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Quark-quark interaction with correction from nonperturbative QCD
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The leading nonperturbative correction to the gluon propagator is derived. The Breit-Fermi-type
one-gluon exchange potential with the above-mentioned nonperturbative correction is formulated in the
nonrelativistic scheme. The result shows that, except for the regular color Coulomb, color electric, and
color magnetic terms, both linear confinement and r* deconfinement terms can automatically be ob-

tained.
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I. INTRODUCTION

Since QCD was introduced by particle physicists, the
assumption that the baryon consists of quarks and gluons
has widely been accepted. It is obvious that the tradi-
tional baryon-baryon interaction based on the one-
boson-exchange theory, various form factors, and the
phenomenological repulsive core should be explained in
this more fundamental point of view. In the past 10
years, research into this aspect has extensively been car-
ried out. These investigations can roughly be cast into
two groups. One of them is based on the quark potential
model [1-5].

Although most of the research into the quark potential
model is in the nonrelativistic scheme, the results turn
out quite well, especially for the hadron spectrum [6] and
baryon-baryon scattering [4,5]. There are several
reasons. The effect of c.m. motion can be correctly treat-
ed. The Breit-Fermi term in the Hamiltonian contains
part of the relativistic treatment. Particularly, the
strong-coupling constant «a;, which is slightly greater
than 1, may include further relativistic and other nonper-
turbative effects.

However, something is still not clear. In the Hamil-
tonian of the hadron, one has to write the confinement
term phenomenologically. In the baryon-baryon scatter-
ing case, the situation is even complicated. It is common
knowledge that at long distances the interaction between
two hadrons is governed by the pion-exchange mecha-
nism. From the view point of field theory, the effective
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pion field or Skyrme field [7-10] is an effective theory
where no quark and gluon degrees of freedom show up.
Because of the finite size of the hadron, at short or even
medium distance, two hadrons have more overlap, and
quarks and gluons should present their contributions. In
fact, there are lots of discussion about this subject in par-
ticle physics, the chiral bag model being just one of them
[11]. Therefore, one should derive an effective baryon-
baryon potential which is applicable not only for the
large but also medium and short separations between two
hadrons.

For the long- and medium-range baryon-baryon in-
teractions, Yu, Zhang, and Shen [12] used the mechanism
of quark-antiquark pair creation via one-gluon exchange
and obtained effective one-boson-exchange potentials,
which are very close to those obtained from meson-
exchange theory, and the effective two-pion-exchange po-
tential, which is weaker than the phenomenological o-
meson-exchange potential. For the short-range part, Oka
and Yazaki [1] and Faessler et al. [2] gave the repulsive
core from the one-gluon-exchange model. But all these
results are based on the operator derived in the perturba-
tive QCD scheme which is only applicable for the case of
asymptotic freedom. It is clear that there should be some
“medium- and long-distance QCD” effects. They may
play an important role, especially in the scattering pro-
cess. Unfortunately, these effects, at present, are not fully
understood. There is not any satisfactory way to solve
this problem. However, one still can put in some nonper-
turbative effects phenomenologically [13]. Many authors
have studied the full propagators of the gluon and quark
from QCD sum rules [14-16].

Our strategy is that beside the potential terms caused
by the perturbative QCD, we bring the nonperturbative
effect, namely, the nonzero quark and gluon condensates,
into the interaction between quarks; then we can obtain
an effective potentia! which contains not only the pertur-
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bative contribution, but also the nonperturbative effect.

As the first attempt, we just take the terms in the first
order next to the perturbative leading order; in other
words, just as in Ref. [16], there is only one condensate,
no matter whether it is a gluon condensate or a quark
condensate, in the full gluon propagator. In the next sec-
tion, a brief formulation is given, and the results are dis-
cussed in Sec. III.

