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Quark and gluon condensates in nuclear matter are studied. These in-medium condensates may be

linked to a wide range of nuclear phenomena and are important inputs to QCD sum-rule calculations at

finite density. The Hellmann-Feynman theorem yields a prediction of the quark condensate that is mod-

el independent to first order in the nucleon density. This linear density dependence, with slope deter-

mined by the nucleon u term, implies that the quark condensate is reduced considerably at nuclear

matter saturation density —it is roughly 25-50% smaller than the vacuum value. The trace anomaly

and the Hellmann-Feynman theorem lead to a prediction of the gluon condensate that is model indepen-

dent to first order in the nucleon density. At nuclear matter saturation density, the gluon condensate is

about 5% smaller than the vacuum value. Contributions to the in-medium quark condensate that are of
higher order in the nucleon density are estimated with mean-field quark-matter calculations using the

Nambu —Jona-Lasinio and Gell-Mann-Levy models. Treatments of nuclear matter based on hadronic

degrees of freedom are also considered, and the uncertainties are discussed.

PACS number(s): 21.65.+f, 12.40.—y, 24.85.+p

I. INTRODUCTION

Since hadrons are excitations of the vacuum, hadronic
properties are ultimately related to properties of the vac-
uum. The degree to which one must understand the na-
ture of the vacuum is not clear; a full solution of quantum
chromodynamics (QCD) may be needed for a complete
understanding of the strong-interaction properties of
hadrons. However, to determine the spectral properties
of many hadrons, it may be sufBcient to characterize the
vacuum in terms of a small number of parameters —the
quark and gluon condensates. These condensates are ex-
pectation values of local composite operators such as qq
and 6„'„6'",where q is an up or down quark field and
G„',, is the gluon field-strength tensor. The QCD sum-
rule approach [1] is based on this possibility, and it has
proved to be a useful tool in understanding the properties
of hadrons in free space [2]. The vacuum values of the
lowest-dimensional quark and gluon condensates used in
sum-rule calculations are [2,3]

(qq )„„=—(225+25 MeV)

(
s

G„' G'"" =(360+20 MeV)
VaC

(1 2)

There has been recent interest in describing the proper-
ties of hadrons in nuclear matter in terms of in-medium
quark and gluon condensates, which are shifted from
these vacuum values.

In this paper, we discuss the quark and gluon conden-
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sates in the ground state of nuclear matter. We develop
simple expressions for these condensates that are model
independent to first order in the nucleon density. These
model-independent results are therefore valid at
sufBciently low nucleon densities. The Hellmann-
Feynman theorem relates the shift of the quark conden-
sate from its vacuum value to the nucleon o term and the
up and down current quark masses. Similarly, the trace
anomaly and the Hellmann-Feynman theorem relate the
shift of the gluon condensate from its vacuum value to
the nucleon mass, the cr term, and the strangeness con-
tent of the nucleon. Depending on the precise value of
the 0. term, we find that the quark condensate at nuclear
matter saturation density is roughly 25 —50%%uo smaller
than the vacuum value. Neglecting the strangeness con-
tent of the nucleon, we find that the gluon condensate at
nuclear matter saturation density is approximately 6%
smaller than the vacuum value. Calculations assuming a
large strangeness content of the nucleon, which is es-
timated through the use of SU(3)-fiavor symmetry and
first-order chiral perturbation theory, indicate that the
gluon condensate is about 3—6 % smaller than the vacu-
um value at nuclear matter saturation density.

To estimate corrections to the quark condensate due to
terms of higher order in the nucleon density, we use the
Nambu —Jona-Lasinio (N JL) and Gell-Mann —Levy
(GML) models. These models are natural candidates for
such a study since they are chiral quark models, and the
key physics of the in-medium quark condensate is partial
chiral restoration. At the mean-field level, these models
suggest that corrections to the model-independent predic-
tion of the quark condensate are fairly small ( —10%%uo) up
to nuclear matter saturation density. We also consider
the in-medium condensate using models of nuclear
matter based on hadronic degrees of freedom. We first
perform a simple nonrelativistic calculation in which un-
correlated nucleons interact through one-pion exchange.
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This model predicts deviations from the model-
independent result that are small ( —10%} at nuclear
matter saturation density. We also discuss more com-
plete nonrelativistic calculations that include correlation
effects and relativistic mean-field calculations based on
quantum hadrodynamics (QHD}.

