +o' "=4~(R') +r T lk (6.13)

and the collision times [in the approximation (3.29)]

J e " dx', x ='1/ Tg~/T i . (6 12)
X

Here, the lumped transmission coefficient is TL = T J +
+

for the s-wave channel and TL =T J +T 3 for the
7 7

p-wave channel.
The spreading width is given in Sec. IV A 2. We made

the simplifying assumption that I does not depend on J.
If there are variations of I ~ with spin, energy, and target
nucleus, they are at present unknown; our ansatz aims to
display the dependence of parity violation observables on
known average quantities (namely, d's and T's). The
purpose of doing so is twofold: (i) hints for possible
favorable experiments; (ii) verification of the estimated
value of I ~ from given experiments.

For the total cross sections we take the (slow neutron)

This is the average cross-section including potential
scattering (equivalent scattering radius R', which we
have taken from Mughabghab et al. [51,52]; when the
value is not tabulated, we interpolated it from the neigh-
boring nuclei or the eye-guide curve in Fig. 2, Vol. 1B of
Ref. [52]) and s-wave absorption. The general behavior
of the quantity 6 with energy is as follows: the increase
at low energies is due to the increasing penetrability of
the p-waves; the subsequent decrease at higher energies
comes from the decrease of lifetimes.

We give for a series of nuclei the following results:
First, in Fig. 2 the rrns effect as a function of energy
(from the whole set of nuclei, we have displayed those
with the most complete set of input data, cf. Tables II
and III); second, in Fig. 3 the rms b, effect at 1 eV as a
function of mass number; third, in Table I the energy
E =E(max) where the maximum effect is found, the cor-
responding target thickness, some factors dedicated to in-
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terpretation (and explained in the following section}, and
the rms b, value at E . [For the calculation of the target
thickness we took elemental densities (uncorrected for
isotopic dependence) from Ref. [56]; for the following ele-
ments, we had to make a choice of the modi6cation: Se
(grey}, Rb (solid), Sn (grey), Sm (a); see Ref. [56] for no-
tation. ]

C. Discussion

For the sake of interpretation, we will discuss our re-
sult in the form of the following approximations, which
are crude, but clearly exhibit the main influences on the
total effect:

O
~C

~C

o
CI

10

10

10

10

-5
10

3S 3P 4S 4P

Tn1+~4
TnO

' 1/2 10
50 100 150 200

Mass Number A
250

Tnl
4

TnO

1/2 ' —1/2
tot, J, +2' Fxx

(6.14)

In the first line, we have assumed I =0, (i.e., I=—,'), Eq.
(4.7) for I t, Eq. (3.31) for L„and additionally

4n. /o'k =(4/Tp)(1+cr~" /o' ") '-4/Tp,

Pl 21LJ i I I I I I IIII I I I I I I I II I I I I I I I II I I I I I I I-

1Q
LU

10-4

1PO

I I I I I I II I I I I I I I I II I I I I I I I II I I I I I I I I

10~ 102 103 104

Energy (eV)

I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIII

10 3

1P-4

1pO

I I I I IIIII I I I I IIIII I I I I I IIII I I I I I III

101 1P2 1Q3 1P4

Energy (eV)

FIG. 2. Energy dependence of 6 [defined in Eq. (6.101] for
various targets; see Sec. VI C. Upper part, A ~ 120; lower part,
A ) 120.

FIG. 3. "Parity forbidden strength function" 6 and kinemat-
ic suppression factor V&;„(ratio of s- and p-wave neutron
strength functions) at E =1 eV (CI, 5 for even nuclei; 0, 6 for
odd nuclei; X, V„;„=QT„i/T„p}.The solid curves are guides
for the eye (obtained by spline interpolation) to the calculated
data points. For further discussion see Sec. VI C.

which is roughly true, because cri'"/o' "(1 (see the end
of this subsection). In the second line we furthermore as-
sumed

and

T+-g T, =2nl „, /d~+

Tt =T q =2@i J /d

(the first approximation is crude, the second accurate; see
end of paragraph}. We give two alternative forms, de-
pending on what is considered as basic quantities. In
both forms, the three square root factors correspond very
closely to the three enhancement mechanisms explained
in Sec. II.

The factor Vk;„=QT i/T p measures the ratio of
penetrabilities of s and p waves and corresponds to the
kinematical factor explained in Sec. II. It is dominating
the A dependence of the total effect, as one can see from
Fig. 3: there, we compare (at 1 eV) b,—the "parity for-
bidden strength function" —with V„;„(essentially given
by the ratio of neutron strength functions) and see that it
follows the qualitative features of the latter. These
features are well explained by the optical model, cf. Figs.
3 and 4 of Ref. [52]: the minimum at 3 =50—60 comes
from the 3S shell, the maximum at A =90—120 from the
3P shell, the minimum at A = 150—190 from the 4S shell,
and the indication of a maximum around A =240 coin-
cides with the 4P shell. There is an indication for the
double-well structure of the 4S minimum, as well as for a
double-humped structure of the 3P maximum. We em-
phasize that the curves for b(E ), with E being the en-
ergy where the maximal effect is found, can essentially be
obtained from those at 1 eV by a parallel shift by one or-
der of magnitude up, i.e., their energy dependence is basi-
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TABLE I. Parity forbidden effect and determining factors at E =E,„ for various target nuclei, see Sec. VI C. The delay time Q~~

pertains to the neutron channel p with quantum numbers I =0, j=
—,', I=I+ —,'.

Nucleus

32S

Ca
"Ca
50Cr
52C

'4Fe
"Mn
'Fe
"Fe
"Fe

Ni
Ni

2Ni

"Cu
Ni
Zn
Zn
Zn

77S

78S

80Se
' Rb
88Sr
89Y

"Zr
"Zr
92Zr

Mo
93Nb
'4Zr
'4Mo
"Mo
"Mo
'Mo
MQ

100Mo

101Ru

'"Rh
105pd

106Cd

107A

108pd

108Cd

109A

110pd

110Cd

111Cd

113cd
114Cd
115'

116Cd
117S

134'
135'
137B

139La

(eV)

1400
1600
4500
2200

660
1700
3600
1400
5700

880
3400
2900
2100
6700
2400
2500
1700
1700
4500

920
870

1400
160
210

280
320
250
380

1800
130
480

1100
310

1500
470
790

2000
3900
2200
2100
3200
1100
1800
3700
460
980

3700
870

3400
870

2400
320
600

1600
7700
1600
1700

I
(cm)

5.40
2.50
4.40
0.67
0.56
0.26
0.84
0.72
0.89
0.43
0.79
0.86
0.78
1.40
0.76
1.60
1.30
1.10
3.60
2.10
1.70

11.00
5.40
5.00

2.00
3.20
2.50
1.80
3.10
2.00
1.90
3.00
1.90
3.20
2.00
2.00
2.80
3.30
2.70
2.90
4.10
2.00
2.50
4.00
2.40
3.90
4.10
3.60
6.20
3.20
6.90
5.40
8.40

15.00
17.00
18.00
6.90

(10-')

