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Transport theory of relativistic heavy-ion collisions with chiral symmetry
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A transport theory with chiral symmetry is developed from the quark level to describe the chiral dy-
namics in high-energy heavy-ion collisions. The strong interaction is treated effectively by the
Nambu —Jona-Lasinio model. A set of generalized Boltzmann equations of constitutent quarks and
mesons is derived by using the closed time-path Green s function technique and a loop expansion ap-
proach. Chiral symmetry, energy spectrum and dissipation, and density distributions of constitutent
quarks and mesons can then be studied self-consistently in the nonequilibrium dynamical processes. In
particular, the discussion for exploring chiral symmetry breaking and its restoration and for studying dy-
namics of meson production (as collective qq excitations) in heavy-ion collisions is presented.

PACS number(s): 25.75.+ r, 24. 10.—i, 05.60.+w

I. INTRODUCTION

Since particles produced during heavy-ion collisions,
such as pions, kaons, dileptons, photons, etc., probe the
state of the nucleus, a microscopic study of the dynamical
processes of particle emission in collisions is the central
topic of heavy-ion collisions in nuclear physics [1].
Meanwhile, at extreme high density and/or temperature,
the restoration of chiral symmetry is expected to play an
important role in high-energy heavy-ion collisions. Re-
cently, by using Green's-function techniques [2,3], the
microscopic dynamical theory of relativistic heavy-ion
collisions [4—7] has been discussed extensively based on
the Walecka-type model [8]. A hadronic transport
theory which includes N, 6, o. , m, co, and p as elementary
particles has also been studied [9,10]. These attempts
have had some success in interpreting particle produc-
tion. However, there is a consistency problem in deriva-
tion of the transport equations for baryon-meson coupled
systems. For example, in order to obtain the collision in-
tegrals which describe particle production, one must go
beyond the mean-field approximation. The transport
equations that are currently used are obtained by using
an approximation that the nucleon kinematic dynamics is
described up to mean-field approximation, the collision
integrals up to the next order of mean-field approxima-
tion and the meson dynamics is in the zeroth-order ap-
proximation. This may be incorrect since the higher-
order correlations in a strong interaction theory may to-
tally dismantle mean-field dynamics [11] and meson
structures [12]. Therefore, a self-consistent and practical-
ly useful microscopic picture of the particle production at
high-energy collisions, say, from a few hundreds of MeV
to a few tens of GeV per nucleon, is still not very clear
[13]. Furthermore, although recently one has begun to
seek evidence of chiral symmetry restoration in heavy-ion
collisions [14], the relativistic dynamical equations for
describing production with chiral symmetry have not
been explored at all. The purpose of this paper is to at-
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tempt to obtain a transport theory with chiral symmetry
for exploring meson production and the effect of chiral
dynamics in heavy-ion collisions.

In principle, a nonequilibrium dynamical theory of
heavy-ion collisions should be described by quantum
chromodynamics (QCD). This is because QCD is regard-
ed as the underlying theory of strong interaction, and
chiral symmetry is embedded in the theory as a funda-
mental symmetry. Particle production in heavy-ion col-
lisions is then described by the collective excitations of
the basic building blocks (quarks and gluons) of the sys-
tern. Unfortunately, heavy-ion collisions involve low-
and intermediate-energy scales of QCD, in which the
theory is nonperturbative. Nonperturbative equilibrium
QCD computations, such as lattice calculations, are ex-
tremely difficult and are far from practical at present.
Furthermore, no practical formalism for nonequilibrium
QCD processes has been derived except for some mean-
field approximations which do not yield hadrons [15].

On the other hand, in the last few years, effective
theories of strong interaction have shown certain pro-
gress in understanding hadronic physics. For examples,
the quark version of the Nambu —Jona-Lasinio (NJL)
model [16], a four-point quark interaction theory, can
manifest chiral symmetry and consistently describe
mesons (particularly pions, but also kaons by extending
the fiavor number to Nf =3) as Goldstone bosons of
chiral symmetry breaking. It has become a popular mod-
el to describe chiral symmetry and meson dynamics in
the last few years [17—20]. In contrast, the Skyrme mod-
el, which is a meson theory of baryons and is equivalent
to QCD in the large N, limit, can be used to address
baryon properties [21]. Since particle production in
high-energy heavy-ion collisions is dominated by pions,
our attention will be directed to the dynamical process of
meson production and signatures of chiral symmetry res-
toration. Thus, in this paper we take the NJL model as
the starting point to develop a transport theory for study-
ing chiral symmetry and meson dynamics.

For simplicity, we confine ourselves to the two-flavor

(Nf =2) case in this paper. The model Lagrangian is
then taken as follows [16]:
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2

X=q(iy 8—m)q+ [(qq) +(qiy~rq) ]2

where q =(z ) is the current quark field with the mass ma-
trix m=diag(m„, mz) and we assume that m„=mz=m.
The operators ~=(~„rz,r3} are the usual SU&(2) genera-
tors, while g /2 is a dimensional four-point interaction
coupling constant. In the absence of gluon degrees of
freedom, the quark fields are globally symmetric in the
color space and we take here the color number X,=3. It
is also straightforward to explicitly include the exchange
terms (the vector interaction term and others) in (1.1) by
considering a Fierz transformation [16]. The vector
meson degrees of freedom can then be addressed. The
Lagrangian (1.1) is Lorentz invariant and chiral symrne-
try [here SUL (2)SU+(2)] can be realized as it occurs in
QCD. The four-point fermion interaction terms can be
regarded as a local approximation to the instanton-
induced effective interaction and related to the U „(1)
anomaly [22]. Hence, it is an effective theory of interact-
ing quarks, in which gluon degrees of freedom are elim-
inated and from which dynamical breaking of chiral sym-
metry is realized naturally via quark condensation. The
accompanying Goldstone bosons and the associated mas-
sive meson fields (obtained by a small current quark mass
m which explicitly breaks chiral symmetry) can then be
described consistently and can be identified with the
physical mesonic degrees of freedom. Extension to
N~=3 (so that the kaons can be included as Goldstone
bosons as well) is straightforward. By integrating out the
fermion degrees of freedom, one can obtain a chiral La-
grangian containing the Skyrme and the Wess-Zumino
terms [23]. Thus, the model serves as an approximation
to QCD in the low-energy long-wavelength limit, and is
expected to work well in the region of intermediate
length between asymptotic freedom and confinement re-
gions.

It should be pointed out that the NJL model has
shortcomings. The main problem is the lack of color
confinement. Indeed there are no explicit color degrees
of freedom and in principle one cannot directly describe

0 [9 9]—=Wl 9
77, l =2,

where

(1.2}

(1.3)I,=1, I =iy v.
One can then derive an equivalent action from (1.1) as

baryon properties. However, recent results have shown
that there are some localized soliton solutions with
baryon number B=1 in the NJL model [24]. It then
seems to be possible to get three quarks in a bound state
by putting color in "by hand. " Here, we use the naive
quark model assumption of identifying three constituent
quarks with a nucleon, and therefore connecting nuclear
matter to quark matter [25,18,19]. Another defect is that
the NJL model is unrenormalizable and a momentum
cutoff has to be used in order to get finite results. Actual-
ly, such a cutoff results in the effective coupling constants
vanishing at high momentum and may incorporate as-
pects of the asymptotic freedom of QCD. Nevertheless,
in this model, chiral symmetry, which is an important as-
pect of strong interaction and is believed to be restored in
the intermediate stage of high-energy heavy-ion col-
lisions, is well addressed, and pions, which are the main
particles produced in heavy-ion collisions, are described
consistently as elementary collective qq excitations. It is,
therefore, quite interesting to use the NJL model to study
the dynamical mechanism of meson production in
heavy-ion collisions and the effects on the chiral phase
transition. We must emphasize here that the model may
not be expected to quantitatively describe the data of
heavy-ion collisions. But in the case of lacking a clear
signature of chiral symmetry restoration in heavy-ion col-
lisions, a transport theory of this model may be helpful to
provide some insight about what efFects on chiral symme-
try restoration can be observed. Meanwhile, the ap-
proach we will use to develop the transport theory is
model independent and may be applied to other Lagrang-
ian systems.

To address explicitly the meson degrees of freedom in
this model, we introduce the collective (mesonic) opera-
tors,

I,s[q, q, p]= f d xd y q(x)S '(x,y)q(y)+ ,' g p, (x)D '(x—,y)p, (y. ) +g f d xq(x)[I', p, (x)+I',p,(x)]q(x), (1.4)

where

S '(x,y) = (i y d rn )5 (x —y)—,
D '(x,y)= —5 (x —y) .