Medium-modified condensates may be linked to a
diverse range of nuclear phenomena. Such work has pri-
marily concentrated on partial chiral restoration in the
nuclear medium, i.e., a medium-modified quark conden-
sate. It has been suggested that partial chiral restoration
could lead to a reduction of the proton-neutron mass
difference, which might account for the Nolen-Schiffer
anomaly [5—7). In addition, it has been proposed that
partial chiral restoration could lead to a reduction in
vector-meson masses, which might account for
"anomalies" in K+-nucleus scattering data [8], the
suppression of the electromagnetic longitudinal response
functions in electron-scattering experiments [9], and the
enhancement of the pNN tensor coupling in the nuclear
medium [10].

The modification of the gluon condensate in a hadron
might be connected to quark confinement. In the color
dielectric model of Nielson and Patkos [11],confinement
is governed by a color dielectric function that vanishes
far from the hadron. In the hadron, however, the dielec-
tric function is nonvanishing, and this change might be
associated with a change in the gluon condensate in the
hadron. In order to use this model to study corrections
to the model-independent prediction of the in-medium
gluon condensate, one must have a quantitative under-
standing of the connection between the dielectric func-
tion and the change in the gluon condensate. Unfor-
tunately, this connection is only understood qualitatively
at best.

A natural and direct use for in-medium condensates is
in QCD sum-rule calculations of hadronic properties in
nuclear matter. This approach can be used to predict in-
medium spectral properties (e.g. , effectivemasses and
self-energies) of baryons and mesons. Recent work on the
spectral properties of nucleons in nuclear matter suggests
a connection between QCD and the phenomenology of
relativistic nuclear physics [12]. Elements of nuclear-
structure physics such as nuclear matter saturation [13]
and the Nolen-Schiffer anomaly [6,7] are also being ex-

plored. In the QCD sum rules, one considers a correla-
tion function of interpolating fields, built from quark
fields, that carry the quantum numbers of the hadron of
interest. By applying an operator product expansion for
large spacelike momentum transfer, the correlator can be
expressed as a sum of Wilson coefficients, calculated in
QCD perturbation theory, that multiply the expectation
values of composite operators. In the vacuum, the
lowest-dimensional nonvanishing expectation values are
the simple quark and gluon condensates, (qq)„„and
((a, /m }6„'„G'")„„.In nuclear matter, these conden-
sates still play a major role; therefore, the estimation of
the in-medium condensates is central to the application
of QCD sum rules to finite-density nuclear systems.

In Refs. [8—10], all mass scales in medium are assumed
to change with density in the same manner. Accordingly,

the in-medium quark condensate is assumed to be related
to the in-medium nucleon mass by the following scaling
law [14]:

(1.3}

where (qq )„„and (qq ) are the vacuum and in-

medium quark condensates, and M& and M& are the
mass and the in-medium effective mass of the nucleon.
Similar relations are assumed to hold for other hadrons.
However, the connection between Mz and observables is
not clear —identifying Mz with one of the many effective
nucleon masses used in many-body physics [15] is hard to
justify. Moreover, the proposed scaling law itself is ques-
tionable. If one defines the effective mass to be the
Lorentz-scalar part of the effective nucleon self-energy,
then recent QCD sum-rule calculations [12] suggest that
the effective nucleon mass scales as (qq ) and not as

~N

(qq)' . We prefer a more concrete approach. In this

paper, we connect the in-medium quark condensate to
the o. term and the current quark masses rather than to
the effective mass of the nucleon in nuclear matter.

Some of our results have been discussed in previous
work. Drukarev and Levin [13] have discussed the
model-independent predictions for the in-medium quark
and gluon condensates at low densities, although not in
the context of the Hellmann-Feynman theorem. Correc-
tions to the quark condensate were calculated in Ref. [13]
based on Pauli blocking of the pionic contribution to the
o. term; this is equivalent to the pion Fock term calcula-
tion considered here. The NJL model has also been uti-
lized to study chiral restoration at finite density [16—18];
however, the NJL calculations presented here differ from
those of Refs. [16—18] in the method of choosing the free
parameters of the model. In Ref. [16], the free parame-
ters are chosen to fix the pion-decay constant and the
quark condensate in vacuum. In Ref. [17], explicit
chiral-symmetry-breaking terms are included in the mod-
el, and the free parameters are chosen to fix the pion-
decay constant and the pion mass. In Ref. [18], the free
parameters are chosen to fix the pion-decay constant and
the constituent quark mass. Fixing the free parameters
by one of these prescriptions leads to an in-medium quark
condensate that depends in detail on the physics of the
NJL model.