II. BRIEF FORMULATION

Years ago, Shifman, Vainstein, and Zakharov (SVZ)
[13] introduced the nonzero quark condensa-
tion m,{0lqg|0) and gluon condensation
(a,/m)(0|G;,G*"|0), where (O|---|0) denotes the
vacuum expectation value of the operator. In perturba-
tive field theory, these condensations are zero, whereas
because of a complicated QCD vacuum structure, SVZ
phenomenologically introduced the nonzero vacuum con-
densate as parameters. The vacuum expectation value
(qg ) means that a pair of quarks with zero energy and
momentum condenses into vacuum, whereas ( GG ) has
the same meaning for a pair of gluons. Since SVZ’s work,
many possible applications of QCD sum rules have been
suggested [17].

Our opinion is that such condensations might give a
substantial contribution to the effective medium-range
potential.

First, we ignore loop calculations and assume that the
one-gluon exchange between two quarks can give general
properties; i.e., we do not consider ladder diagrams.

1895

there may be more gg or GG pairs produced. We
presume that one-pair production is more important than
that with more condensating pairs, because it at least
reflects a first-order approximation. In fact, we consider
a correlator

(0l75(x)74(0)l0) , (1

where Ji (x)=g;(x)y*(A{; /2)q;(x).
show several diagrams in Fig. 1.

In this work we omit all one-loop calculations, such as
the quark self-energy and gluon vacuum polarization, as
well as other vertex corrections. It is easy to see that Fig.
1(a) is the contribution from perturbative QCD, i.e., a
Coulomb-type potential; Fig. 1(b) does not give a contri-
bution, because the momentum which flows into or out of
the vacuum must be zero; and Fig. 1(f) must contribute
nothing, because the vacuum cannot possess any quan-
tum number such as color. Then the remaining thing to
be done is to calculate contributions from Figs. 1(c)-1(e).
These calculations are straightforward, but very tedious.
We use the SVZ method throughout the calculation.

In our calculation we use the fixed-point gauge

Graphically, we

Z"4,(2)=0. (2)
Then
A,(Z)=1Z°G,,(0)+1Z°ZPV G, (0)
+1Z°ZPZ7V V4G, (0)

Moreover, as the gluon travels along a longer distance, +4Z°ZPZYZ% VeV, Gy, + €)
I (%) PAAAAAA~~ T (0) 1,00 pX X 0 3, (x) J,(0)
(a) (b) (c)
Ees) () J,00 g0 5,00 J,0)

(d)

(e)

(t)

FIG. 1. One-gluon-exchange diagrams with one-pair gg or GG production.



1896

In Eq. (3) we take the first term only; that is, we assume
that the distance |Z]| is sufficiently small (the momentum
transfer is large enough) so that we can cut the series at
the second term safely. The obtained gluon propagator
in momentum space which is directly related to the
correlator reads as

[ d*x e™(0IT 42 (x) 45(0)0)

V_ V/ 2
= —in(qz)Bab ,

4)
P

where the additional momentum-dependent factor F(q?)
is
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F(q2)=1+lg2 M—FigZ(GZ)% ,
37 plias g’ —mp) 32 q

(5)
where <¢'BIZB> denotes the quark condensate with flavor
B and (G?) represents the gluon condensate. This full
propagator of the gluon includes both perturbative and
nonperturbative contributions to first order. It is qualita-
tively consistent with Larsson’s result [14], but with
different numerical coefficients as a result of the different
methods used.

Next, we use this full propagator of the gluon instead
of the normal perturbative one-gluon propagator to
derive the Breit-Fermi interaction.

The M matrix can be written as

F(q®),(p5)y/u,(p,y) (6)

’

2 . .
M= —54— (M’Nz’)l[ﬁl(p’l)V°u1<p1)éF(qz)%(p’zW’uz(sz
; ] q:9;
+ @, (p)yiu (p) = ‘5,..—
1 1 1 1 qz j q2
with
172 é‘k
u,(p)= Elp)tm
1P 2E(p) _op
E(p)+m A