0.31
0.09
0.23
0.16
0.13
0.12
0.20
0.18
0.19
0.14
0.28
0.21
0.18
0.35
0.26
0.35
0.30
0.21
0.65
0.46
0.21
0.89
0.56
0.60

0.53
1.00
0.79
0.80
1.80
0.68
0.87
2.00
1.10
2.10
0.77
0.95
2.10
2.80
2.00
1.40
2.50
1.10
1.20
2.50
1.20
1.20
1.70
1.30
2.20
0.99
2.50
1.10
1.30
0.74
0.97
0.53
0.45

Vtime

2200
5000
3400
4900
5400
4700
4700
5400
3400
4600
1800
3100
3100
5800
1900
5700
6800
7200
4800
6200
6200
6600
3500
5400

4400
6100
5000
5700
6800
7000
6700
7500
8000
8300
7800
9400
7000
7500
7800
7100
8000

11000
8400
8300
9900

11000
9600
9900
7500

11000
11000
11000
11000
8600
7700

11000
15000

Vdyn

30
35
76
66
37
67

110
64
89
45
67
64
52

320
53

150
130
110
490
200
110
390
48

100

84
220
120
160
760
110
240
730
260
960
240
370
810

1600
1000
640

1600
570
680

1700
390
600

540
1400
490

1700
380
530
340
910
340
370

feS

7.6
3.5
2.7
3.1

5.0
2.1

2.6
4.0
2.2
3.8
3.1

3.3
3.5
2.8
3.3
4.3
4.5
4.2
3.9
6.4
5.7
6.1

17.0
20.0

11.0
15.0
14.0
12.0
6.1

16.0
11.0
7.7

13.0
6.7

11.0
8.4
5.9
3.9
5.4
5.3
4.3
7.2
5.2
4, 1

12.0
9.3
4.4
9.2
4.7
8.7
5.6

20.0
13.0
8.2
4.0
9.4
6.9

510
160
210
230
350
120
250
390
140
250
160
220
190
580
170
860
920
630

1200
1800
750

3600
3200
6400

2700
9200
5400
5600
7400
7700
6400

11000
11000
12000
6700
7500
8600
8000
8600
5400
8600
8600
5200
8300

15000
11000

11000
7700
9700

15000
24000
19000
5300
2900
5300
4700

PP

( 10
—20

)

6
9

40
25

9
29
71
22
45
11
26
23
20

570
19
99
77
65

1200
230
100
700

14
59

52
240
120
140

1700
84

280
1200
300

1900
310
700

1800
4300
2700
1700
3600
1500
2100
4700

690
1400
6000
1200
2700 '

1200
3900
510
790
570

3300
580
780

(10 )

2.00
0.74
0.69
0.94
1.50
0.52
0.73
1.40
0.43
0.93
0.56
0.78
0.83
1.40
0.65
2.60
2.90
2.20
2.60
5.90
3.10
7.40

11.00
15.00

11.00
18.00
20.00
17.00
12.00
29.00
19.00
16.00
33.00
16.00
21.00
22.00
15.00
13.00
14.00
15.00
12.00
25.00
16.00
12.00
41.00
28.00
13.00
31.00
9.90

29.00
15.00
51.00
31.00
16.00
5.70

11.00
11.00
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cally the same for all nuclei. In Table I we have listed the
values for h(E ); the largest effect is 5. 1X10 for"Cd. The values for Vk;„ in Table I show clearly that
even at E we are dealing with a strong kinematical
suppression, due to the angular momentum barrier.

The remaining factors contain the enhancement in the
proper sense. The factor Vd„„=(4n.l ~/d )'~ stands for
the dynamical enhancement and is also listed in Table I.
Following Bunakov [40] we adopt the naming resonance
enhancement for the factor

(similarly V„, ). The first line of Eq. (6.14) gives an es-
timate of the final result in terms of statistical scattering
theory, i.e., the d and T„which are weakly dependent
on energy. But it is useful also to separate out the terms,
which are smoothly dependent on mass number. This is
the purpose of the second form of (6.14): the first two
factors contain the smooth A dependence, whereas the
third one may strongly vary from nucleus to nucleus.
The factor V„,=2I ~/I

z J depends weakly on A be-
cause both the strong spreading width and the total radi-
ative widths do so. It clearly exhibits, that long lifetimes
(compared to the equilibration time fi/I t) favor the

TABLE I. (Continued).

Nucleus
E
(ev)

I
(cm) (1o-') ~res (10 s) (10-4)

140ce
i43Nd

144Nd

145Nd

146Nd

148Nd

'49sm
'"Sm
150Nd

'"Sm
153E

"4Sm
156Gd

i59Tb

162Dy

164Dy

165HO

166E

Tm
170E

Hf
179Hf

Hf
181T

182~
183~
184~
185Re
186~
186O

187Re
187O

188O

'"Au
203T1

204Pb
205T1
209B

235U

236U

238U

500
6300
2400
9000
1700
5100

28000
4000
3000
2800

30000
2900
5800
9500
4300
2600

11000
4600
9600
2500
4500
9600
3000

13000
3500
6700
3700
7600
3900
6500
8700

14000
6100
6700
3100
1000
850
210

1400
9600
1400
1500

2.90
3.50
1.80
2.90
2.20
3.00
3.30
2.10
2.50
2.60
6.80
3.20
3.80
4.60
3.50
3.10
4.30
3.40
4.30
3.00
2.20
3.20
2.00
2.60
1.40
1.90
1.30
1.50
1.50
1.20
1.50
1.20
1.20
1.60
4.40
3.10
4.70
2.40
3.20
2.60
1.80
1.70

0.19
0.61
0.27
0.62
0.28
0.35
0.65
0.47
0.44
0.42
0.92
0.57
0.69
1.70
0.82
0.72
1.00
0.84
1.30
0.65
0.54
1.10
0.44
0.64
0.57
0.89
0.49
1.30
0.44
0.46
0.99
0.66
0.48

0.63
0.41
0.33
0.24
0.16
0.90
2.40
1.00
0.85

17000
11000
13000
11000
20000
13000
12000
16000
12000
25000
9800

11000
10000
9600
8900
8800

11000
9800
9300
9400

13000
12000
13000
13000
13000
11000
12000
13000
13000
11000
12000
11000
10000

8300
3600
5200
2400

16000
19000
16000
20000
20000

130
790
360

1100
490
630

3600
1000
570

1000
4800

700
1200
2900
930
620

2500
1200
2400

670
950

2500
770

2600
920

1900
830

3100
800

1500
2700
3100
1200

1400
340
190
87
94

1800
8100
1900
1600

8.0
2.5
2.8
1.9
3.8
2.7
1.3
2.6
3.1
3.5
1.4
3.9
3.2
2.3
3.4
4.1

2.4
3.5
2.5
4.4
3.2
2.6
3.9
2.5
3.4
3.0
3.2
2.4
3.4
2.8
2.3
1.8
2.8
2.7
3.9
7.9
8.0