Our goals are more modest —we take advantage of the
model-independent prediction of the in-medium quark
condensate, and constrain the NJL model so that it
reproduces this prediction at low densities. Thus we use
the NJL model only to estimate corrections to the linear
result. The model-independent prediction gives the rate
of chiral restoration at low densities, which depends on a
combination of the pion-decay constant, the pion mass,
and the o. term. It is not obvious that the physics of the
NJL model is sufficiently realistic to reproduce this com-
bination of parameters based on fits to other observables;
therefore, we choose the free parameters of the NJL mod-
el in order to fix the rate of chiral restoration directly.
We choose the free parameters in the GML model in a
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like manner.
This paper is organized as follows. In Secs. II and III,

we consider model-independent calculations of the in-

medium quark and gluon condensates, respectively. The
model independence extends to first order in the nucleon
density; thus these results should be valid for sufficiently
low nucleon densities. In Sec. IV, we consider correc-
tions to the model-independent description of the in-
medium quark condensate using quark-model calcula-
tions, and in Sec. V we consider these same corrections
with hadronic models. Section VI is a summary.

II. IN-MEDIUM QUARK CONDENSATE:
MODEL-INDEPENDENT CALCULATIONS

We first consider the in-medium quark condensate.
We develop an expression for this condensate that is
model independent to first order in the nucleon density
by applying the Hellmann-Feynman theorem. If H(A, ) is
a Hermitian operator that depends on a real parameter A. ,
and if(A. ) & is a normalized eigenvector of H(A, ) with ei-
genvalue E (A, ), i.e.,

H(A)iy(A) &=E(A)iy(A) &, &y(A)i1$(A) &=1, (2.1)

then, according to the Hellmann-Feynman theorem
[19,20],

&y(&)~ H(&)it((k)&= E(A, ) . (2.2)

%,» ——m„uu+mddd+m, ss+ . (2.4)

where u, d, and s denote the up-, down-, and strange-
quark fields with current quark masses m„, md, and m„
and denotes similar contributions from heavier
quarks. It is useful to reorganize the up- and down-quark
contributions to & „, in order to isolate the isospin-
breaking effects. Defining qq = —,'(uu +dd),
m~: ,'(m„+—m—d), and 5m~—=md —m„, Eq. (2.4) can be
written as

S „,=2m qq
—

—,'5m (uu dd)+m, —ss+ . . (2.5)

Making the identifications H~ jd x &QcD and A~m~
in the Hellmann-Feynman theorem [Eq. (2.3)], one ob-
tains

2m & g(m ) i f d x qq i g( )m&

Alternatively, one can write Eq. (2.2) as

&q(~)I „H(~)ly(~)&= „&y(~)lH()()ly(~)& (23)

Throughout this paper, we will use state vectors that are
normalized to unity.

In the QCD Hamiltonian density &QeD chiral symme-
try is explicitly broken by the current quark mass terms.
We denote this part of the Hamiltonian & „„which is
given by

6'=MNP~+56, (2.8)

where 5v is the contribution to the energy density from
the nucleon kinetic energy and N Ninterac-tions. 56 is of
higher order in the nucleon density and is empirically
small at low densities —the binding energy per nucleon at
nuclear matter saturation density is less than 2% of the
nucleon mass. We neglect 58 in this section, and consid-
er its effects in Secs. IV and V.

The quark condensate at low densities can be related to
the nucleon o term o z, which can be defined by [23]

3

~N= 3 g ( &Nl[QA&[QA HQCD]]IN &

a=1
—

& vac I [Q;,[Q&,HQ, D ]]1vac & ), (2.9)

where Q„' is the axial charge, HQcD is the QCD Hamil-
tonian, and iN & is the state vector for a nucleon at rest.
Alternatively, the o term can be expressed as [23]

o ~ =2m~ fd x ( ( Ni qq ~
N &

—( vac
~ qqi vac & ), (2.10)

which, upon application of Eq. (2.6) [with ~P(m~ ) &
= iN &

and i 1(t(m~ ) &
= vac & ], becomes

dM~
cr& =m

m
(2.11)

Combining Eqs. (2.7), (2.8), and (2.11) yields the follow-
ing model-independent result:

2m&((qq &
—(qq &„„)=ozpz+ (2.12)

We now consider the ratio of the in-medium condensate
to its vacuum value. This ratio, which is also
renormalization-group invariant, is given by

(qq &,
+ 4 ~ ~

( qq &vac pN

where

(2.13)

where we have multiplied both sides by m to obtain
renormalization-group invariant quantities [21,22]. Note
that it is not necessary to neglect isospin-breaking terms
in the derivation of Eq. (2.6); however, in the calculations
that follow we assume good isospin and neglect isospin-
breaking terms.