(1.5)

(1.6)

Equation (1.4) possesses the same symmetry as that of
(1.1). The P (i.e., o and n) fields in (1.4) appear like
dynamical variables. However, Eq. (1.6) indicates that
the corresponding "free" rnesons cannot propagate and
their dynamical properties are actually determined by
quark-quark interactions in (1.1). The mesonic variables
in this formalism serve as order parameters and charac-

terize the chiral symmetry breaking. Their Green's func-
tions, as we will study later, describe two-particle correla-
tions which determine dynamics of collective qq models.
For our goal, it is convenient to formulate our theory
directly from (1.4).

After an introduction to the NJL model and our
motivation for this paper, we present in Sec. II a general
description of the kinetic theory of the NJL model by us-
ing the functional integral formalism of Schwinger and
Keldysh's closed time-path Green's functions (CTPGF)
[26,27] and Cornwall, Jackiw, and Tomboulis' (CJT) loop
expansion technique of the functional integral approach
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[28]. It is known that the CTPGF is a basic formalism
for describing nonequilibrium phenomena [29—31] and
the CJT loop expansion technique allows us to consider
systematically the quantum correlations to any order in fi
and to describe naturally the phase transition of chiral
symmetry breaking. In Sec. III, we discuss briefly the
equilibrium limit obtained from the general kinetic
theory of Sec. II. The result completely coincides with
that obtained from Matsubara's temperature Green's
function for the NJL mode. In our framework, the
higher-order contributions can also be considered. In
Sec. IV, we derive in detail the transport theory. The
generalized relativistic Boltzmann equation with collision
integrals is obtained from a quasiclassical approximation,
and is consistent with the loop expansion approximation.
The resulting Boltzmann equations of constituent quark
distributions have the usual form of the Vlasov-Uehling-
Uhlenbeck (VUU) equation, and determine the dynamical
processes of collisions and the phase transition of chiral
symmetry breaking in transverse dynamics of heavy-ion
collisions. The Boltzmann equations for meson distribu-
tions describe the Quctuation properties of quark field
and the mechanism of meson production during heavy-
ion collisions. It is also a microscopic equation to study
particularly the pion collective fiow and pion spectrum,
and the signature of chiral symmetry restoration. In Sec.
V, we address the problem of seeking the signature of
chiral symmetry and the mechanism of pion yield. Final-
ly, summary and discussion are given in Sec. VI.

II. DYNAMICAL EQUATIONS OF MOTION

In this section, by using the CJT loop expansion ap-
proach [28] and the closed time-path Green's functions
[26,27] (see [32] for technical details), we derive a set of
self-consistent dynamical equations of motion for describ-
ing the time evolution of quark condensate and its collec-
tive excitations (i.e., mesons).

We start from the two-point source connected generat-
ing functional Wz [J,K,M] of I,fr[q, q, g] which is defined
as follows:

quantities J;(x), K(x,y), and M, (x,y) are the one- and
two-point external sources and are required to vanish at
the final step of the procedure. Note that the source
terms in Eq. (2.1) are also required to be Lorentz invari-
ant and chiral symmetric in path integral formalism [33].
The generating functional, and so Wz[J, K,M], possess
then the same symmetries as the original theory. Furth-
ermore, the summation of time-space degrees of freedom
in the exponential of the right-hand side of (2.1) (and
most of formula hereafter) is suppressed in the functional
sense. They are defined, for example,

2

JP—:g f d xJ;(x)P;(x), (2.2)
I=1

qKq—:f d xd yq(x)K(x, y)q(y), (2.3)

2

PM/= g f d xd yP;(x)M;(x, y)P;(y) . (2.4)

,'Tr[Q, M—Q—,+i AMb
p ], (2.5)

where the symbol Tr denotes trace over spin, Aavor, and
color; P;, is the expectation value of meson fields,

58'
(();,(x)= (2.6)

and G and 6; are the quark and meson CTPGF,

The notation J d x denotes a four-dimensional time-

space integration with the closed-time path p. In Eq.
(2.1), we do not include one-point fermion source term
since the condensation of fermion field is forbidden in the
absence of the external source.

The vertex generating functional (or effective action) of
irreducible Green's functions is then a functional Legen-
dre transformation of W [J,K,M] which is defined

I ~ [Q„G,6]—:W~ [J,K,M] —JP, +i' Tr[KG~ ]

e ' '' —= q, q, exp —I,ffq, q, +J (2.7)

+qKq + —,'PM/)

(2.1)

Here, we retain A' explicitly in our formalism. The sub-
script p represents a closed-time path (cf. Fig. 1). The

FIG. 1. The closed time-path contour for the evolution of
operator expectation values in an arbitrary initial state. The
time path goes from —00 to + ao (positive branch) and then re-

turns back from + 00 to —~ (negative branch). Any point at
the negative branch is considered as a later instant than any
time at the positive branch.

respectively. The notation T in (2.7)—(2.8) is the time-

ordering operator along the path p. It is identical to the
standard T operator on the positive branch (

—ao, + ~ )

and represents T, an anti-time-ordering operator, on the
negative branch (+oo, —00). It is worth pointing out
that the effective action retains, by definition of (2.5), all

symmetries of the original NJL Lagrangian.
Equation (2.5) is in fact the generating functional in P

for the two-particle irreducible Green's function ex-

pressed in terms of G and 5;. A series expansion of I ~ in

orders of A, namely, the loop expansion, is given as fol-
lows (details see the derivation given in the appendix or
Ref. [28]):
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I z[Q„G,E]=I,&[$,]+i'Tr[ln[S 'G ]—Go '6 +1]

Tr[ln[D 'b, ]—bo '6 +1]

2

X (x,y}=ig A g I;G (x,y)l;5; (y, x),

II; (x,y)= i—g fiTr[I, G (x,y)I;G (y, x)] .

(2.17)

(2.18)
+ I 2~ [Q„G,6],

where the first term is a classical action defined by

r„[y,]=1„[e,e, y]l p

(2.9)

(2.10}

the second and third terms correspond to quark and
meson one-loop contributions in which Gop and 60 are
the quark and meson CTPGF modified by the mean field,

60 '(x,y) =S '(x,y)+gl'$, (x)5~(x —y),
b,~~'(x,y }=D '(x,y }

(2.11)

(2.12)

and the last term I'z [$„6,b, ] is, as shown in [28], the
sum of all the two-particle-irreducible vacuum graphs of
a theory with propagators Gp, hp and vertices gI;. It is
of order A' and can be easily evaluated by the usual
Feynman-Dyson-Wick expansion. In the two-loop ap-
proximation (cf. Fig. 2},we find that

Q2g 2 2

I 2 [Q„G,b]= — g Tr[I,G I,G b, , ] . (2.13)
i=1

The self-consistent dynamical equations of motion for
describing quarks and their collective excitations are
finally obtained by the variation of I p with respect to its
variables $„6,and b, and by switching off the external
sources,

6 (x,y)~C(x,y)=

'g+
b,; (x,y)~Z;(x, y}=

l

G
J

(2.19)

(2.20}

The two-point functional matrix elements in Eqs.
(2.19)—(2.20}, denoted simply by A '(x,y) for both quarks
and mesons, are defined in the single time axis [32]:

A +(x,y) = ——( T(1{(x)1{(y) )), (2.21}

The above approach provides not only a succinct
derivation of the quantum dynamical equations of field
theory, but also the best way to describe critical dynam-
ics of spontaneously symmetry breaking. The reason is
that the order parameters which characterize the phase
transition of spontaneously symmetry breaking are
dynamical variables in the effective action.

For practical applications, it is convenient to reexpress
the dynamical equations of motion, (2.14)-(2.16), in
terms of advanced, retarded, and correlation Green's
functions of the physical representation. To this end, we
rewrite the CTPGF in terms of 2X2 matrices [32]
inasmuch as x,y can assume values on either positive or
negative time branches:

rP p
5$;,(x)

(2.14}
A '(x,y) = +

&
(f (y)g(x) ), (2.22)

r, =6 '(x,y) —6 '(x,y)+X (x,y)=0,656 yx

(2.15)

A '(x,y) = ——( f(x)g (y) ),
(,y)= ——(T'(y( )yt(y))),

(2.23)

(2.24)

2i =b, , '(x,y) —b, ,o'(x,y)+ II; (x,y}=0,
fi 5b, ; (y, x)

(2.16}

where X and II; are defined as proper self-energy parts
of constituent quarks and mesons. We see that Eq. (2.14)
describes the time evolution of the collective qq excited
(mesonic) fields, and (2.15} and (2.16} are the familiar
Dyson-Sch winger equations for quark and meson
CTPGF. In the two-loop approximation, the quark and
meson self-energies are given as follows:

where A+ is the usual Feynman causal propagator, A
is called anticausal propagator, which is defined as expec-
tation value of anti-time-ordering product, and A and
A are correlation functions for t„&t~ and t„&t~, re-
spectively. The upper (lower) sign in Eq. (2.22) is for
mesons (quarks). In general, only three of these four
two-point functions are independent. Thus, it turns out
that the independent Green's functions, which are called
physically the advanced, retarded, and correlation
Green's functions, are obtained by the following transfor-
mation [32]:

A(x,y) =V A (x,y)V'

where

0 A, (x,y)

A, (x,y) A, (x,y)
A(x, )=

(2.25)

1 —1

1 1

FIG. 2. Two-loop contribution to I ». The solid line is the
quark propagator fiG, the dashed line the meson propagator
fih;, and g I; represents the vertex (i = 1,2).