13.0
5.9
1.8
5.5
5.3

2600
1600
980

1300
2100
1300
1000
1900
1600
3600
1300
2400
2200
3800
2500
2600
2600
2900
2900
2700
2200
3400
2300
2000
2500
3000
1900
3900
2000
1400
2800
1300
1400

1400
580

1300
470

3300
10000
6700

11000
8700

120
3700

870
7400
1500
2500

58000
5800
2000
5500

62000
2600
6700

22000
4100
2000

22000
6300

17000
2200
5000

22000
3500

26000
4600

14000
4000

32000
3700

10000
29000
35000
6900

8200
530
150
39
40

12000
74000
14000
11000

11.00
4.40
4.20
3.50
8.10
4.60
2.00
6.50
6.00

11.00
1.80
7.30
5.80
6.20
7.30
8.20
4.20
7.40
5.20
7.60
7.00
5.60
7.40
3.10
7.90
5.80
6.60
6.70
6.50
3.50
5.10
2.30
3.60

2.40
1.10
2.80
0.89
6.60

22.00
6.60

26.00
22.00
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effect; hence its naming.
The second line of (6.14) sheds light on a counterintui-

tive feature of our result: in Fig. 3 the curve for the odd
nuclei lies below that of the even nuclei, even though they
have the higher level densities (smaller level distances; see
Table II) and should be favored by dynamical enhance-
ment. But y decay is also favored by high level densities
and the inverse level distance in Vd„„ thus compensated
by the level distance in (TL )

' =(2m.I r z /d ' )
the remaining level-distance dependence in (TL+)
-(2mI „,J+/d '+) ' leads to the peculiar situation
that large level distances may be favorable, not small
ones. Note, however, that for the s-wave resonances
I „,J + is in general not dominated by the y channels,
which weakens this counterintuitive d dependence.

In Table I, the determining factors of both forms are
given: Vz;„, Vd„„, V„„and V„, + (the values for the
V„, are similar). Both forms lead to a total enhance-
ment factor Vfpt +k +dy V +
tabulated.

Our decomposition of inAuence factors suggests the
following strategy of finding good candidates: first,
search in the favorable mass regions of the "parity forbid-
den strength function. " Then, look at the target nuclei,
where the ratio d '+ /I'„, I + is largest (preferably among
the even nuclei). Finally, choose the nucleus with the
smallest I z J . Note, that the nucleus U recently in-
vestigated experimentally is a good candidate in the sense
of this strategy, whereas ' La (which showed in a single
resonance the largest parity effect ever observed) appears
on average as a rather poor candidate.

Many of the investigated nuclei are, for practical
reasons, not suited for a target, and many of them are not
really suitable for energy averaging experiments, as they
exist now. One reason is that the predicted energy of the
maximal effect lies outside the experimentally accessible
range, and that the effect is too small within it. Another
reason is that there may be only a few levels up to some
keV; then, our statistical approach should be replaced by
an individual resonance analysis as given in Ref. [10].
But still, our formalism gives the expected size of the par-
ity observables (in the sense of a rms expectation value)
even for these nuclei. This may be relevant for chemical-
ly or isotopically composite targets, where the effects
from the different components can be estimated by taking
the weighted averages of the rms expectations of different
species with their abundancies or molar fractions as
weights. The main reason, however, for presenting also
these unsuitable candidates, is to complete the "parity
forbidden strength function" of Fig. 3, i.e., the survey
over mass and even/odd effects on b, .

To give an idea of the errors on our calculated results,
we discuss two cases. In the first case, the complete set of
input data [Do, D&, So, S&, S&o (or I &o), Sz& (or I &&)] is
known. Typically, the largest error of one of these input
data (from Refs. [51] and [52)) is smaller than 50%%uo,

' the
resulting error on 5 is then smaller than 30%, because all
input data occur in square roots. In the second case, we
have to assume values of missing data, most often for the
p-wave radiative widths. Typically, the assumption

10 I I I I I I Ilj I iiij i &«j

2380

-3
10

-4
10 I I I I I I llj I I I I I 11Ij I I I I I I I lj I I I I I I Il

10 10 10 10 10
Neutron Energy (eV)

FICr. 4. Quality of the two forms of the lumping approxima-
tion and "bandwidth" of 5 due to the uncertainty in the p-wave
radiative width. Upper solid curve, Eq. (3.29) for the interac-
tion time integrals in (6.11), i.e., lumping of the y channels
alone; lower solid curve, the same with Eq. (3.31) i.e., lumping
of all channels. Both solid curves are calculated under the as-
sumption I yl I yQ Upper dashed curve, I »=4I yQ lower

dashed curve, I y} 4I yQ Both dashed curves are calculated us-

ing Eq. (3.29) for the interaction times.

I ~, =I zo may be wrong by a factor between 1 and 4, as
can be seen from those examples of Table III, where both
values are tabulated, not calculated. We show the effect
of this uncertainty in Fig. 4 for the nucleus U. Addi-
tionally, we show there the error coming from the lump-
ing of all channels in comparison to the lumping of the y
channels alone. This error is mainly due to the s-wave
channel; in the p-wave channel the total lumping approxi-
mation is a good one, as we will discuss below.

We complete the discussion with some data referring
to various statements and approximations made in the
text. First, the slow neutron approximation [see Eq.
(3.2)]: in most cases kR «1 (even at E =E ); the larg-
est occurring value is 0.27 for ' Eu. Second, the ratio of
potential and absorption cross section: it is small (at 1

eV, 0 "/cr' "&0.1) or close to unity (at E ) with a
maximum of 2.66 for U. Third, the ratio of neutron
and total y-transmission coe5cients for the s-wave reso-
nances (alternatively the corresponding particle and radi-
ative widths): in many cases T„o/Tr j Q ))1 at E (and
~ 1 even at 1 eV); this means that the decay of s-wave
resonances starts to be dominated by the neutron channel
at least at E

Fourth, the same ratio for the p-wave resonances: in
most cases T„,/Tz J, &&1 even at E with a maximum
value of 0.19 in Ca; hence, we see the predominance of
radiative processes in the p-wave channel and the approx-
imation (3.31) is certainly well justified. Fifth, the weak
absorption approximation, see Eq. (3.27): in most cases
g T, « 1 with a maximum value of g T, J + =0.58 for

Sm [values larger than 0.2 occur only for large values
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of E (~10 keV), when the s-wave particle channel
strongly contributes]; thus both the use of the approxima-
tion (3.28) and the neglect of external mixing (see Sec.
IVC) are justified. Sixth, the average delay times for s-
wave resonances: they are long in comparison to the time
scale of a direct reaction (10 ' s) or the mere time of
passage [ —(1 fm)/(c/10) —3X10 s] of a high-energy
proton by another one. The same holds for the delay
times of the p-wave resonances, even though they are one
or two orders of magnitude shorter than those of the s-
wave resonances (which reflects the large difference in

probability of exciting a p- or an s-wave resonance via the
neutron channel).

VII. SUMMARY AND OUTLOOK

The main stream of reasoning of the present work pro-
ceeded through the following steps.