Now consider the eases in which if(m~) &
= ip~ & and

ig(m )&=novae& in Eq. (2.6), where ipse& denotes the
ground state of nuclear matter at rest with nucleon densi-

ty pz and ivac& denotes the vacuum state. Taking the
difference of these two cases, and taking into account the
uniformity of the system yields

2mq( & qq &
—

& qq &„„)=mq
dh (2.7)
dms

where the derivative is taken at fixed density. We have

introduced the notation (Q&z =(PNiQipz& and

( Q &„„—= ( vac
~

Q i vac & for an arbitrary operator Q. The

energy density of nuclear matter 8 is given by

d
(p(m, )~ fd'x &QcDi1((m, ) &, (2.6)

dms

m f2
P4=— (2.14)
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TABLE I. Model-independent predictions of
(qq &~ /(qq &„„extrapolated to saturation density for selected

values of o &.

x„~A, 'x„, A„(x)~XA„(Ax ), /~A. ' 'g(Ax),

(3.1)

~~ (MeV)

30
45

60

&qq&, /(qq&„.,

0.758
0.636
0.515

where A, is an arbitrary dimensionless real parameter, and
A„and g are the gluon and quark fields. In the limit of
vanishing quark masses, the classical chromodynamics
action is scale invariant; thus there is a conserved dilata-
tion current J„",which is given by

and m„and f are the pion mass and pion-decay con-
stant, respectively. To derive Eq. (2. 14), we have used the
Gell-Mann-Oakes —Renner relation,

2m, & qq )„„= m'f —' . (2. 15)

Equation (2.13) gives the in-medium quark condensate to
first order in the nucleon density. There are higher-order
corrections that result from retaining 5C in Eq. (2.8);
therefore, the model-independent prediction of Eq. (2.13)
is only valid at sufficiently low densities. Note that pz is
the value of the chiral restoration density obtained by ex-
trapolating Eq. (2.13).

To first order in the nucleon density, the ratio of the
in-medium quark condensate to its vacuum value de-
pends solely on the values of the pion mass, the pion-
decay constant, and the 0. term. We take m =138 MeV
and f =93 MeV. A recent analysis of the rr term [24]
yields a value of approximately 45 MeV with an uncer-
tainty of order 7—10 MeV. Previous analyses arrived at
values that were somewhat higher (for example,
0~=56.9+6.0 MeV [25]) or somewhat lower (for exam-

ple, rr~=25 —26 MeV [26]). To reflect this range of
values, we consider three different values of the o. term in
our analyses: 0.&=30, 45, and 60 MeV.

Although Eq. (2. 13) is, thus far, only justified at low

density, it is interesting to evaluate this expression at nu-

clear matter saturation density p~ . Here, and
throughout this paper, we take the nucleon density at sat-
uration to be p]v'=(110 MeV) =0.173 fm (which cor-
responds to a Fermi momentum of 1.37 fm '). In Table
I, we give numerical values for the in-medium quark con-
densate at saturation density. Depending on the precise
value of the o. term, the extrapolation of the model-
independent result suggests that the in-medium quark
condensate is roughly 25 —50%%uo smaller than the vacuum
value. The essential physics of Eq. (2.13) is clear: Unless
there is some conspiracy in the terms of higher order in
the nucleon density, the quark condensate in medium is
significantly altered from its vacuum value at nuclear
matter saturation density.

Jdil T V

P P~ (3.2)

where T„ is the energy-rnomenturn tensor. Conserva-
tion of the dilatation current implies 8"J„"=T„"=0at
the classical level. Quantum corrections, however, break
scale invariance through the regularization of the theory,
which introduces the QCD scale AOcD and leads to the
trace anomaly. Reinstating finite current quark masses,
the trace of the energy-momentum tensor, including the
anomaly, is

2 ~s

+m, ss+ m, cc+mbbb+ m, tt+ (3.3)

QQ = — G'„G'""+0 (m ),
12m

Q

(3.4)

which is valid for large quark masses. Here we use Q to
denote a generic heavy quark; note that the O(m& ) con-
tribution to Eq. (3.4) is also of higher order in a, [28].
With this simplification, the trace of the energy-
momentum tensor is

9o.,
TPP = — '

G p
G'P +m uu+mddd +m ss

7T

(3.5)

For nuclear rnatter in equilibrium, the ground-state ex-

pectation value of the trace of the energy-momentum ten-

sor is

where we have neglected higher-order a, corrections to
each term [21,28,29]. N, and Nf denote the number of
quark colors and flavors; we take N, =3 and Nf =6. The
masses of the charm, bottom, and top quarks are large
compared to the energy scales of interest; therefore, we
eliminate their contributions via the inverse mass expan-
sion,