(2.26)

Note that the relation between A and A given by (2.25) is
valid for any two-point function, such as self-energy func-
tions X(x,y) and II;(x,y).
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P,,(x)= — Tr[I, G, (x,x)],igA
(2.27)

G„'(x,y) =Go„'(x,y) —X„(x,y),
G, (x,y) = —G„(x,x, )[Go, '(x „y, )

—X,(xi,y, )]G,(y„y),
6,.„'(x,y) =b, ,o„'(x,y) —II;„(x,y),

b...(x,y)= —b, ;„(x,x, )[b;o,'(xi,y, )

(2.28)

(2.29)

(2.30)

—II;,(x„yi )]b;,(yi,y), (2.31)

By using the above physical representation and the
closed-time path Feynman rule given in Ref. [32], Eqs.
(2.14)—(2.16) become:

and the equations for 6, and 6;, are the Hermitian con-
jugation of (2.28) and (2.30). This is a set of self-
consistent dynamical equations of motion which de-
scribes various nonequilibrium processes and the effects
on chiral symmetry in the NJL model. In particular, Eq.
(2.27), called the generalized Landau-Ginzburg (LG)
equation, determines the quark condensation of chiral
symmetry breaking. Equations (2.28) and (2.30) describe
the energy spectrum of quasiparticles (quarks and
mesons) and their dissipation. Equations (2.29) and (2.31)
are the quantum kinetic equations of particle density dis-
tributions which result in a transport theory of the quasi-
particles in the quasiclassical approximation, as we will
discuss in detail in Sec. IV.

In the two-loop expansion, the self-energy functions in
(2.28)—(2.31) are obtained from Eqs. (2.17)—(2.18)

X„(x,y)= [I;G„(x,y)I;b;, (y, x)+I;G,(x,y)1;&;,(y, x)],ig fi

2

lgg (x,y)= [I',[G„(x,y) —G, (x,y)]I',. [5,, (y, x) —b, ,„(y,x)]+I;G,(x,y)I;b, ;, (y, x)],

(2.32}

(2.33)

II,.„(x,y) = — Tr[1;G„(x,y)I;G, (y, x)+ I;G,(x,y)1;G, (y, x)]ig A

2

ig A
(x,y)= — Trjl;[G„(x,y) —G, (x,y)]I, [G, (y, x) —G„(y,x)]+I';G,(x,y)I;G, (y, x)] .

(2.34)

(2.35)

S '(x,y)=GO '(x,y)~& (2.36)

In the present case, Pz, =0 and Pi, is proportional to the
quark condensate (see the discussion in Sec. III). When

Pi, =0, chiral syminetry is restored and the constituent
quark propagator is reduced to the current quark propa-
gator. This overs a picture of the phase transition from
the constituent quark phase to the current quark phase in
terms of chiral symmetry breaking and its restoration.
The dressed propagator of (2.28) corresponds to the
quasiconstituent quark, which includes also the higher
order correlations, and we call it the "dynamical quark"
hereafter. Furthermore, the quantity b,o; (being a 5 func-
tion) indicates that the meson degrees of freedom are
completely determined via the quark dynamics. From
(1.2), we see that b, ;(x,y) describes indeed two-quark
Green's function,

&;(x,y):———[(T(P;(x)P;(y)) ) —P;, (x)P;, (y)]

~ 2

[(T(q(x)i;q(x)q(y)1; (y)) )

The physical implication of the above formulation is
also very transparent. The Green's function Go~ [see the
definition of (2.11)] represents the constituent quark
Green's function. The relation between Go&(x,y) and

S~(x,y), the free current quark Green's function, is given

by

III. EQUILIBRIUM LIMIT

The equilibrium limit of the system can be obtained
simply from the general formulation derived in the previ-
ous section. This is because the excitation densities are
completely determined by the spectrum (propagator),
temperature, and chemical potential. We perform the ex-
plicit calculation in momentum space and for conveni-
ence set 4= 1 in the equilibrium calculation.

From (1.5), (1.6), (2.11),and (2.12), one can find that

Go„'(p)=(y p —MH}, (3.1}

Go, (p)= —2ni[1 —2n (p)](y p+MH)5(p2 —MH), (3.2)

b, ;0„'(p)= —1,
&;o,(p) =0,
where

(3.3)

(3.4)

MH =m —gi, p,, (3.5)

is the constituent quark mass in the Hartree approxima-
tion and

(3.6)

It characterizes two-particle correlation via meson dy-
namics and therefore offers a consistent description of
meson structure.

—(q(x)I;q(x))(q(y)I;q(y))] . (2.37) is the LG equation. Chiral symmetry breaking and the
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critical point of phase transition are determined from this
equation. In fact, Eqs. (3.1)—(3.6) are the self-consistent
equations describing the constituent quark properties as a
dynamical consequence of chiral symmetry breaking.

Using the equilibrium particle and antiparticle density
distributions

I \

(3.7}
+ 0 ~ ~

where T represents temperature, p the chemical poten-
tial, and Ez=+p +M&, the LG equation can be ex-

pressed explicitly as follows:

FIG. 3. The Feynman diagrams of quark propagators with
higher-order contributions. The solid line is given by 6 (the
dressed propagator).

NINg A F(E )
MH p'd p (3.8) where X(p) and II;(p) are given by

2, =0. (3.9) &„(p)= f p, r, [G„(p )I,Z,, (p p)—
(2qr)

In Eq. (3.8), we have

defined

(E ):—1 n(E—) K(E—)

and have introduced a noncovariant cutoff A in the
momentum integration. It is also possible to introduce
other cutoff schemes [18,19]. The LG equation clearly
indicates why the quark condensate, ( qq ) =P„lg, is an
order parameter which characterizes the chiral phase
transition. The constituent quark mass is determined by
the gap equation (3.5):

+G, (p')I;5;, (p' —p)], (3.13)

II,„(k)= — f q Tr[I, G„(p)I;G,(p —k)

+r,.G, (p)r,.G.(p —k)],
(3.14)

and
MH=m —gp),

Nf N, g A F(Ep )=m+ MH f p dipl (3.10)

G (p)= 2qri[1 2nq(E&)](y p+M)5(p M ) (3.15)

b;, (k) = 2iqr[ 1—+2 n(k)]5(k —m; ) . (3.16)

G, '(p) =Go„'(p)—&„(p),

5,„'(k}= —1 —II;„(k),

(3.11)

(3.12)

In the loop expansion, the above result is the relativis-
tic Hartree solution (one-loop approximation) in which
all higher-order quantum correlations are ignored by set-
ting I 2 =0. Up to this order of approximation, we can
only address the critical point of chiral phase transition.
In order to describe collective excitations of quark field
Quctuations which are identified with mesons, we must
consider the next order, namely, at least the two-loop ap-
proximation for I 2 . It is then shown that a self-
consistent description of dynamical quark and meson
properties should be treated by solving simultaneously
(2.28) and (2.30). In momentum space, they are

The quantities M and m; are the dynamical quark and
meson masses determined by the poles of (3.11) and
(3.12), and n;(k)(i=1,2) is the meson (cr and qr) density
distribution in the momentum space. Equations
(3.11)—(3.16) allows one to estimate the contribution of
higher-order correlations to the quark condensation and
meson structure (see Fig. 3). However, to focus on the
main goal of this paper, we address the solutions of these
self-consistent equations elsewhere.