A series of equations has been given that relate three
different parity forbidden observables in neutron optics to
the scattering matrix [Eqs. (2.5) and (3.1)], and the
scattering matrix, in turn, to the underlying Hamiltonian
[Eqs. (3.4)—(3.6) and (3.9)—(3.11)], which incorporates
both the statistical fluctuations and parity violation.

A general result [Eqs. (3.12)—(3.14) and (3.16)—(3.23)]
has been derived for the averages of the parity forbidden
S-matrix elements (and hence, of the parity observables)
depending only on average quantities [level densities,
transmission coefficients (strength functions), and spread-
ing widths].

A quite important step is achieved by a series of ap-
proximations, which subsequently simplify the general re-
sult to handy analytical expressions [Eqs. (3.26), (3.28),
(3.29), and (3.31)]. It is only by virtue of these
simplifications that the model can be applied to slow neu-
tron scattering and yields numerical results for concrete
nuclei.

Of more principle interest is the connection of the ex-
pected size of the parity effect on the one hand to the
mean delay or %'igner-Smith time and other nuclear
times, on the other hand [Eqs. (4.8)—4.10)].

A relation is given between an orthogonal invariant
characterizing the size of the parity violating perturba-
tion (a matrix norm) and the weak spreading width,
which is proposed to be the physical parameter [Eqs. (4.4)
and (4.5)].

A practically quite important question is to which ex-
tend finite energy resolution affects the observable energy
averaged effects. The energy spread of the experimental
setup acts as a virtual broadening of the observable
linewidth, which, in turn, is a decisive factor for the mag-
nitude of the observables. This qualitative understanding
is made quantitative for various physical situations.

The main achievement of the present work are numeri-
cal results for 99 nuclei with mass numbers from A =32
to A =238 (see Figs. 2 and 3 and Table I). Typical rms
values of the parity observables range from 10 to

5 X 10 (at the energy, where the maximum occurs},
thus largely profiting from the enhancement mechanisms
explained in Sec. IIB. The general behavior, i.e., mass
number and even/odd effects, is explained in terms of the
average input parameters (level densities and optical
model strength functions). It is mainly in order to make
this survey as general as possible that we studied so many
nuclei (note that a considerable number out of them is,
for various reasons, not suited for experiment}. In this
sense, the present results serve as an illustration of the
predictive power of the approach developed in Ref. [11].

Concerning extensions of the above-mentioned results,
there are strong reasons [57] to generalize the ouerall en-

ergy averaging procedure (where all energy points are
treated equivalently, i.e., in an unbiased way} to biased
averaging, where special points on the energy axis are
selected or rejected. A first reason is the "black reso-
nance problem, " i.e., the vanishing of transmitted intensi-

ty and hence the loss of counting statistics close to
strongly absorptive s-wave resonances, which, conse-
quently, should be discarded from consideration. An
even more important reason is the following one: qualita-
tively, the enhancement of symmetry violations is due to
the presence of long-lived and closely spaced resonances,
hence large effects will somehow be "concentrated" in
their neighborhood. Biasing, i.e., selecting these reso-
nance neighborhoods before averaging, brings up an ad-
ditional enhancement, which turns out to be [58—61]
roughly another resonance enhancement factor, i.e., the
square root of the distance to width ratio of the levels,
and which lies between 1 and 10 (see Sec. IVC). This
form of biasing is especially important for T-violation
studies, where an upper bound is expected rather than a
definite nonzero effect (as one has for P violation).

An even more important extension may be necessary if
the sign correlations found in a recent experiment [62]
with Th turn out to be a general phenomenon. Then,
in addition to the fluctuating part of the parity forbidden
scattering amplitude b f, one has a "direct" or "correlat-
ed" part with nonvanishing average bf%0. Various
mechanisms for this have been proposed [63], but a
clear-cut answer is, for the time being, not available. It
is, however, clear, that a fluctuating part must be present
in any case, because the experimental data [12,62] show
strong fluctuations around the average value. Under
these circumstances, the present work is a valid model for
the fluctuating part. Its numerical predictions may be
useful for planning future experiments and interpreting
their results. Especially, if a separation in "direct" and
"fluctuating" contributions to parity-forbidden observ-
ables really turns out to be necessary in general, it is im-
portant to have a reliable model for both of them.

Two final statements seem to be of general interest: It
is a noteworthy phenomenon that the effects of such a
weak perturbation as, for instance, parity violation
(characterized by an energy I i =10 eV) do not only
survive upon averaging over such a strongly fluctuating
system as the compound nucleus (characterized by a tem-
perature —1 MeV}, but even get enhanced. Furthermore,
it is even possible to predict the rms expectation values of
such effects by means of statistical scattering theory.
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APPENDIX A: PROOF OF THE LUMPING APPROXIMATION (3.26)

First we split the product function in the N& channels to be lumped into three product functions

Ni 1 —T

V 1+T,&,+1+T,&,

N Ni Ni

=P(1+T,A, , )
' P(1+T,A, )

' g(1—T,)j. ) .
1 I I

(A 1)

Introducing the average transmission coefticient and the deviations from it in the lumped subset of channels

(A2)

we can rewrite each of the factors in (Al) in the following form (for A, 2, A, analogously):

N, ATI A, )g(1+Th, , )
'~ =(1+(T,)A, , )

' g 1+
I

Under the assumption that N& &&1, the first factor on the right-hand side becomes
. —N, /2

NI 12 — ~1 g Tl
(1+(TI )A, , )

' = 1+ =exp —
A, , g TI/2

I

(A3)

(A4)

This is an exponential cutoff factor, essentially vanishing for 1,, 2/g TI. Now it remains to show that the second fac-
tor on the right-hand side in (A3) becomes unity under the assumption, that NI »1 and that ((b T) ) exists: then,
TI /g TI —1/NI ((1. Consider the logarithm

ATIA, ) 1 ATIA. )

2, 1+(T)A, , 2 1+(T)A,,

( 1

X, &T)

2 Nl

(A5)

In the second line, the linear term vanishes exactly due to
the very definition of the ATI, the various factors in the
quadratic term are then replaced by the estimates

some energy dependent quantity f (E) is equivalent to the
energy average of f (E). The latter, in turn, is by
definition independent from E. Hence

In the third line, we recognize the second moment of the
TI's, which gives the final result. The second factor in

Ni(A3) thus turns out to be -e ', which differs negligibly
from unity, if NI is large enough and the ratio of the mo-
ments exists.

aEf (E)=0 .

Together with the property (3.8) we find

G = G=O,a—
()E

(B1)

APPENDIX B: PROOF OF THE
INTERACTION TIME EXPRESSION (4.8)

First we have to prove another property of our model,
ensuing from ergodicity. The ensemble average f (E) of

analogously for higher powers of 6 and G'. [Note that
(B2) does not hold for mixed powers of the form
G (6')"with m, n W 1.]