III. IN-MEDIUM GLUON CONDENSATE:
MODEL-INDEPENDENT CALCULATIONS

We now consider the in-medium gluon condensate.
We develop a model-independent prediction that is valid

to first order in the nucleon density through an applica-
tion of the trace anomaly and the Hellmann-Feynman
theorem. We first consider the nature of the trace anom-

aly, following the discussion of Refs. [27] and [28]. Con-
sider the dilatation transformation

(3.6)

where 6 is the energy density of the nuclear matter.
Note that pressure contributions vanish in Eq. (2.6) since
we are considering nuclear matter in equilibrium. Com-

bining Eq. (3.6) with the difference between the right-
hand side of Eq. (3.5) evaluated in the nuclear-matter
ground state and the vacuum yields the following result
for the change in the gluon condensate:
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G'.G'P — '
Gp.G'P

~N

8= ——[g—m„((uu ) —(uu )„„)
—m&((dd ) —(dd )„„)
—m, (&ss &,

—&ss &„„)]. (3.7)

The change in the up- and down-quark condensates can
be written in terms of the o. term. Neglecting isospin
breaking and using the results of Sec. II [Eq. (2.12)], we
obtain

m„((uu )~
—(uu )„„)+m~((dd ) —(dd )„„)

+NPN+ (3.8)

Similarly, one can write the change in the strange-quark
condensate as

m, ((ss ) —(ss )„„)=Sp„+ (3.9)

where the strangeness content of the nucleon S is defined
by

S—=m, f d x((Ness)N ) —(vac(ss(vac) ) .

Combining Eqs. (2.8) and (3.7)—(3.9), we obtain

(3.10)

GQ GQPv
PV

7T vac

8= ——(M —a —S)p + . (3.11)
9 N N N

The precise value of the strangeness content of the nu-
cleon is the subject of some controversy. It is commonly
specified by the dimensionless quantity y defined by

f d x((NssiN) —(vaciss ~vac) )

y =, , (3.12)f d x((N(qq(N) —(vac(qqivac))

which leads to

TABLE II. Model-independent predictions of
(6„'„6'"")~l(6„'„6'"')„„extrapolated to saturation density

for selected values of 0.&, assuming no strangeness content of
the nucleon and a large strangeness content.

~~ (MeV)

30
45
60

No strangeness
content

0.936
0.937
0.938

Large strangeness
content

0.940
0.955
0.969

The value of o N can be estimated from an analysis of the
mass spectrum of the baryon octet, with violations of
SU(3)-flavor symmetry treated perturbatively. First-
order calculations [30,31,24] lead to ON-—25 MeV, while
second-order corrections [30,24] raise this to crN =35+5
MeV. In the interest of obtaining an upper estimate of
the effects of strangeness, we take o.N=25 MeV. Con-
sistent with the first-order calculations from which this
value is derived, we estimate the strange-quark mass from
the following relation [32,33]:

2mq m~

mq+ms m~
(3.16)

This yields m, /m =25, which is consistent with the re-
sults of Ref. [30].

We now consider the change in the gluon condensate
at nuclear matter saturation density. In Table II, we give
numerical values of the in-medium gluon condensate for
selected values of the o. term. We take MN=939 MeV
and assume that the gluon condensate in vacuum is given
exactly by the central value in Eq. (1.2). We consider two
cases —one assuming a vanishing strangeness content of
the nucleon (S =0) and one assuming a large strangeness
content [S is estimated by Eq. (3.15)]. One notices im-
mediately that the finite-density effects modify the gluon
condensate to a much smaller extent than they do the
quark condensate. The decrease in the gluon condensate
at nuclear matter saturation density is in the neighbor-
hood of 5%.

1 msS=—
2 m

(3.13)
IV. IN-MEDIUM QUARK CONDENSATE:

QUARK-MODEL CALCULATIONS

0
+N

+N (3.14)

where o.
N is the o term in the limit of the vanishing

strangeness. The strangeness content S can then be
parametrized as

m,S=—
2 mq

(+N +N) (3.15)

In constituent quark models, there are no strange quarks
in the nucleon; thus the strangeness content vanishes. On
the other hand, calculations that analyze the baryonic
spectrum in the context of SU(3)-flavor symmetry suggest
that the strangeness content y is related to the o. term in
the following manner [30,24]:

We now consider corrections to the model-independent
behavior of the quark condensate given by Eq. (2.13).
One might anticipate that these corrections are small
since the shift in the condensate is proportional to
d@/dm and, at nuclear matter saturation density, the
energy density 8 is dominated by the contribution from
the nucleon mass. In fact, at nuclear matter saturation
density, the nucleon mass of 939 MeV is nearly two or-
ders of magnitude larger than the 16-MeV binding ener-
gy. However, since it is the derivative of the interaction
energy with respect to the current quark mass that is
significant, and not simply the total interaction energy, it
is not obvious that the model-independent results of Sec.
II are valid near nuclear matter saturation density.