As an intermediate step between the one-loop and
two-loop approximations, one may use the constituent
quark Green's functions of (3.1)—(3.2) to describe meson
dynamics. This corresponds to a random phase approxi-
mation (RPA), and yields an analytical solution of meson
structure. By substituting (3.1) and (3.2) into (3.14), the
real parts of (3.12) are then reduced to

NfN g p F(Ep)
Red, '(k) = —1+ f d p [1—(k 4M& )I(k,p)], —

4~'
P

(3.17)

NfN, g p F(Ep)
Reb, „'(k)=—1+ f d p [1—k I(k,p}],4~' o Ep

where

I k,
Ep+E +q Ep —Ep+g

2Ep+Q ko (E& +E&+g ) ko (E& E&+g )

(3.18)

(3.19)
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The poles and residues of (3.17) and (3.18) determine the
cr and m masses and their coupling constants to quarks,
respectively. In the chiral limit (m=O), for example,
combining with the gap equation, the pole of Eq. (3.17) is
located at k =4MH so that m =4MII. The poles of the
pseudoscalar meson (3.18) is located at k =0, which re-
sults in massless pions, i.e., Goldstone bosons. This is a
standard solution of the Goldstone theorem via the spon-
taneously breaking of the SU(2)SU(2) chiral symmetry
to SU(2) symmetry. With a finite current quark mass, the
chiral symmetry is explicitly broken and these pions be-
come massive. The 0 and m masses are then determined
by the poles of (3.17) and (3.18) at the limit k~O,

NfN g p F(Ep) m —4MH0=1— pdp 1—
~2 o E in 2 4E2

p CT P

6„'{X,p) =D (X,p)+iA (X,p), 6, =6„',
„'(X., k) =d; (X,k) +ia; (X,k),

(4 2)

(4.3)

Wigner transformation of any two-point function,
A (x,y}, with respect to the relative coordinates

A (X,p)= Jd x'e'~" "A (X+x'/2, X —x'/2) (4.1)

where X =
—,'(x +y), x'=x —y. We assume that the mac-

roscopic variable is suKciently slowly varying so that
these two-point functions can be treated quasiclassically
with the variation of X on the scale of the microscopic
variable x'. This assumption is defined as a quasiclassical
limit.

The Green's functions [G„~,~, b, ;„~„~] can be separated
into dispersive parts [D,d; ] and dissipative parts [ A, a; ]:

NfN, g A F(E )0=1— pdp 1—
o E

2m„
—4E

(3.20) and D(d;) and A (a;) determine actually the kinematics
and collision processes of the quark (mesons) in the trans-
port theory, respectively. This will become clear if we
rewrite the quantum kinetic equations (2.29) and (2.31) as

(3.21)

while the meson-quark coupling constants are the pole
residues,

' —1
on shell

g =g (k —m )5 (k) ~ g aI"

—l
on shell

g„=g (k —m )b,„(k) ~ g
Bk

k =m o'

(3.22)

k =m
rr

(3.23)

The above discussion shows that the real-time calcula-
tion of the CTPGF reproduces exactly the finite tempera-
ture result of the NJL model obtained from Matsubara's
temperature Green's functions in the equilibrium limit
[17].

IV. TRANSPORT THEORY

A. Transport equations

The derivation of the transport equations in our study
will be carried out by using the approach of Chou et al.
[32].

First, we need to distinguish microscopic (relative) and
macroscopic (center of mass) time-space scales by a

We are now in the position to derive the transport
theory of the NJL model. When the system lies in none-
quilibrium states (e.g., in the dynainical processes of
heavy-ion collisions), the propagation of quasiparticles
(dynamical quarks and mesons) will dissipate. Further-
rnore, the density cannot be expressed a priori in terms of
propagators as in the equilibrium case. We have to deter-
mine the energy spectra together with the kinetic equa-
tions of (2.29) and (2.31). In the quasiclassical limit dis-
cussed next, these kinetic equations are reduced to the
generalized Boltzmann equations of transport theory.

G, (X,p) =(G„N NG, )(—X,p),
b,;,(X,k) =(b;„N; N; b,;, )(X—, k),

(4.4)

(4.5)

(N D DN )(X,p—) =i (N A + AN )(X,p)

—(Go, ' —&, )(X,p),
(N;d; d;N; )(X,k—)=i(N;a;+a, N, )(X,k)

—(b,;,' —II;, )(X,k) .

(4.6)

(4 7)

Note that the Wigner transformation of a product of any
two-point functions, f A (x,z)B (z,y)dz, is defined by the
identity

(AB)(Xp)= J dx'e'~" "IdzA (x,z)B(z y)

= A (X,p)e '" ~ B (X,p),
where

(4.8)

a a a a
ax ap ap ax

[34]. Equations (4.6) and (4.7) are the quantum transport
equations of constituent quarks and mesons, as we will
see later. Explicitly, the lhs of (4.6) and {4.7} corresponds
to the transport kinematics while the rhs determines the
collision processes.

To find the explicit functions N,-, we further introduce
the so-called quasiparticle limit, namely, that the dissipa-
tion of quasiparticles must be relatively small. In such a
limit, the poles of 6, and 5;, are determined by the zeros
of D and d;,

D (X,p) =y-p —m +g1;P;(X)—ReX„(X,p) =0,
(4.9)

d;(X, k) = —[1+ReII;„(X,k) ]=0, (4.10)

where N, (i =1,2), which are related to quasiparticle dis-
tributions, must satisfy the following equations:
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respectively. The quasiparticle energy spectra of quark
and meson are then obtained from the above equations as

po =pa(X, p) and k;0=k;o(X, k; ).
The quasiparticle density distributions are directly re-

lated to the single-time Green's functions G and 5;
defined by (2.22) and (2.23). At the poles of G„and b;„ if
the regularization of the quasiparticle wave functions is
ignored [35], these Green's functions can be expressed as
follows:

6 (X,p) = —2iri (y p +M)

X[8(+p 0) fq(—X,p)]5(p M—), (4.11)

6; (X,k) = —2iri [8( + ko }+f;(X,k) ]5(k —m; ), (4.12)

where fq(X,p) and f;(X,k) are the Wigner density distri-
butions of the dynamical quark and mesons which are
energy-dependent and especially spin-dependent for the
quark field. Explicitly,

f (Xp)5(p M)—
[f (X,p)5(p F)+f (X—, —p)5(p +E)],

2E

where & =V pi+M, f (X,p) denotes the quasiparticle
distribution function and fq(X, p) the antiparticle distri-
bution function. There is a similar relationship for
f;(X,k). It should be pointed out that in Eqs. (4.11) and
(4.12) we have ignored the quantum interference between
particles and antiparticles and the mixing of spin corn-
ponents for quark field, as a consequence of slow varia-

tion of the macroscopic variables in the quasiclassical
limit [36]. To simplify the derivation, we have also used
the spin symmetric assumption so that the spinor product
in the formulation is reduced to the projection operator
y p +M, and f (X,p) becomes a scale function. This im-
plies the loss of spin polarization eSects. Strictly speak-
ing, a scalar signer distribution function for the fermion
field does not indeed exist and it is at least an 8 X 8 matrix
representation as shown by Elze et al. [37].

Based on the above consideration, it follows that G,
and 6;, with the on-shell condition can be expressed as
follows:

G (Xp) (G [1 2fq] [1 2fq]G }(Xp) (4.13)

6;,(X,k) =(b,;„[I+2f;]—[I+2f;]b,;, )(X,k) . (4.14)

Nq, =1+2fq, , (4.15)

where the upper (lower) sign is for quarks (mesons).
Furthermore, the restriction to on-mass-shell results in
the vanishing of Go, and 6;0, when quantum correlations
(X and II) are considered [38]. Thus, by substituting
(4.15) into (4.6) and (4.7) and using the fact that
A (X,p)=(1/2i)[X (X,p) —X (X,p}] and similarly for
a;, it turns out that

This set of relationships is called the nonequilibrium sta-
tionary state fluctuation-dissipation theorem [32]. Com-
paring with (4.4) and (4.5) and (4.14} and (4.14), we find
that

(fqD Dfq)(Xp) ~~((1 f )X +X (1 fq)+fqX +X fq)(Xp)

(f,d, d,f, )(X,k ) =——,
' ((1+f; )II; +II; (1+f, )

—f, II; II; f; }(X,k)—.

(4.16)

(4.17)

Equations (4.16) and (4.17) are the quasiparticle transport equations In the tw. o-loop approximation, the self-energies
are determined by Eqs. (2.17) and (2.18):

dp'dkX+(Xp)=ig fif (2ir) 5 (p' —k —p)[X;G (Xp')I;b, ; (X,k)], (4.18)

II;(X,k)= ig fif —
s (2ir) 5 (p&

—p k)Tr[I';G (—Xp&)I;G (X,pz)] . (4.19)

Finally, the separation of the microscopic and macroscopic time-space scales ensures that we can handle the macro-
scopic variables quasiclassically. By expanding both sides of the transport equation in terms of fi, the lowest-order
nonzero terms on the rhs of (4.16) and (4.17) correspond to collision terms which are order of fi [see Eqs. (4.18} and
(4.19)]

—[[1—f (Xp)]X (Xp)+fq(Xp)X (Xp)]+O(fi ),

[[1+f,(X,k)]II, (X,k) —f, (X,k)II,. (X,k)]+O(iii ),

(4.20)

(4.21)

while the lowest-order nonzero terms on the lhs result in the classical Poisson brackets, which are also proportional to A
[34]
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(f DDf )(x). af (Kp)aD(xp)af (xp)aD(xp)
ax„ ap~ ap„ ax~

BD= —iA
Bpo

on shell

aq +v Vxf + +O(A ),O' " " B-, op'
(4.22)

af, (X,k) ad, (X,k) af, (X,k. ) ad, . (X,k)
(f;d; d f; )—(X,k) = i' — — +0 (iri3)

axe ak~ ak„ax~

. ad-= —iA aI,
on shell

a, ak, , af,'
+v, Vxf, +. +O(A' ),BX„gg)" (4.23)

In Eqs. (4.22) —(4.13), the constituent quark and meson
velocities are given by

Bp
V =, VI=

q
(4.24)

afq apo afq
q+vq'Vxfq aX coiii (4.25)

ak, af,
(4.26)

where the spectrum po and k;o are determined by Eqs.
(4.9) and (4.10). Thus, in the quasiclassical limit, the
lowest-order transport equations are the generalized rela-
tivistic Boltzmann equations

do not depend explicitly on A to this order. Without any
loss of generality, we can reset 8=1 hereafter.