Now starting from Eq. (3.15) we write
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Q =2m%(V G'GV)

=2M( V (G —G*)G' V)

= —(2m) Ãi(V (GVV G')G*V)

=(2~) i' (V GV) (V G'V)B

BE
PP

Here, we have subsequently used stationarity in the form
(B2) (second line); unitarity in the form (3.7} (third line);
the analytic property (3.8) (fourth line); again stationarity
in the form (B2) (fifth line); the definition of S, see Eq.
(3.4) (last line). Starting from this result, Eq. (3.18) can be
derived using the final equation of Ref. [11]and ergodici-
ty.

=i%'[1 2—mi(V GV)] [I+2mi(V G'V)]B

BE PP
APPENDIX C: PROOF OF THE FINITE
RESOLUTION RECIPES (5.5) AND (5.12)

B=i% S S*
. PP

(B3)
We write the energy-dependent parts of (5.2) explicitly:

L (e)= —fd&, fd&, fdic(A)g-(&)e ' '
q (A). (Cl)

of the resolution function, and the definition
rer(e)= f r(e')r(e e )de' for the convolution, yields

the fourth line. Another substitution e—e'=e" gives the
fifth; the folding theorem of Fourier transformations
((4.4.2.1.) of Ref. [64]) gives the last line.

Interpreting Eq. (C2), we rediscover the original
Fourier factor, multiplied by r (co) (the square of the
Fourier transform of the autocorrelation of r). Inserting
(C2) into (5.3) we see that the modification due to the
final resolution means nothing but multiplying the whole
integrand by this factor r (co). For convenience, we
group it together with gy (A) and obtain Eq. (5.5).

In the case of correlated measurements of L L we
obtain expressions of the form of Eq. (5.11). Note that
both L (e) and L (e) are threefold integrations with
different integration arguments and, hence, different
Fourier factors e ", co+ =n(A, +A,2+. 2, A, ) /d + and
e ",co=a(P', +A& +2k, ') /d, respectively. (In the
case of isolated resonances and lumped channels,
co+ =~x/d+, co =ax/d .) The energy dependent part
of Eq. (5.11) reads as follows:

The whole expression is of the form (3.18), but with an
additional exponential factor containing the whole depen-
dence on E&, E2 in form of the difference a=Ed —E, . In-
serting (Cl) into (5.3) leads to expressions of the following
form [with the abbreviation n(A&+A, z+, 2A, )/d =co]:

The second line follows from the substitution
E ) E2

=6; the third follows from the shift
E', ~EI E, . Assuming —r(E)=r( E), i.e., symm—etry

I

f dEz f dE', e ' ' r(E2 E2)r(E, —EI)—
=f de' f dE', e ""r[E2 (e'+E', )]r—(E, E', )—
=f de'f dEIe " r(e e' E—

I )r( E—&)—
= f" de'e ' rer(e —e')

=e ""f de"e" r sr(e")
—e

—in'& 2( co ) (C2)

= f dE2 f dE', e ' ' r(E& EI )r(E2 E2),—(C3}—
i.e., it is exactly of the starting form of Eq. (C2) with the replacement co~co +co+, occurring in the argument of r . If
we want that the two threefold integrations depending on co and ~+ remain independent of each other, we have to re-
quire

r(co +co+)=r(co )r(co+), (C4)

which is the functional equation of the exponential. But the only resolution function whose Fourier transform is an ex-
ponential is a Lorentzian. In this case, r (co ) and r (co ) can be grouped with the other functions depending on A, „A2,
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)(, and A, '„Az, A, ', respectively, leading back to products of expressions like (5.3). We have thus proven (5.12).
In the general case, however, the factorization (C4) does not hold and we show the use of r(co +co+) for the case of

isolated and lumped resonances, i.e., where [34]

—T+ /2L (e)= dxe e
2 0

with TI+ as in Eq. (3.30). Inserting this and (C2) with r (co +co+ ) into (5.11) gives

(C5)

f f dydy'e (r+r')r~
y +y

TL+ TL TL TL
(C6)

upon introduction of (5.8) and a suitable change of argu-
ments. This form makes the entanglement of arguments
by a simultaneous measurement [mentioned below Eq.
(5.11)] explicit. For Gaussian resolution with spread hE—(AEa) }we have r (co)=e ' ' [cf. Eq. (5.7)] which leads from
(C6) to (5.13) by use of standard tables of mathematical

Xphysics [36]. Finally, with h (x)=e" erfc(x) we may
rewrite the limit I L I L or, equivalently,
R+ ~R =R as

p m
lim Lp L = lim— v'n R +R

R+ ~R R+ ~R TL TL

h(R }—h(R+}
R+ —R

D( =—= g p(E,J')1

PI
—1

y (dI' )
—) (D4)

i .e., the level distance of the mixed sequence (measured) is
the harmonic mean of the level distances of the pure se-
quences (needed). Using (Dl) in (D4) gives

d'
(~pE+pg) g pj

Jl

(D5}

As claimed above, only the spin dependence matters; us-
ing its explicit form given in (Dl) we obtain

T T
v'~R h '( R ),T2

L
(C7)

I+ I + 1/2—D ~ (
'

)( '+ + )%AT (D6)
J=II I 1/21 2J+

which leads to (5.14}by use of Eq. (7.2.8) of Ref. [36] for
h

I

This is identical with Eq. (6.7). Through very similar
considerations, we also obtain

APPENDIX D: EXTRACTION OF INPUT DATA

I + 1/2

D) =Do g PJ
I I —1/2I

I +3/2

X pr
I I —3/2I

(D7)

pl Xp(F» } . (D2)

We start with the extraction of level distances d of
resonances with given J (which is needed in our theory)
from the level distances DI of I-wave resonances, (which
are found in tables [51,54,55]). The compound nucleus
level densities are quite well approximated by a product
of a spin- and an energy-dependent part:

p(E, J)=IV(2J+1)e ' +' '
p =iVpgp, (Dl)

where A' is a normalization constant and pE the energy-
dependent part —neither of which is specified here, be-
cause they drop out of the final results.

Summing over the different J' allo~ed for one value of
I, (~I —1 —

—,
'

~

~ J' &I +I +—,
' ), the level densities add up

to

if only Do is given and

I +1/2 I+3/2 I+ I +1/2
D X PJ+ X PJ' X P

I
I —1/2

I I
I —3/21 I I —t —1/2 I

(D8)

&r„)
r~ DI

if neither Do nor D, is given, but only D. Note that con-
trary to (D6), the latter equations lead to D " which are
independent of m, because we apply the m.-independent
form (D 1) to one input datum only [and not two, as in the
case of (D6)].

Next we consider the sum of y-transmission
coe%cients. The related strength functions are defined by

The level distances are the reciprocal level densities:

d J~= 1

p(E, J)
and

(D3)

&rr, ) =gr~J&r„, &,
J

(D10)

where rri is the total radiation width. We write all l-

wave resonances in terms of averages over resonances
with giuen J:
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TABLE II. Level spacings in eV; D, Do, D, are as in Mughabghab et al. [49,50], the d refer to pure spacings as explained in Ap-
pendix D (with J, =I —

—,
' and J, =I +

z ). There are three classes of data: without superscript if both Do and D, are given [Eq.
(D6)]; with superscript a if Do is given and D, calculated from it [Eq. (D7)]; with superscript b if both Do and D, are calculated from
D [Eq. (DS)].