The model-independent prediction of the in-medium
quark condensate is valid to first order in the nucleon
density; in this section we estimate higher-order correc-
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tions with model calculations. It is natural to consider
relativistic models with quark degrees of freedom since
these models give direct access to a scalar quark density
or quark condensate. Since the essential physics of the
quark condensate is that of chiral symmetry breaking,
we consider chiral quark-meson models —the
Nambu —Jona-Lasinio and Gell-Mann —Levy models. At
finite density, the NJL and GML models describe quark
matter rather than nuclear matter. In order for the NJL
and GML descriptions to be physically meaningful, one
must have in mind a scenario in which a nucleon is corn-
posed of N, weakly interacting constituent quarks (where
N, is the number of colors) with masses generated by the
spontaneous breaking of chiral symmetry. For this
description to give a sensible energy density in the limit
of low nucleon density, we must insist that the constitu-
ent quark mass is given by

(4.1)

We take N, =3; therefore, the constituent quark mass is

Mq 3 1 3 MeV. In order to simulate symmetric nuclear
matter, we consider models with two quark flavors, i.e.,
we take Nf =2.

Using the NJL and GML models, we solve for the rela-
tive change in the quark condensate using a mean-field
(Hartree) approximation —quark fields are treated at the
one-loop level and meson fields are treated at tree level.
This approximation gives the leading-order behavior of
the models in a 1/N, expansion. Recall that the NJL
and GML models are designed such that, in the large-N,
limit, quantities calculated with the models depend on N,
in the same way as analogous quantities in QCD. Fock
contributions are of lower order in N„and are therefore
not included in this simple treatment. We note that these
mean-field quark-matter calculations are radically
different from mean-field calculations with a hedgehog
ansatz for the meson fields, which yield soliton
configurations that describe a single nucleon or 6 isobar.
The latter technique has been used for the GML model
[34—36], and also, more recently, for the NJL model
[37—43].

For convenience, we do not include explicit chiral-
symmetry-breaking terms in the NJL and GML Lagrang-
ians; thus we work in the chiral limit. This approxima-
tion should be good since explicit chiral-symmetry-
breaking terms in the QCD Lagrangian are small, result-
ing in a pion mass that is small compared to other hadron
masses. We choose the free parameters of the models to
match the model-independent result [Eq. (2.13)] at low
densities; i.e., we fix the quantity p~ =m „f /cr~ Note.
that the o. term and the pion mass both vanish in the
chiral limit; however, the ratio of the o. term to the
square of the pion mass remains finite. It is easy to show
that the value of p+& based on empirical data is equal to
p~ in the chiral limit to leading order in chiral perturba-
tion theory. One might expect corrections of a few per-
cent due to the finite current quark masses. We can
therefore satisfy the low-density result of Eq. (2.13) in
these chiral models by calculating p+~ in the context of

these models and setting it equal to the value obtained by
substituting the empirical values of m, f, and oz in
the definition ofp$.

We now estimate the in-medium quark condensate
with the NJL model. The Lagrangian for this model is

+NJL —11trr r) p+ —G [(ply) +(fir 'rg) ] (4.2)

where
2

2

G
(4.4)

The auxiliary meson fields and couplings are not normal-
ized, i.e., o. and m. are not necessar&ly canonical fields;
thus we will eventually express everything in terms of the
original parameters and fields of the model. We solve the
model using standard mean-field techniques. In the vacu-
um and in nuclear matter, the m. field vanishes; the o.

field, however, remains finite. In the vacuum, the non-
vanishing o field generates a constituent quark mass
Mq = —g ( o )„„;at finite density, the nonvanishing cr

field generates a density-dependent effective constituent
quark mass M" = —g ( o. ) . Using the "equation of
motion" for the 0. field, the quark masses can be written
in terms of the original parameters and fields in the NJL
model:

Mq G(QQ) M* G(gg) (4.5)

One can determine the effective constituent quark mass
by minimizing the energy density, excluding the trivial
solution M*=0. The value of the effective quark mass is
thus given by the following finite-density NJL gap equa-
tion:

~ d4kE
1=4N, N 6

(2~) k +M'E q

F

(2m. ) (k +M" )'
q

(4.6)

where N, and Nf are the number of quark colors and
fIavors in the NJL model, respectively. In the Dirac sea,
we use a sharp cutoff in the Euclidean momentum at
kE =A . Alternative Euclidean cutoff schemes can be in-
corporated by using fd kzf ( kz, A ) in place of f o d kz
in the gap equation, where f (kz, A ) is some other ap-
propriate cutoff function that guarantees convergence of
the integral. Noncovariant three-momentum cutoffs can
also be used. The contribution to the gap equation from
the Fermi sea is cut off at the Fermi momentum kF,
which is related to the "nucleon" density by
p~ =NfkF/377 .