(3) Once the collision terms are ignored, the Poisson
brackets must be zero in the same sense of the quasiclas-
sical limit. This leads to a relativistic quark Vlasov equa-
tion in quantum kinetic theory and coincides with the ex-
act derivation from the relativistic Hartree approxima-
tion. In this case, the spectra (po, k, o) are determined by
the one-loop approximation in which meson structure
disappears. This can be seen directly from Eqs. (4.10)
and (4.24) that when we set II;„=0 the meson velocity
v;=0, as we mentioned in the introduction. Thus, the
meson dynamics in heavy-ion collisions, such as pion col-
lective flows, pion spectrum, and pion production, are
only manifested beyond the Hartree approximation in the
NJL model.

To explore the dynamical mechanism of particle pro-
duction, we need further to derive the explicit forms of
the collision integrals.

In Eqs. (4.25) and (4.26), the collision integrals I'„'ti'; are
determined as follows: I~,ii; is a trace over spin of (4.20)

multiplied by D and divided by (iliii)Tr, [D (aD/apo)],
while I„ii; is more simple, being just (4.21) divided by

(i ze(ad, zak„).
Several remarks should be clarified for (4.25) and (4.26)

before we explicitly derive the collision integrals.
(1) If we multiply by po and k;o to the two sides of

(4.25) and (4.26), respectively, the transport equations be-

come covariant. However, the form of (4.25) and (4.26) is

practically convenient.
(2) The above derivation of the Boltzmann equations

with collision integrals is obtained self-consistently from
the quasiclassical approach p/us the loop expansion
method. The inconsistency in the usual derivation of the
quantum transport equations with collision terms, name-

ly, the inconsistency between the quasiclassical approxi-
rnation to order A in the kinetic term and the perturba-
tive approximation to order of the coupling constants in

the collision terms, is eliminated. The quasiparticle ener-

gy spectra (po, k;0) are determined from (4.9) and (4.10)

by using the same order approximation as that of deter-
rnining the collision terms. The transport equations now

I,',ii; (Xk) I' , (X=k) +I', (X,k), (4.27)

where

B. Collision integrals

Collision integrals come from the dissipation of quasi-
particles with vacuum polarization. To study the physi-
cal processes in these collision terms it is useful to find
their explicit forms by substituting (4.18) and (4.19) into
(4.20) and (4.21).

First, we calculate the meson collision terms. From
(2.22) and (2.23) and (4.12), we find that

f, (X,k) =f,.(X,k) (i=1,2,3). Thus, we need only to con-
sider the case of ko )0. It involves two physical process-
es: one is particle-hole excitations and the other corre-
sponds to creation and annihilation of dynamical quark-
antiquark pairs (see Fig. 4). It is well known that these
processes cannot occur in vacuum under the on-shell con-
dition. However, as we will discuss in the next section,
some of the processes take place indeed in medium. The
contributions of such processes to the meson collision
terms are
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and

d p)d p2
I,' (X,k)= f NfN, M,', (p, ,p„k)(2qr)'5(p, —

p~
—k)

(2~)'

X([1+f,(X,k)][f (X,p, )(1—f (X,p~)]+j (X,p))[1—fq(X, p~)]

—f;(»k}[[1—fq(»p&}]fq(» p2}+[1—Jq(»pi)]fq(»pz)] }

I' (X,k}=f NfN, M' „(p„p~,k)(2m. ) 5(p, +p~ —k)
d p)d p2

X I [1+f'(X k)]f (X p, )j' (X p~) f'(X k)[1 fq(X p))][1 jq(X p2)]

(4.28)

(4.29)

M' (p, ,p2, k)= 5(E, E~ ——co;)Tr, [I,(y p, +M)I;(y.@2+M)]8;E,E2

2~g ~M~
5(E, E co,

—)—g .u(p„s, )I;u (p2, s2)u(p~, s~)I, u (p„s, ),
2';E)E2

M (p), p, k)= 5(E, +E —co;)Tr, [I,(y p)+M)I;(y pq
—M)]27Tg

8' EiE2
2m.g 2M

5(E, +E —co;) g u(p„s, )I;v(p, s )v(p, s )I;u(p, ,s, ),2'; E)E2

(4.30)

(4.31}

are the probabilities of these two quasiparticle scattering processes. Here, we have taken the absolute values of quark
and meson energy spectra, E= ~po(Xp) ~

and co, = ~k o(Xk) ~. We have also rewritten the projection operator in terms

of products of the quasiparticle Dirac s spinors, u and u. Note that in order to recover the regularization of quasiparti-
cle wave functions, the bare coupling constant in (4.30) and (4.31), g, should be replaced by the effective on-shell cou-

pling constants of (3.22) and (3.23), g,qq(k =m; ).
The collision integral for the quark transport equation is derived in the same way. For particle distributions (po )0),

the quark collision term contains the similar processes as shown in Fig. 4:

Iq,&&;(X,p)=Iq „(X,p)+Iq (X,p),
where

(4.32)

Iq „(X,p)= g f 6
—Mqq„(p, p', k)(2n. ) 5(p' —k —p}

(2m} 2

X [[1—f (X,p)]f (X,p') —f (X,p)[1—f (X,p')]][1+f;(X,k)+f;(X, —k)],
d 'dk 1Iq„(X,p)= g f M'—(p, p , k)(2'qr) 5(k p —p)' —

i=1

X [[1 f (X p)][1 Jq(X p )]f (X k) f (X p)j (X p )[1+f((Xk)]

(4.33)

(4.34)

The collision term for antiparticles (pc & 0) can also be obtained easily in this way.
In fact, the above collision integrals involve various basic collision contributions, i.e., quark-quark and quark-

antiquark collisions in the NJL model. To see clearly the elementary collision processes, we eliminate the meson field
so that the quark transport equation includes only quark degrees of freedom.

Using the kinetic equation of (2.31},one can find

6; =(1+II,„) 'll+(1+11,.)-'=ll;+ . (4.35)

The first term in the second equality of (4.35) represents the Born approximation. Ignoring higher-order correlation
terms in (4.33), one immediately obtains from (4.16}that

X+(Xp)=g f, (2n) 5(p, +p —p —p)[I,G+(Xp, )I', Tr[I', G (Xp )I;G (Xp )]] . (4.36)
(2qr)'

Hence, the quark collision term in the Barn approximation becomes

Iq,&b(X,p) =I (X,p)+I (X,p),
where the quark-quark collision terms is given by

(4.37)
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d'P, d P2d'P3
I„(X,p)=, NfN, IM„I'(2qr)'5(p)+p2 —

p3
—p)

(2m. )

X [[1—f (X,p)]f (X,p, )[1 f,—(X,p, )]f,(X,p, ) —f, (X,p)[1—f, (X,p~)]f, (X,P3)[1—f, (X,p2)]] (4 38)

and the quark-antiquark collision term is

d P&d P2d P3I (X,p)= f 2NfN, IM I (2qr) 5(p)+p2 —
p3

—p)
qq

'
(2 )9 f ~ qq

X [ I
1 fq(—X,p )]fq(Xpt)[1 fq(X—, p3) lfq(X, p2) —fq(X, p)[1 fq(X,—p~ )]fq(X,p3)l 1 —fq(X, p2

(4.39)

The quantities Mqq and M are quark-quark and quark-antiquark scattering amplitudes:
qq

2

M =2qr5(E, +E2 E3 E)——QM /E, E2E3E

X g [u(p„s, )I;u (p, s)u(p2, s2)t, u(p3, s3) —u(p2, s2)t, u(p, s)u(p„s, )I;u (p3, s3)]
1,$I,$2, $3,$

2

M =2qr5(E, +E2 E3 E—) Q—M /E, E2E3E

(4.40)