Considering all terms up to order 1/c2, M i can be rewritten as

i a 1 1 1 0,0, P1°P2 (0,-9)(0y:q)  (p;-q)(p,-q)
Mfi=—zg2(ll}»g)F(q2)§;:§;; 2 2 2 - ;t ;T 4
q 8mi 8mj; 4mim;  mymyq 4m,m,q mym,q
+i 1 [—o,(@Xp,)+0,(qXp,)]
2m1m2q2 1’''qXPpy)T0,(qXp,

1
— 501 (@Xp)—

4m1iq

=—i& &L U(PLPrEE), -

1
—0 .( X )
4m%q2 2°\qX Py

&6,

Therefore the potential between two quarks in momentum space can be obtained in the following form:

2 2 mpUglp) 9 1
_8 aya e BYBYB 2 22y
U(p1,p»q)==(A{A9) |1+ +58%(G?)
P1,P2»q 4 M2 3 2 qz(qz_m%) 32 q*
o0 . (o,-q)o,q)  (p;-q)py-q)
Xl—- 12_ 12_ 1’9, Pll)z2+ 1’9 22‘1+P1q 17'24
q* 8mi 8m; 4mimy;  mym,q 4mm,q mm,q
R 9, | 9Xp1_ | 9 o, -qX2p2 . ®)
4m% 2mym, q2 4m% 2mym, q

Furthermore, by making a Fourier transformation, the g-g potential in the coordinate space can be read as
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iqr_d
U(p17p27r)=f U(pl!pZ’q)elqr—JL}
(2m)
_g* AfAS ) (Yptp) 1 1 o192 1 ||1_ 1,1 20,0, 5
47 4 gESm 8m? 8m?2 6mm 2 r 2 2 3mm ()
B B ml m; 17752 mB 2m1 2m2 1m,
<1/’3¢ﬁ 1 1 0,0,
G? +g2—
( 4< ) 8m?  8m2  8mym, || 256<G r’
g’ <¢ﬁ¢ﬁ) 1 1 0,0 1 e_mﬂr_ — (pyT)(p,yT) 1
s 3 8mi 8m3j 4mym, m} | mgr  2mym, 1P r? r
S (Ypip) oDy (piO)pyr) | 3(G?) 5(py-py)— 3pir)pyr) |
5 8mymymg e r? 1536m m, 1h2 r?
__ _1__ 2 (Y505 1_ 9 2
4m,m 3 % 72m mymyg 2,78 1024m,m, (G*)S,,r
9, ) o, o, 1
- (rX X
4mi 2mym, P 2 2mm, (rXp,) »3
<¢ {[’. ) o o o o
2 BYB 1 2 2 1
(rX — 4+ ——— | (r X =
g %’ 6mg 4m?  2mm, Py) 4m?  2mm, (rXp,)
o
+g2—=—(G?) 2+ (rXp)— |—5 —1 (rXpy) |rt, 9)
256 4mi 2mm, 4m5 2mym,
[
with calculation of lattice gauge theory [20], with which a
3(o,1)0,T) better long-distance behavior of the potential can be
12=——1—2—2——-—01-az . (10)  shown. Moreover, the authors of Ref. [19] also replaced

r

Before approaching the final expression U(p;,p,I),
there are two points that should be mentioned.

First, our derivation is valid when the momentum
transfer g is large enough or the interacting distance is
small enough. Thus one can only take the first term in
Eq. (3) without breaking the feasibility of this approxima-
tion and ensure the integrand U(p;,p,,q) in Eq. (9) is re-
liable. In order to obtain a reasonable U(p,,p,,r), Eq. (9)
should be rewritten as

9 lqr
0 (2) fa

9 zqu(
5 (2m)}

U(pl’pZ’r)z

P1,P2»q) (11)

where 8 is a cutoff parameter and f(q) is another func-
tion related to the long-distance (large r) behavior. One
easy way to define f(q) is by extrapolating U (PhPZ:%) to
this area and multiplying a weight factor such as e ~A"/%",
where the adjustable parameter A is also related to 8.
That makes the analytic integration of Eq. (11) different.
There could be some ways to solve it. For example,
Huang et al. modified Richardson’s potential by intro-
ducing a cutoff at a small value of g and giving an asymp-
totic behavior Kr as r — oo (g <¢) [19]. Our way to han-
dle this problem is by introducing a factor in coordinate
space. We adopt this factor as that obtained from the

the linear term Kr by Kr[(1—e ") /ur]. Itis easy to see
that, as r —0, this term becomes linear in r, but as r — o0,
it tends to constant K /u. Similar to their treatment, we
modify our long-distance term in the Fourier transforma-
tion by the same factor; then we have