Nucleus

32S

Ca
"Ca
"Cr
52C

'4Fe
"Mn
"Fe
57Fe
58Fe
58Ni

Ni
63C

64Ni

64zn

Zn
Zn

77S

78Se

"Se
"Rb
88Sr
89Y

90Zr

"Zr
927r

MQ
93Nb
'4Zr
94MQ

"Mo
Mo

"Mo
Mo

100MQ

101R

'"Rh
105pd

106Cd

107A

108pd

108Cd
109A

110pd

110Cd

111Cd
112cd
113Cd

114Cd
115I

116Cd
117S

134B

135B

137@

1500

16

10

95

48
127

D0

62000'
45000
4300

15000
42000
13000
2700

17000
6000

35000
13700
16000
19100

320
19900
3440
4700
5770

146
1390
3500
200

25000
4000
6400

570
2600
2100

3600
975

55
850

32
970
400

4sb

16
28b

135

16
170
120

14
360
155
20

190
21

235
9.40

390
1SOb

490
40

290

D1

23000'
17000'
2300
4100

14000
4400
1300
4000
2200
8300
4100
4300
8000

180'
7300'

680
840

1290
100
515

2200
100

8700
1800
3500
340

1900
750'
23'

1800
350'
30'

300'
17'

350'
140'
25b

7 70'
1Sb

48'

7.70'
61b
43'

6.80'
130
55'
9.60'

68'
10'
84'
4 90'

140'
71

170
22'

160'

J +
d '

7800

5500

22000

760

550

420

15000

1200

120

97
61
61

61

53

76

81

18

99
720

d"

7800

4700

16000

760

380

14000

1300

120

97
61
61

61

53

76

81

18

560

99
720

J +
d '

62000
45000

9600
15000
42000
13000
5300

17000
8200

35000
14000
16000
19000

550
20000

3400
4700
5800
200

1400
3500
380

25000
5400
6400
1100
2600
2100

96
3600
980
100
850
60

970
400

86
22
53

140

22
170
120
19

360
160
27

190
29

240
20

390
200
490

67
490

d"
62000
45000

9600
11000
38000
12000
4600

11000
6000

23000
11000
12000
22000

550
20000

1900
2300
3500
280

1400
6100
350

24000
5000
9700
1200
5300
2100

96
5000
980
100
850
60

970
400

86
22
53

140

22
170
120

19
360
160
27

190
29

240
20

390
200
490

67
490
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where each J is weighted with the relative frequency &r„&=&r„,& y~, =&r„,&i . (D13)

DI
CO DJ (Dl 1)

&r„,& d(E,J )f dE,d(E' EJ—)
(D12)

where the spin dependence cancels. Formally (D10) be-
comes

Now the J dependence of & I Iz ) is weak, which for in-
stance can be seen in the following model result ( [51],Eq.
(gg)):

&r„,)
TyJ~ 2' d" (D14)

And if the strength functions are tabulated, inserting
(D13) and (D6) into (D9) yields

Thus, if the widths are tabulated, we can combine them
directly with the result (D6) for the level densities to get

TABLE II. (Continued).

Nucleus

139I

140C

143Nd

144Nd

145Nd

146Nd

148Nd

149S

150S

150Nd

152S

153E

154S

156~d
159Tb

162Dy
164D

165HO

166E
169T
»0E
178Hf

179Hf

Hf
181T

182~
183~
184~
185Re
186~
186()
187R

187OS

188O

'"Au
203Tl

204Pb

205Tl

209B
232 fh
235U

236U

238U

D Do

208
3200

45
430

22
235
140

2.20
55

174
51

1.30
115
37
3.90

64
147

4.60
38
7.30

125
62
4.40

94
4.17

66
12
81
3.10

87
26
4.10
4.40

40
16

360
1520
5500
4500

16
0.44

14
20

D,

110'
1100'

24'
150'

12a

83a
49a

1.20'
19a
61'
18a

0.70'
41a
13a

2.10'
23'
52'
2.40'

13'
3 50'

44'
22'
2.30'

33
2.20'

23'
5.70'

28'
1.70'

30'
9.10'
2.20'
2.10'

14'
8.80'

170'
530'

2600'
1100

5.90'
0.23'
5.10'
7.20

J +
d '
420

4.50

2.80

9.70

9.40

8.60

8.50

46

6.80

9.00
17

41
1400

21000
8800

0.91

d"
420

44

4.50

2.80

9.70

9.40

28

8.60

8.50

46

6.80

9.00
17

41
1400

21000
4100

0.91

J +
d

410
3200

89
430

44
240
140

4.40
55

170
52
2.40

120
38
6.50

65
150

9.00
38
9.90

130
62
9.10

94
8.10

66
16
81
5.70

87
26
7.50
5.90

40
27

490
1500
7400
9200

17
0.85

15
21

d"
410

3200
89

430
44

240
140

4.40
55

170
52
2.40

120
38
6.50

65
150

9.00
38
9.90

120
62
9.10

94
8.10

66
16
81
5.70

87
26
7.50
5.90

40
27

490
1500
7400
4300

17
0.85

15
21
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TABLE III. Radiation widths and strength functions [Eq. (D9)] for s-wave (I'„O,Sro) and p-wave (I'„„S„|)resonances as in
Mughabghab et al. [49,50] and corresponding transmission coefficients [Eq. (D14)]. There are three classes of data: without super-
script if the strength function is given; with superscript a if the strength function is calculated from the corresponding width; with su-
perscript b if, for the p resonances, neither S» nor I » is given, but the latter set to I y1 I y0.

Nucleus

32S

"Ca
43C

50cr
52C

54Fe

"Mn
56Fe

"Fe
58Fe

N1

Ni
63cu

Ni
Zn
Zn
Zn
Se

78S

80Se

Rb
88Sr
89Y

90Zr

"zr
92Zr

MQ
93Nb
94Z

'4Mo
"Mo

MQ
'Mo
Mo
Mo

101R

'"Rh
105pd

106cd
107A

108pd

108Cd

109A

110pd

110Cd

111Cd
112Cd

113Cd
114Cd
115I

116Cd
117S

134B

135B

Sy0
(10-')

031
0.33
1 70'
1.00
0.44
1.40
2.80'
0.50
3.20
0.90
1.90
1.10
0.50

16
1.10
2.10'
0.85'
0.55'

27'
1.70'
0.66'

10
0 09'
0.25
0.40
2.00
0.50
0 90'

38'
0.40
1.40'

29'
1 30'

41'
0.88'
2.30'

40'
100'
51'
11'
88
4.50'
8.70'

93
1 70'
4.60'

48'
4.10'

75
2.30'

82'
1.20'
5.40'
2.50'

38'

I y0

(meV)

1900
1500
750

1500
1900
1800
750
900

1900
3000
2600
1700
910
500

2400
726
400
320
390
230
230
200
225
100
260
110
130
190
165
140
140
160
110
130
85
90