X g [u(p„s, )I;u(p, s)v(p3, s3)1;v(pz, s2) —u(p„s, )I;v(p2, s2)v(p3, s3)1;u(p, s)] .
l, S],$2, $3,$

(4.41)

Equation (4.23) with Eqs. (4.35)—(4.37) is the relativistic VUU equation for the dynamical quark distribution. The col-
lision integrals correspond to the usual lowest order two-particle collisions. The further consideration of higher-order
terms in (4.33) will provide more realistic processes which include the quark-quark and quark-antiquark T matrix. If
we neglect the same order (i.e., the correlation terms) in (4.33) as we have done in (4.18), the collision integrals keep the
same form as (4.36) and (4.37) but the scattering amplitudes M and M are changed,

qq

2

Mqq 2qr5(E~+E2 E3 E) gM /E~E2E3E

X g [u(p„s, )t, u(p, s)b, ,„(X,p —p, )u(p, s )I;u(p, s )

l, $1 &$2, $3~$

—u(p, s )I;u (p, s)b, ;„(Xp—p, )u(p„s, )1;u(p, s )]
2

M =2qr5(E, +E2 E3 E) —1/M —/E, E2E3E
qq 1 2 3

X g [u(p„s, )t;u(p, s)b,;„(Xp+p, )v(p3, s3)t;v(p2, s2)
l, S),$2, $3,$

—u(p„s, )I;v(pz, s2)h;„(Xp +p& )v(p3, s3)t;u (p, s)],

(4.42)

(4.43)

where b, ,„ is given by a form similar to (3.17) and (3.18) in

the RPA calculation. They correspond to the processes
of Fig. 5(a) and (b) and represent the long-wavelength
effect of quark field fluctuations. The above discussion

indicates that the VUU-type relativistic equations can be
obtained only for models in which the meson degrees of
freedom are not the fundamental variables. Meanwhile,
meson dynamics is manifested from the fermion loop
effect.

C. A practical calculation scheme

(~) (b) (c)

FIG. 4. An illustration of particle producing processes in
heavy-ion collisions based on the two-loop approximation of the
NJL model. (a) and (b) are the particle-hole excitations and (c)
and (d) the qq pair annihilation and production.

Now, we can outline a practical calculation scheme for
solving the transport equations of the NJL model.

(1) The separation of quark transport equations from
the collective excitation (meson) transport equations is
practically useful. It will allow us to solve the VUU-type
transport equation solely for the quark density distribu-
tion. One can then use such quark distributions to solve
the meson transport equation and to explore the dynam-
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NJN
p — ky —3pg

37r2
(5.1)

(b)

where kz is the Fermi momentum in the cold ground
state. With this assumption, we now apply the theory to
nucleus-nucleus collisions.

Two of the most important properties for studying the
nuclear equation of state via heavy-ion collisions are pion
dynamics and signature of chiral symmetry. These are
the main topics we shall discuss in this section.

FIG. 5. Within the NJL model, by eliminating the collective
meson degrees of freedom, the processes of Fig. 4(a) —(d) can be
reduced to the collision processes given by the quark-quark and
quark-antiquark collisions (a) and (b) here, respectively.

ics of meson production and meson spectrum. Of course,
such a separation is not necessary if one could solve nu-
merically the set of coupled equations (4.23) and (3.24)
[39].

(2) We also need to specify the relation between the
transition matrices (or cross sections) of the processes of
Fig. S and the data of NN and NN scattering to
parametrize the transition matrices in the collision in-
tegrals. The transport equations can then be solved nu-
merically utilizing any of several approaches, e.g., the test
particle approach [40], the Chapman-Enskog expansion,
and various polynomial expansion methods [41],etc.

(3} As a first approximation, the quark energy spec-
trum may be determined in the relativistic Hartree ap-
proximation. The meson energy spectrum is determined
by the RPA. The particles in collision terms are given by
the same approximation. Such a consideration is not
self-consistent in terms of the two-loop approximation
but it is consistent in the sense that the Goldstone
theorem is rigorously satisfied in the chiral limit (m ~0}
in this model. The advantage is that it is easy to perform
numerical calculations and to explore the essence of the
phenomena.

(4) A complete calculation within two-loop approxima-
tion is as follows. One should first solve the energy spec-
trum po from the self-energy diagrams of Fig. 3. Then
one can solve numerically the quark transport equation
(4.23) with collision terms (4.34)—(4.37). Finally, one uses

po and the quark distribution to determine k;0 and to
solve the meson transport equation (4.24). In this last
step (4), although we have obtained the formulation,
much work needs to be done before the numerical calcu-
lation can be performed.

V. APPLICATION TO HEAVY-ION COLLISIONS

The transport theory derived in the previous section is
valid for a variety of nonequilibrium quark systems, e.g.,
the early Universe, the interior of neutron stars, and
heavy-ion collisions for certain energy regimes in the
quasiclassical limit. As a first application, we consider
high-energy heavy-ion collisions. A nucleus with A nu-
cleons is regarded as a 3A constituent quark system.
Thus, the nuclear density is one-third of the quark densi-
ty,

A. EfFect of chiral symmetry in transport dynamics

(5.2)

where

v~=p/E, E =Qp +MH,

and M& is determined by the gap equation

Nf N, g
MH(X) =m+ MH(X)

4~

(5.3)

X f d p —[1—f (X,p) —I (X,p)]

=m —g'(qq & . (5.4)

The Vlasov equation provides a connection between
heavy-ion collision dynamics and the equation of state
through, e.g., transverse How. It can be solved usually by
the test-particle method [40]. In this approach, quarks
satisfy the classical equations of motion

In Sec. III, it is shown that in the equilibrium case,
chiral symmetry breaking is characterized by the quark
condensate, ( qq ) =P„/g. Numerical calculations
[17—19] indicate that there is a phase transition related to
the chiral symmetry breaking and its restoration. In
terms of nuclear density and/or temperature, one finds
that chiral symmetry is restored in the NJL model when
the density is larger than several (over three) times the
normal nuclear matter density or a temperature T-200
MeV. The critical point depends on high-momentum
cutoff. Consider the chiral limit (m=O). The critical
density or temperature is then obtained by the gap equa-
tion (3.10) with the constituent quark mass M=O. Two
parameters, the coupling constant g /2 and the cutoff A
must be fixed before we perform a practical calculation.
These two parameters can be determined to reproduce
the pion mass (m„=139 MeV) and the pion decay con-
stant (f =93 MeV) in the vacuum with zero tempera-
ture. For instance, for a noninvariant cutoff ( ~ p ~

=A), we
find that 4=820 MeV and g A =4 with current quark
mass m„=mz =m =4 MeV.

To look for the effect of this chiral phase transition in
heavy-ion collisions, we first apply the Hartree approxi-
mation, the same approximation for determining quark
condensate from (3.8) or the gap equation from (3.10), to
the transport equations. The generalized Boltzmann
equations are then reduced to a quark Vlasov equation,
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X=v =p/E,
p= V—xE=g (MH/E)V„(qq) .

(5.5)

(5.6)

(5.7)

where g, is another coupling constant. With the La-
grangian 2'=/+X„ the formulation obtained in the
previous sections is kept in the same form except for a
shift of the constituent quark momentum-energy vector,

P~P =P g.'—,' Jd'p, [f(»p') —f(»p')],

E~E*= t)/ p' +MH

N~N,
J d PIf(»p') —

.f(»p*)),

(5.8)

and an extension of the index to i = 1, . . . , 5 with

(5.9)

(5.10)

By including explicitly the exchange term in the NJL
model, we see that the Vlasov equation has a form similar
to the equation obtained in the Walecka model [4,8]. The
difference is that in the NJL model, the constituent quark
mass is a dynamical consequence of chiral symmetry
breaking. Thus, the Vlasov dynamics in this formalism
provides a way to explore the transverse dynamics from
the fundamental symmetry. Of course, it is worth warn-

ing that when the exchange interaction is included, the
chiral symmetry effect may become ambiguous due to the
competition in dominating the Vlasov dynamics between
the scalar and vector qq condensates, where the latter is
only a control parameter which does not characterize the

These equations of motion show that the Vlasov dynam-
ics is controlled by the quark condensate, and therefore
the possible signature of chiral phase transition may be
manifested in the transverse Bow.

However, for a more realistic calculation in the Har-
tree limit, one may also need to include vector mesons to
reproduce nuclear matter properties. There is no
difficulty to include explicitly such an effect within the
NJL model by considering a Fierz transformation, as we
have mentioned in the Introduction. An effective way is
to directly add an exchange interaction term with chiral
symmetry into (1.1) [18,19],

chiral phase transition.
On the other hand, the Vlasov dynamics corresponds

to the mean-field limit which only determines the critical
point of phase transition but cannot describe the critical
dynamics. The dynamical effect of the chiral phase tran-
sition must come from higher-order quark correlations.
In our theory, the meson dynamics describes the Auctua-
tions of the mean field as an effect of two-particle correla-
tion. Thus, a further exploration of chiral symmetry
effect is needed to study meson production and its
transportation in heavy-ion collisions.