We choose the free parameters of the NJL model, G

where f is a quark field with Dirac, color, and flavor in-
dices suppressed [44]. The Lagrangian can be cast into a
form in which the four-quark couplings are represented
by the exchange of auxiliary o. and n. mesons, which are
nondynamical at tree level [45]:

+NJL l 4r ~d„P+g P(~+ ir' Ir)4 ,'p'—(o—'+rr'»

(4.3)
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and A, to satisfy the conditions of Eqs. (2.13) and (4.1).
In determining the cutoff A, we first consider the low-
density behavior of ( qq ) /( qq )„„as given by Eq.
(2.13). From Eq. (4.5), one can trivially solve for the vac-
uum and in-medium quark condensates,

M, M,*
(qq)„.,=— (4.7}

(qq ), (qq
(4.8)

qq ac ~CD qq ac

From Eq. (4.7},this implies

~qq „„
M*

q

M
(4.9)

Given that the constituent quark mass is one-third of the
nucleon mass [see Eq. (4.1)], the ratio in Eq. (4.9) is con-
sistent with the behavior suggested by QCD sum rules at
finite density [12]. Note, however, that Eq. (4.9) does not
appear to be consistent with the effective-mass scaling
law used in Refs. [8—10] [see Eq. (1.3)]. Combining Eqs.
(2.13) and (4.9), one obtains

Mq* Px=1- + 0 ~ ~ (4.10)

however, the connection between these quark conden-
sates, which are calculated in the NJL model, and the
QCD quark condensates is not clear. The quark conden-
sate of QCD is a scale-dependent quantity, i.e., it is not
renormalization-group invariant. The quark condensate
of the NJL model depends on the cutoff of the model, but
it is not clear how this cutoff is related to a renormaliza-
tion scale in QCD. It seems reasonable to assume, how-
ever, that the ratio of the in-medium condensate to the
vacuum condensate, which is renormalization-group in-
variant, is equivalent to this ratio as predicted by the
NJL model:

A d4kE
p =8NM

o (2~)' (k'+M')' (4.12)

and from this, along with Eq. (4.1), one can readily deter-
mine the cutoff A. With A and M known, it is a simple
matter to extract the coupling constant G from the gap
equation. Values of the free parameters are shown in
Table III for selected values of the 0. term.

Given the free parameters, we now consider finite-
density matter. The value of the effective quark mass at
finite density is given by the gap equation [Eq. (4.6)]. In
Fig. 1, we plot (qq) /(qq)„„=M'/M vs the "nu-

cleon" density for selected values of the cr term. We see
that the deviation from linearity is fairly small. In Table
IV, we give numerical values for the in-medium conden-
sate at nuclear matter saturation density. With a cr term
less than 45 Me V, the corrections to the model-
independent prediction are fairly small: The in-medium
condensate predicted by the NJL model is less than 6%
smaller than the model-independent prediction at satura-
tion density. With a large 0. term of 60 MeV, the effects
of interactions are enhanced —here the NJL model pre-
dicts an in-medium condensate that is 21% smaller than
the model-independent prediction. Preliminary calcula-
tions indicate that the deviation of the NJL condensate
from the model-independent condensate is significantly
reduced if finite quark masses are included in the NJL
Lagrangian. Unfortunately, the connection between the
quark mass in the NJL model and the scale-dependent
current quark mass in QCD is not clear.