180
160
145
155
140
77

105
130
60
71
96
77

160
53
77
47
80

120
150

Sy1

(10 )

0.81'
0.21'
3 30
0.90
0.22
0.90
3 10'
0.75
3.40
0.50
6.30
2.10
1.10b

13'
3 30
4.00'
2.30'
1 30'

39
4.50b

1.00b

21
0.83'
1.70
1.30
7.00
1.90
3.60'

83'
1.00
5.70'

53b

4.60'
75b

4.20'
7.00'

73'
210
94
36'

179
13
29

190
7 00'

13'
99
13'

160'
8.40

160b

5.00'
11b

7.OOb

69

I y0

(meV)

1900
360
750
370
310
400
400
300
750
410

2600
900
910
260

2400
270
190
170
390
230
230
200
720
310
460
240
360
280
190
180
200
160
140
130
140
100
180
160
140
170
140
77

130
130
90
80
96
90

160
70
77
70
80

120
150

y J,+

0.61

0.86

0.54

4.20

4.50

3.00

0.04

0.59

13

8.60

12

12
17
15

15

15

7.90

12

27

0.89

9.50

Ty J

0.61

0.53

0.29

3.20

3.40

0.14

1.10

15

8.60

12
17
15

14

15

7.90

12

27

0.89

9.50

(10 )

y J +

0.19
0.21
0.49
0.63
0.28
0.88
0.89
0.31
1.50
0.57
1.20
0.69
0.31
5.80
0.69
1.30
0.53
0.35

12
1.00
0.41
3.30
0.06
0.12
0.25
0.66
0.31
0.57

11
0.25
0.90
9.70
0.81

14
0.55
1.40

13
46
17
7.20

41
2.80
5.50

43
1.00
2.90

22
2.50

35
1.40

24
0.76
2.50
1.60

14

Ty J

0.19
0.05
0.49
0.21
0.05
0.21
0.55
0.17
0.78
0.12
1.50
0.48
0.26
3.00
0.76
0.92
0.52
0.30
8.80
1.00
0.24
3.70
0.19
0.38
0.29
1.30
0.43
0.82

12
0.23
1.30
9.70
1.00

14
0.94
1.60

13
46
17
8.10

41
2.80
6.50

43
1.60
3.20

22
3.00

35
1.90

24
1.10
2.50
1.60

14
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PJT J~ 27TSyi ~PJ'
(D15) the neutron transmission coefficients, starting from the

measured strength functions [51,52]:

which is identical with (6.4). In some cases (e.g., " In or
' 'Ta) the tabulated values of the strength functions are
inconsistent with those of the widths (i.e., SziDI = ( I zi )—(I ~0) is not fulfilled); we then rejected the tabulated
values for the strength functions and relied on the values
for the widths.

We complete the extraction of input data with that of

(gl I )red

(21+1)DI
(D16)

(I l )red —I mess(+ y )
—1 (D17)

Here, the so-called reduced widths enter. They are relat-
ed to the measured widths by

TABLE III. (Continued).

Nucleus

137B

139L

140C

143Nd

144Nd

145Nd

146Nd

148Nd

149S

'"Sm
150Nd

152S

153E

154S

1566d
159Tb

162D

164D

165HO

166Er
169T
170E"Hf
'"Hf
180Hf

181T~

182~
183~
184~
185R

186~
186O

187R

187OS

188O

197A

203Tl

204Pb
205Tl
209B1

235U

236U

238U

Sy0

(10 )

2.80'
2.60
0.11'

18'
1 30'

34'
2.30'
3.60'

282
11

3 90'
12

719'
6.90

23
250

17
7.80

167
24

140
8.10
8.70

150
3.30

136
8.20

58
6.00

179
5.80

26
139
176
20
78
19
5.10'
2.70
0.16

14
795

15
11

Iyo
(meV)

80
54
35
80
54
75
54
51
62
60
67
62
93
79
88
97

110
110
77
92

100
100
54
66
50
57
54
70
57
56
50
70
57
77
83

130
690
770

1500
70
24
35
23
23

Syl
(io-4)

s. iob

3.60'
0.27'

33'
3.60

64
2.80'

iob
530b

19
iib
8.00

1300"
20
66b

46ob

49
22b

320
69

300
23b

25b

290
is'

260
23

120
20

340
16
77"

26Ob

370
59"

i4Ob

4i'
6.20'
S.7Ob

0.31
41b

isoob
44b

32

I y0

(meV)

80
40
30
80
54
75
23
51
62
37
67
15
93
79
88
97

110
110
77
92

100
100
54
66
50
57
54
70
57
56
50
70
57
77
83

130
690
330

1500
34
24
35
23
23

y J,+

0.70
0.81

5.50

88

210

63

52

23

48

42

9.50

51

40
29

20
3.10

0.44
0.05

Ty J

0.70
0.60

5.50

88

210

63

52

23

48

42

9.50

52

40
29

19
3.10

0.44
0.05

240

(10 ')
Ty J +

1.00
0.82
0.07
5.60
0.79

11
1.40
2.30

90
6.90
2.40
7.50

240
4.30

15
94
11
4.90

53
15
65

5.10
5.50

46
2.10

44
5.20

27
3.80

62
3.60

17
48
82
13
30

8.80
3.20
1.30
0.05
8.90

260
9.90
7.00

Ty J

1.00
0.61
0.06
5.60
0.79

11
0.61
2.30

90
4.20
2.40
1 ~ 80

240
4.30

15
94
11
4.90

54
15
66
5.10
5.50

46
3.30

44
5.10

27
4.40

62
3.60

17
48
81
13
29

8.90
1.40
1.30
0.05
9.00

260
9.80
7.00
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where the VI are given for low-energy neutrons by

Vo=l, V, =(kR) =10 p e,

here e and p are as explained around Eq. (5.3).

(D18)

For convenience, we will think of measured widths in
the following considerations and drop the superscript
"meas". The average widths can be understood as aver-
age j7rst within a pure sequence of given J (running index
A, ) and then over J:

TABLE IV. Neutron strength functions for s-wave (S„o) and p-wave (S„,) resonances as in Mughabghab et ul. [49,50] and corre-
sponding transmission coefficients at 1 eV [Eq. (D23)].