1—e™ ¥

ur

Vir)=

J; d") U(p;,p2q) » (12)

where u is a parameter which replaces § or A mentioned
above and can be determined by fitting the data. Thus
the integrand U(p,,p,,q) is extrapolated to the small-g
range, and the additional factor takes care of the caused
modification. In fact, we merely hope our result is valid
at short and medium distances and the resultant scalar
potential might play the role of the confinement. Since,
in our ansatz, the effect at long distance, where the effect
of the confinement is also ambiguous, is taken into ac-
count by the well-known effective pion field, it is not
necessary to worry about the confinement effect at a
range longer than few femtometers.

The second problem is caused by the approximation,
where all loop contributions are ignored because of loop
suppression. In fact, a new term (1/Q?%)InQ? in momen-
tum space can be given by the gluon vacuum polariza-
tion. As a consequence, the Coulomb potential can be
slightly changed. We omit it at the present stage.

Now we reach the final form of the effective potential
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between quarks:
l—e™#

ur

V(r)=U(p,pyT) (13)

III. DISCUSSION

In Eq. (9) the summation is taken over all light quarks
u, d, and s, and the masses of constituent quarks are tak-
en as m, =m,=350 MeV and m; =550 MeV. The phe-
nomenological vacuum expectation values of () and
( wa) are given as

(0|lum|0)=<0ldd|0)
=1.3(0|s5]0)=(0.25 GeV)?

and {0|(c /F)Giv|0)=0.012 GeV*. The effective cou-
pling constant a,=g?/47 in Eq. (9) is adopted as
a,=0.5.

There are lots of interesting features in the resultant
potential V' (r). First of all, there is a linear term which
can play a role of the regular confinement potential;
meanwhile, a r® term with a sign opposite that of the
coefficient to the linear term would give the
deconfinement effect. Moreover, a Yukawa-type term au-
tomatically appears. It may somewhat provide an in-
teraction at longer distance, such as part of the effects
brought about by the pseudoscalar meson exchange. This
is easy to understand. In our framework, since the un-
derlying mechanism is the current-current correlator, one
may obtain an effective potential, which governs the
scattering process, in the medium and short ranges.

Similarly, the spin-orbital and tensor interactions are
also modified by the additional terms generated by the
quark and gluon condensates. With these modifications
the theoretical baryon spectrum and scattering phase
shifts would be varied.

Here we continue our discussion on confinement-
related terms. The 73 term comes from the gluon propa-
gator, where a gluon pair is produced. This indicates
that the condensate can modify the potential via the full
gluon propagator. Because of the appearance of the rd
term, which provides the deconfinement effect, the behav-
ior of the confinement potential is somewhat different
from the commonly used linear confinement potential.
This deviation will definitely cause some changes in the
spectrum and scattering phase shifts. Does the r} term

agree with our hypothesis, or does it mean that the quark
can be defined through tunneling the potential barrier?
The answer is negative. It just looks like the picture in
the old string theory. Two quarks (or quark-antiquark)
antiquark) are linked by a string. When they are pulled
away from each other,the tension on the string becomes
greater and greater until the string is broken. Then, at
each broken end, a quark (or antiquark) is generated to
keep the color-singlet feature of the system. Thus, at
large r, the r3 term becomes very important, and at the
very large r, our hypothesis may fail. However, an
equivalent to the ladder approximation in field theory, if
we consider higher-order nonperturbative corrections,
i.e., take into account more quark and gluon condensates,
the r5,r7, ... terms may appear with different signs, and
the shape of the confinement potential may converge to
that given phenomenologically by the lattice gauge calcu-
lation [20]. It is noteworthy that by using the
confinement potential in Ref. [20] or a confinement po-
tential in the error function form, Yang, Deng, and
Zhang (6] calculated the hadron spectrum and greatly
improved the energy level for N =2. This indicates that
the deconfinement term does exist, and the value of the
total confinement potential, at least, should not be in-
creased with increased r. Thus the above-mentioned tun-
neling problem might be solved.