B. Dynamics of meson production

The current study of meson production in hadronic
descriptions is based on the process NN~NA~NNm. .
In the low-energy region, it is certainly the main process
of pion yield. However, it is hard to justify that such a
process is still dominant in high-energy collisions.
Theoretically, however, a recent derivation of transport
equation [13] shows that if one does not introduce explic-
itly the b, as an elementary particle [9,10], the collision
integrals do not include such a process in the quasiparti-
cle and quasiclassical approximations. In our study, the
collision integrals derived in the previous section show
that meson production is an effect of qq collective excita-
tions. They come from the dissipation of quasiparticles
(i.e., the imaginary part of the quasiparticle retarded
Qreen's functions). In our two-loop approximation, the
particle production processes are shown in Figs. 4(a) —(d).
These processes correspond to simple particle-hole exci-
tations, and pair production and annihilation. Neither of
these processes can occur in vacuum due to the restric-
tion of on-mass-shell energy and momentum conservation
in the approximation. However, as we shall show, some
of these processes can take place at high density (and/or
high temperature). This is because in the NJL model all
the mesons, which are consistently described as collective
qq excitations of two-particle correlations, depend inti-
mately on density and/or temperature. Hence, the
kinematically forbidden ones will be removed in high
density and/or high temperature, and these processes be-
come in fact very important in high energy heavy-ion col-
lisions.

As an illustration we focus on pion dynamics. In order
to understand pion dynamics in heavy-ion collisions, it is
useful to study the structure of pion propagation in the
medium [42]. Using RPA in the NJL model, the pion
dispersion relation (energy spectrum) is determined by
the equation

g(»k) = —1+, J d'p [1—f, (»p) —f,(»p)][1—k'I(k, p)],4~ o E~
(5.11)

which is the same equation as (3.18) and I(k, p) is given
by (3.19), except that the density distribution is position
dependence due to the finiteness of the nuclei. In princi-
ple, a self-consistent numerical study must be performed

together with the transport equation of quark distribu-
tion functions. To understand pion propagation in medi-
um-in the NJL model, however, it may be helpful to con-
sider a limiting case, i.e., the uniform matter. The nu-
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merical solution of the pion dispersion relation deter-
mined by (5.11) is shown in Fig. 6.

The 5 functions in the collision terms (4.26)—(4.29),
namely, energy-momentum conservation, indicate that qq
pair annihilation occurs in the timelike region
(k =ko —k &0) and the particle-hole excitations take
place in the spacelike region (k (0). One can see from
Fig. 6 that in the above approximation, all the dispersion
curves lie in the timelike region. This implies that
particle-hole excitations cannot occur, even at high densi-
ty. Pair annihilation is also forbidden in the region
bounded by Ez~ =Qk +4MH and E = ~k~. Thus, in low

density, all processes in Fig. 4 are forbidden, as is well
known. However, with increasing density, the effective
quark mass decreases and the pion mass increases as a
consequence of qq condensation (see Fig. 7). The pion
dispersion curve then moves out from the forbidden re-
gion and pion production via qq annihilation becomes
possible [e.g., Fig. 6(c)]. Furthermore, due to the Pauli
principle, the energy threshold of pion production is
given by E, =2EF, where EF=Qkz+MH and kz is the
Fermi momentum. Therefore, such a process is only pos-
sible at quite high density (close to the critical point of
chiral symmetry restoration) with certain momentum
transfers. Furthermore, pions produced at high density
via pair annihilation are diff'erent from the physical (vac-
uum) mesons. They are indeed the resonances embedded
in the qq continuum. Physically, they are the main
source for producing other particles in heavy-ion col-
lisions, such as dileptons and photons, as a decay process
(n.+n. ~e+e, m ~2y) [43].

In fact, the particles produced from the processes of
Fig. 4 can only be observed indirectly. That is, with the
above mechanism, a huge number of qq states, which cor-
respond generally to various mesoniclike modes, are ex-
cited when the collision system reaches a high matter
density. Most of them will decay back to quarks and an-
tiquarks during the collisions. However, after collisions
the density in the collision region rapidly decreases, but
still many qq resonances remain. Due to the nonobserva-
bility of quarks, these qq resonances cannot decay back to
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FIG. 7. The effective constituent quark and 0. and m mass as
a function of nuclear density calculated by the RPA. The pa-
rameters A, g, and m are taken as the same as in Fig. 6. The
critical density in the case of nonzero current quark mass is
defined as the point at which the 0 and ~ become degenerate.

quarks and antiquarks within this low density collision
region after the collisions. Thus, they have to decay to
various physical mesons. The decay channels include

~+~ ~e+e
0

qq excitations~
P~STAT,

(5.12)

etc. The decay rates are determined by the imaginary
part of the retarded meson Green's functions of (4.3)
which is density dependent via ( qq ) condensate or con-
stituent quark mass. This is a way of manifesting chiral
dynamics from particle production in high-energy
heavy-ion collisions.

The above mechanism of particle production is based
on the NJL model in the lowest-order approximation of
two-particle correlations. A direct process of meson pro-
duction may correspond to the diagram as shown in Fig.
8 [44] which can be obtained from the next order of the
factorization of (4.35). A quantitative description of this
process can be found in [45]. Nevertheless, the picture of
particle production via qq excitations presented here in

0
0 200 400 600 0 200 400 600 0 200 400 600

Ikl (Mev)

FIG. 6. The pion dispersion curves in the medium with
different densities, where pa=1.4 fm ' is the normal nuclear
matter density. The line E = ~k~ is the boundary of spacelike
and timelike regions. E2, =+k +4MH. In this calculation,
the model parameters are taken as follows, A=820 MeV,
g g =4and m=4MeV.

FIG. 8. A higher-order collision process that is embedded in
Fig. (3) and is related to qq pair production. Note that this pro-
cess is obtained from Fig. 3 by breaking two quark lines.
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the NJL model is consistent with the spirit of QCD. The
cardinal point of this mechanism comes from the fact
that the negative-energy sea has been regularized through
a high-momentum cutoff in the NJL model, and the
medium dependence of quark and meson dynamics has
been considered consistently in this formalism. These
produced particles manifest the fluctuations of quark dy-
namics around the critical point of chiral symmetry
breaking. Since the critical density (about four times the
normal nuclear matter density in our calculation) is much
lo~er than the corresponding density of momentum
cutoff (about 25 to 30 times the normal nuclear matter
density for a cutoff of about 1 GeV), the uncertainty in
the NJL model calculations caused by the cutoff should
still be small near the chiral critical density. Meanwhile,
one expects that deconfinement (if its exists) should occur
later than the chiral symmetry restoration in the cold
matter [46]. Thus, around the chiral critical point, gluon
degrees of freedom may still be frozen and the NJL mod-
el may still work well in the intermediate region between
confinement and asymptotic freedom regions. Further-
more, the medium modification of quark and meson
dispersion relations discussed in this paper is also con-
sistent with the conclusion of the sigma model [44] and
the recent calculations of the QCD sum rule [47]. This
indicates that the medium dependence of qq excitations
may be a model-independent consequence of chiral dy-
namics. The above mechanism therefore could provide
an effective way to explore the signature of chiral symme-
try restoration. In the realistic world, whether color
deconfinement may destroy the above picture is question-
able. Further theoretical and experimental justifications
are needed. However, since one does not know at the
moment how to formulate the confinement mechanism in
any (3+1)-dimensional field theory and thereby define a
clear signature of deconfinement in experiments, the
mechanism discussed here can be helpful in understand-
ing the underlying hadronic structure from heavy-ion
collisions.

VI. SUMMARY AND DISCUSSIONS

We have developed a microscopic transport theory for
heavy-ion collisions from the quark version of the NJL
model. Medium effects of chiral symmetry are con-
sidered consistently in the Vlasov dynamics and collision
processes. The theory describes dynamically chiral syrn-

metry and meson production, the two most important
features for studying strong interactions and the nuclear
equation of state via high-energy heavy-ion collisions. In
the two-loop approximation, the formalism has been re-
duced to a form amenable to present numerical methods
for heavy-ion collisions. Of course, we do not expect that
the theory can be applied directly to study the dynamics
of the quark-gluon plasma at ultrarelativistic energies.
This is because the NJL model is not suitable in this case.