Nucleus

32S

ca
43Ca
5pc
52Cr

54Fe

"Mn
56Fe

"Fe
58Fe

"Ni

Ni
63cu
~Ni
~zn

Zn
68zn
77S

78S

8Pse

85Rb
88Sr
89Y

"zr
"zr
92Zr

MQ
93Nb
'4zr
94MQ

"Mo
MQ

Mo
MQ

'PPMQ

1P1Ru

'"Rh
lp5pd

lp6Cd
1P7A

lp8pd

lpSCd
109A

110pd

110Cd

111cd
112Cd

113cd
114Cd

Sno
(10-4)

0.73
3.20
3.30
3.60
2.50
8.70
3.90
2.60
4.20
3.60
2.80
2.70
2.80
2.30
2.90
1.70
1.90
2.20
1.28
1.23
1.61
1.00
0.45
0.27
0.70
0.36
0.50
0.50
0.60
0.50
0.53
0.35
0.43
0.37
0.54
0.73
0.54
0.53
0.60
1.00
0.38
0.78
1.20
0.46
0.40
0.44
0.80
0.50
0.31
0.64

S„1
(10-4)

0.57
0.17
0.37
0.33
0.52
0.58
0.35
0.45
0.20
0.60
0.50
0.30
0.30
0.30
0.60
0.60
0.70
0.39
0.76
1.73
0.50
3.30
4.98
2.64
4.00
6.70
7.00
4.70
5.80
9.80
4.60
7.00
8.70
6.00
3.60
4.40
6.10
5.50
5.80
5.00
3.80
4.40
4.80
3.80
6.00
3.00
3.00
4.40
2.20
3.50

T„p(1)
(1o-4)

4.59
20.11
20.73
22.62
15.71
54.66
24.50
16.34
26.39
22.62
17.59
16.96
17.59
14.45
18.22
10.68
11.94
13.82
8.04
7.73

10.12
6.28
2.83
1.70
4.40
2.26
3.14
3.14
3.77
3.14
3.33
2.20
2.70
2.32
3.39
4.59
3.39
3.33
3.77
6.28
2.39
4.90
7.54
2.89
2.51
2.76
5.03
3.14
1.95
4.02

T„1(1)
(1"0- )

0.32
0.11
0.25
0.25
0.40
0.46
0.28
0.36
0.16
0.50
0.41
0.25
0.26
0.26
0.53
0.53
0.63
0.36
0.76
1.75
0.51
3.53
5.45
2.91
4.44
7.50
7.89
5.30
6.59

11.21
5.26
8.06

10.09
7.01
4.23
5.24
7.32
6.68
7.14
6.19
4.74
5.52
6.02
4.80
7.62
3.81
3.83
5.65
2.84
4.55

Nucleus

'"In
116Cd

117Sn

134'+
135B

137B

139L

14PCe

143Nd

144Nd

145Nd

146Nd

148Nd

'49sm
'"Sm
15PNd

'"Sm
153E

154Sm

156Gd

159Tb

162Dy

164Dy

165HQ

166E

169Tm
17PE

178Hf

Hf
18PHf

181T

182~
183~
184~
185R

186~
186Os
187R

187OS

188O

197A

203Tl

204Pb
2p5 Tl
2p9g1

232T}
235U

236U

238U

S„p
(10 ')

0.26
0.16
0.21
0.53
0.90
0.41
0.78
1.10
3.20
4.00
4.40
2.60
3.00
4.60
3.60
3.00
2.20
2.50
1.80
1.70
1.55
1.80
1.70
1.80
1.60
1.60
1.50
2.20
1.70
1.90
1.70
2.20
1.70
2.50
2.10
2.10
2.20
2.50
3.10
2.30
2.00
1.60
0.65
0.78
0.65
0.84
1.00
1.00
1.20

Sn1
(10 ')

3.20
2.80
3.00
0.80
0.48
0.31
0.40
0.34
0.80
0.50
0.80
0.50
0.30
0.30
0.80
0.80
0.55
0.30
0.80
0.55
1.90
1.10
1.30
0.63
0.94
1.01
0.94
0.51
0.83
0.44
0.20
0.72
0.72
0.58
1.70
0.37
0.25
1.00
0.35
0.30
0.40
0.29
0.23
0.17
0.25
1.48
1.80
2.30
1.70

T„(1)
(10-4)

1.63
1.01
1.32
3.33
5.65
2.58
4.90
6.91

20.11
25.13
27.65
16.34
18.85
28.90
22.62
18.85
13.82
15.71
11.31
10.68
9.74

11.31
10.68
11.31
10.05
10.05
9.42

13.82
10.68
11.94
10.68
13.82
10.68
15.71
13.19
13.19
13.82
15.71
19.48
14.45
12.57
10.05
4.08
4.90
4.08
5.28
6.28
6.28
7.54

T„1(1)
(1"0- )

4.19
3.68
3.97
1.16
0.70
0.46
0.59
0.51
1.21
0.76
1.22
0.77
0.46
0.47
1.25
1.25
0.87
0.47
1.27
0.88
3.08
1.81
2.15
1.05
1.57
1.71
1.60
0.89
1.46
0.78
0.35
1.28
1.28
1.04
3.05
0.67
0.45
1.81
0.63
0.54
0.75
0.55
0.44
0.33
0.49
3.09
3.79
4.86
3.61
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2J+1
2(21+() "" ' )
2J+1

2(21 + ()

r2J+1
X J 2(2I+1) n I J
J

(D19)

Here, we have denoted the averages over A, with a bar to-
gether with the index; then we have rewritten the average
over J as a weighted sum, as in the preceding considera-
tions. The width for given J is, in turn, a sum over par-

tial widths for all allowed values ofj
&(j,I,J)&„i, I,j= I+1/2

(D20)

where b, (j,I,J) is unity for the triangle rule
~I —

j~ ~j~I+j fulfilled and zero otherwise. Note that
we think of widths as being measured, not reduced ones
(as in Mughabhghab et al. [51,52]). Using subsequently
(D20), the definition of the coJ, Eq. (Dl1), the relation-
ships (D3) and (D4), and the definition of the T„Eq.
(6.1), we obtain

PJ 2J+1(g&„)= g ~ g b,(j,I,J)I'„ iJ= I l —i/—2 W j J' j=l+i/2

I +1+1/2 r„...=Dl 7, g b(j I J)
J=it I i/21 2(2I+1) j=l~i/2 d"

I + I + 1/2

Dl Q X b, (j,I,J)T„ l I I .
J= ~I —I —I /2~ j =I+1/2

(D21)

We now assume that the neutron transmission coefficients are independent of J as well as of j. This latter assumption
certainly can be improved by using optical model codes including a spin-orbit term. In some cases, this may lead to
corrections up to 20—30%%uo. Solving for the transmission coefficient, our simplification leads to

2J+1
2(2I + 1) Dj,J I

(D22)

If we introduce the reduced widths of Eqs. (D16) and (D17), we have established the desired result between neutron-
transmission coefficients and strength functions

def

Tn, 1,j,J Tn, I

=2m(2I +1) g b(j,I,J) 2J+1
j,J

(g r'„)
(2l + 1)Dl

=2m.(2I +1) g 6,(j,I,J) 2J+1
j,J

&eViSl . (D23)

(The summation limits are j =I+—,', ~I —/ —
—,
)

~

~J~I
+I + —,'.) This result can be interpreted in the following
way: up to the conventional weight factor
2n.(21 + 1)2(2I + 1)/(2J + 1), the sum in (D23) just
counts the number of open channels which can be fed by
a I wave; if all of these channels show equal transmission,
dividing by their number means distributing the strength

Sl equally among all of them. Specializing (D23) to the
cases I =0 and I =1 and evaluating the normalizing sum
we obtain (5.2).

We conclude this appendix with a survey of the data
we have used and extracted. Table II shows the level
densities, Table III the sum of y-transmission coefficients
and Table IV the neutron transmission coefficients.
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