It is natural to have higher-order terms of r or to con-
sider more condensates. Because all (¢g) and (GG) con-
densates mix and some overlap, where g (or g) or G lines
cross each other adding contributions, the calculation be-
comes more complicated. For example, in the ladder ap-
proximation, both horizontal and vertical ladders in the
same order must be taken into account at the same time.
In our opinion, first, one should find out how the lowest
order of nonperturbative QCD offers its contribution to
the potential. If the result is encouraging, one should
work further on higher-order corrections.

Finally, we mention that all parameters in ¥(r) should
be fixed in the spectrum and scattering calculations.
These results will appear in a future paper where the had-
ron spectrum and NN scattering phase-shift calculations
are performed.

This project was partially supported by the National
Natural Science Foundation of China.

[1] M. Oka and K. Yazaki, Prog. Theor. Phys. 66, 556 (1981);
66, 572 (1981).

[2] A. Faessler, F. Fernandez, G. Liibeck, and K. Shimizu,
Nucl. Phys. A402, 555 (1983).

[3] Z. Zhang, K. Briuer, A. Faessler, and K. Shimizu, Nucl.
Phys. A443, 557 (1985).

[4] M. Oka, K. Shimizu, and K. Yazaki, Nucl. Phys. A464,
700 (1987).

[5] U. Straub, Z. Zhang, K. Briuer, A. Faessler, S. B. Khad-
kikar, and G. Liibeck, Nucl. Phys. A483, 686 (1988).

[6] Yang Hua, Deng Wei-zhen, and Zhang Zong-ye, High En-
ergy Phys. Nucl. Phys. (to be published).

[7] G. Adkins, C. Nappi, and E. Witten, Nucl. Phys. B228,

552 (1983).
[8] I. Zahed and G. Brown, Phys. Rep. 142, 1 (1986).
[9]J. Donoghue, Phys. Rev. D 37, 631 (1988); Phys. Rev.
Lett. 58, 3 (1987).
[10] M. Mattis and M. Mukerjee, Phys. Rev. Lett. 61, 1344
(1988).
[11] M. Mattis and M. Peskin, Report No. SLAC-PUB-3538,
1984.
[12] Yu You-wen, Zhang Zong-ye, and Shen Peng-nian, Nucl.
Phys. A528, 513 (1991).
[13] M. Shifman, A. Vainstein, and V. Zakharov, Nucl. Phys.
B147, 385 (1979).
[14] T. Larsson, Phys. Rev. D 32, 956 (1985).



45 QUARK-QUARK INTERACTION WITH CORRECTION FROM . .. 1899

[15] V. Shuryak, Phys. Rep. 115, 151 (1984). [18] W. Hubschmid and S. Mallik, Nucl. Phys. B207, 29 (1982).
[16] H. Politzer, Nucl. Phys. B117, 394 (1976); P. Pascual and [19] T. Huang et al., Z. Phys. C 46, 133 (1990); Y. Ding, T.
E. Rafael, Z. Phys. C 12, 127 (1982); V. Elias, T. Steele, Huang, and Z. Chen, Phys. Lett. B 196, 191 (1987).
and M. Scadron, Phys. Rev. D 38, 1584 (1988). [20] E. Laermann et al., Phys. Lett. B 173, 437 (1986); K. D.
[17] N. Nusrallah et al., Report No. MZ-TH/82-07, 1982; H. Born, Phys. Rev. D 40, 1653 (1989).

Dosch et al.,Z. Phys. C 42, 167 (1989).