The framework used is a real-time Green's function
calculation with closed time-path (CTPGF). This offers a
unified description of equilibrium and nonequilibrium
systems. It is particularly useful to study a system with
spontaneous symmetry breaking and phase transition be-

cause the order parameters enter the theory as dynamical
variables. The formulation also provides a clear picture
to describe hadronic dynamics in terms of constituent
quarks and rnesons. The loop-expansion approach is
used to derive the transport equations. In such a deriva-
tion, the generalized Boltzmann equations with collision
terms are obtained. Both the quasiparticle energy spectra
and the collision integrals are determined at the same or-
der of approximation.

The problem of the chiral symmetry signature and pion
production in heavy-ion collisions have been addressed
specifically. As we have seen, the quark condensate,
which measures the chiral symmetry breaking, plays a
very important role in the Vlasov dynamics and thus in
the transverse Aow. Although the behavior of transverse
Aow in certain energy regimes in heavy-ion collisions can
be described quite well by some phenomenological mod-
els, such as density-dependent potential models or the
transport equation of the Walecka model, our result can
help us to understand the underlying features of these
medium-dependent effects of strong interactions. Pion
production is described by qq excitations. Such a descrip-
tion offers a consistent way to study pion dynamics in
heavy-ion collisions. We find that pion production via
particle-hole excitations cannot take place. The possible
mechanism of pion production in high energy heavy-ion
collisions is antiquark (or qq pair) excitations. These ex-
citations correspond to various mesonic modes. Physical-
ly, they finally decay to pions, dileptons, and photons.
Thus, relativistic effects change not only the Vlasov dy-
namics but also the mechanism of particle production in
our theory. Such a picture has not been described in
current hadronic descriptions. All quantitative investiga-
tions of pion production are based on the process of
XN~NA~X1Vm in which the theory must explicitly in-
clude the b, as an elementary particle [9,10].

It has to be said that although the transport theory of
the NJL model describes consistently the chiral phase
transition and mesonic properties, we must assume that
the nucleon is three constituent quarks when we apply
the theory to high-energy heavy-ion collision dynamics.
A careful test of the validi. ty of the assumption in heavy-
ion collisions is to study the nuclear matter properties
within the NJL model, which is in progress in our two-
loop approximation [48]. The dynamical interpretation
of this assumption, namely confinement in QCD, is a car-
dinal problem in hadronic physics. An original motiva-
tion of relativistic heavy-ion collisions was to explore the
mechanism of confinement/deconfinement. Lattice cal-
culations indicate that deconfinement and chiral symme-
try restoration may be related [49]. Hence, a dynamically
self-consistent description of the chiral phase transition
and meson production could be useful for our under-
standing of this fundamental problem.

It is also worth noting that the approach we used in

this paper can be applied directly to nonrelativistic and
relativistic hadronic models for low- and intermediate-
energy heavy-ion collisions. It is particularly interesting
to apply the present formalism to the sigma model in
which the chiral symmetry can also be addressed [50].
However, from our systematic derivation one sees that
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the transport equations of relativistic hadronic models
cannot be reduced to the form of the usual nonrelativistic
VUU equation because the free meson propagators in
these relativistic hadronic models cannot be simplified by
5 functions. A similar conclusion has also been obtained
recently by Davis and Perry [13],namely, that in order to
have a relativistic VUU equation the meson fields should
remain in local equilibrium states.

This paper clearly leaves many questions unanswered.
An extension of the theory by including explicitly kaons
(with Nf =3) is certainly of interest for studying kaon
production in heavy-ion collisions; it is straightforward in
our framework. A detailed numerical investigation of the
present theory in heavy-ion collisions could provide some
information from direct measurements about chiral phase
transition and meson dynamics. Also, the application of
the present theory to the early Universe and the interior
of neutron stars in which a hot and/or dense quark
matter may be formed is worth exploring. Furthermore,
the formulation of the quark confinement and the incor-
poration of chiral symmetry in transport theory is mostly
attractive. Using the present approach to derive the
QCD transport theory and thereby explore the dynamics
of the quark-gluon plasma at ultrarelativistic energies is
the ultimate goal. These are several problems for the fu-
ture.

6 I«[q, q, p]
5q5q

=S '(x,y)+g1 $,(x)5~(x —y), (A2)

g —1
5'I«[q Q Ol

lop
=D '(x,y) .

e=e=o 0;=4;,
(A3)

On the other hand, I [$„G,b, ] should coincide with the
conventional effective action [51]at E =M=0,

=I«[$,]+i'Tr lnGO~

2 Tr ludo~+0(R )

which can reproduce the Dyson-Schwinger equations
when one takes the variation of I ~[/„G, b, ] with respect
to G and 6; . In Eq. (Al),
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where I i~ is of order fi. The constant in (Al) must then
be (i/2)fiTrl. Furthermore, if the normalization factor
is included explicitly in (2.1),

JV= f 2)[q, q, g]exp [qS 'q+ ,'P—D~ 'P]—
APPENDIX: CJT LOOP EXPANSION

In this appendix, we apply the CJT loop-expansion
technique to the NJL model. As was pointed out in Ref.
[32], the only difference between the CTPGF and the or-
dinary Green's functions is the range of time axis. Hence
the loop-expansion technique for the vertex functional
(effective action) developed by CJT [28] in quantum field
theory can be extended directly to the CTPGF formalism
by taking into account properly the difference in the
definition of the time axis.

According to CJT, the required series of I ~[/„G, b, ]
for the NJL model in the loop expansion should have the
following form:

I
& [Q„G,b, ]=I«[P, ]+iiri Tr lnG i' TrGO '—G

= [detS~ ][detD& ]
'~ =exp(Tr lnS —

—,'Tr 1nD& ),
(A5)

the vertex functional of (Al) finally becomes (2.9).
The cardinal point of the expansion of I ~ [$„G,6] to

all orders in fi is to prove that I z [P„G,b, ) is the sum of
all two-particle irreducible vacuum diagrams constructed
by the theory governed by action I«[q, q, g] with G and
6 as its propagators. The two-particle irreducible graphs
are defined as those connected diagrams which remain
connected when any two arbitrary internal lines are cut.
Since I [P„G,h] is the generating functional in P, for
two-particle irreducible n-point functions for I«[q, q, g]
with lines ifiG and ibad„ it follows that I [O, G, E] is the
sum of two-particle irreducible vacuum graphs of the
same theory. From the definition of (2.5), we have

2 ~ 2
Trlnb +

+I'z~ [Q„G,b, ]+const, and hence

5I
i A iA5b

(A6)
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I [0,6,b, ]=TrG
5r [0,6,5] 5r, j0,6,%]

5r, [0,6,a]; 5r, [O, G, s]
q, q, exp —

qSP 'q+
2 Dp +gqI q+ J ——

q q+—
P 56 P

+i% q, q, exp —qS 'q +—,
' D

P
(A7)

is equal to the sum of two-particle irreducible vacuum graphs of a theory governed by I,ff with lines fiG and Ah, where
the last term in the first equality comes from the normalization factor of (A5) and J is that value of J which makes Eq.
(2.6) vanish. Now we can prove that I 2 [P„G,b, ) satisfies the same equation as (A5). We rewrite I ~(Q„G,b, ) as

I z[Q„G,b] = I z' [P, ]——P,MP, +i' TrGE — TrbM, (A8)

where

r," [y, ]=w, [z,Ic,M] —Jy

is an effective action for a theory governed by classical action

I' [q q 0]=l.r[q q 0]+Wq+-,'AMER.

The conventional loop expansion [51] shows that

r& st[/ ]=Itt st[/ ]+r& M[/ ]

(A9)

(A 10)

/ A(Pit Lj

5r„[y, ]
I f™[p,]= ifiln f—2)[q, q, p]exp —q(G&~'+l(. )q+ —p(b.~„'+M}p+gqrtttq —

p
P 2

Substituting (A10) and (Al 1) into (Al),

I z [(Ii„G,b]+const= ifiTrlnG +— Trlnb, +ifiTr(Go '+K)G — Tr(bo '+M)h~+rf~ [P, ] .
2 oP P

By eliminating Il: and M in the above equation from the explicit expressions of (A6),

(A12)

(A13)

i &Izp
I( =6 —6 ~56'

P

Eq. (A13}becomes

E 5I2,
P oP

P

(A14)

5r, [y„G,s] 5r, [y„G,~]
1 2„[ttp„G,b ]=TrG~ +Trb~2p gy 0 p

P

—iA q, q, exp —qG 'q+ —5 ' +gqI q

ar„[Q„G,b,]; 5I' [$„6,6]; 5I [Q„G,b, ]

ay, ~' 56,
T

+i/ q q exp qG lq + Q 1

P
(A15)

Comparison with (A4) shows precisely that I z [Q„G,b, ] is the sum of two-particle irreducible vacuum graphs of the

theory governed by the classical action I,tt[q, q, ttp] with propagators 6 and b, .
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