It is useful to calculate the in-medium quark conden-
sate from a chiral model other than the NJL model to
test the model dependence of the NJL results. The GML
model describes physics in a manner similar to that of the
NJL model; however, the effective potentials of these
models can differ radically —the NJL model is nonrenor-
malizable and hence uses a momentum cutoff in the
effective potential. The GML model, in contrast, is re-
normalizable, and the effective potential therefore in-
cludes counterterm subtractions to yield a finite result.
The GML Lagrangian is

where denotes terms of higher order in p&. Taking
the derivative of Eq. (4.10).with respect to p~ and
evaluating this derivative in the vacuum yields the fol-
lowing exact result:

+GML t 4Y a 0+g4(rr+& 7' 'r''rr)Q

(4.13)

1 dM*

q dP~ vac

(4.11)

where g, o', and n. denote fields for the quark and rr and
ir mesons [46]. The tree-level potential is

By diff'erentiating both sides of the gap equation [Eq.
(4.6}] with respect to pz, one can easily solve for
(dM~'/d p~ )„„.One thus obtains the relation

m
U(o, ~)= (tr'+~' —f' P8f2 1r (4.14)

~here f =93 MeV is the usual pion-decay constant. ~e

TABLE III. NJL free parameters for selected values of o N.

TABLE IV. Quark-model predictions of ( qq ) /( qq }„pN

nuclear matter saturation density for selected values of crN.

oN (MeV) G (10 ' MeV 2) A (MeV) a (MeV) NJL GML

30
45
60

0.601
1.425
2.417

1166
814
662

30
45
60

0.753
0.598
0.405

0.757
0.626
0.501
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(4.15)

In the expression for M, we have used the fact that
(cr)„„= f in—the GML model. At the one-quark-
loop level, the effective potential is given by

X,Xf
U eft'

M 42

M ln
q

—M~(M+~ —M2)

solve the model using standard mean-field techniques. As
in the NJL model, the m. field vanishes in the vacuum and
in nuclear rnatter, and the o. field remains finite. The
nonvanishing o. field again generates the constituent
quark mass and the density-dependent efFective constitu-
ent quark mass,

M = —g(o )„„=gf, M*= —g(0 )

T

E,Sf M'
M~ ln —(M~2 —M )

4~2
q

kF d'k+2XN =0,
(2n ) (k +M" )'

(4.17)

The effective potential is renormalized in the vacuum so
as to preserve chiral symmetry and fix the values of f„
and I [47]. One can determine the effective constituent
quark mass by minimizing the energy density, excluding
the trivial solution M*=0. This yields the GML analog
of the NJL gap equation,

2 2

(M* —M )
2M4

q

——(M —M )
42 2 2

q q
(4.16) where N, and Nf are the number of quark colors and

flavors in the GML model, respectively. The contribu-

1.0 1.0

0.8 0.8

IU' 0.6—
V

Q
0.4—

U'
IU'
V

0.2—

0.6
V

X
Q

0.4
V'

I Q'
V

0.2—

0.5

PN /PN

I

1.0

1.0

1.5
I

0.5

PN /PN

)

1.0 1.5

0.8

0.6U'

V

0.4
U
IU'
V

0.2

'R.o 0.5

PN /PN

1.0 1.5

FIG. 1. In-medium quark condensate vs the nucleon density for (a) o.N=30 MeV, (b) o.&=45 MeV, and (c) o.&=60 MeV. The
solid lines are for the NJL calculation, the dashed lines are for the GML calculation, the dot-dashed lines are for the ~-N calculation,

and the dotted lines are for the extrapolation of the model-independent result.
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The value of m, on the other hand, is determined by the
constraint of Eq. (2.13). Since the mechanism for gen-
erating the constituent quark mass is essentially the same
in the NJL and GML models, we assume [as in Eq. (4.9)]

&qq &

vac QCD

M*

M
(4.19)

where M and M* are now the constituent quark masses
generated in the GML model. This behavior is also con-
sistent with the partial conservation of axial current
(PCAC) relation,

2mqq=m f o. (4.20)

Motivated by these considerations, we rewrite Eq. (2.13)
as

M* p~=1- + ~ ~ ~

M.
(4.21)

where denotes terms of higher order in pz. We
proceed as with the NJL model. Taking the derivative of
Eq. (4.21} with respect to pz and evaluating this deriva-
tive in the vacuum yields the following exact result:

tion to the "gap" equation from the Fermi sea is cut off at
the Fermi momentum kF, which is again related to the
"nucleon" density by p~ =Nf kF /3~ .

As with the NJL model, we choose the free parameters
of the GML model, g and m, to satisfy the conditions of
Eqs. (2.13) and (4.1). From Eqs. (4.1} and (4.15), we ob-
tain the value of the coupling constant

M
(4.18)

(qq & =&qq &„„+—1 (5.1)

where 8 is the energy density. By using the chain rule,
the derivative can be reexpressed so that the in-medium
condensate is

Thus the NJL and GML models give similar results,
which indicates that the in-medium quark condensate, as
predicted by a chiral quark model, is not very sensitive to
the detailed form of the effective potential. In addition,
the NJL and GML models suggest that the deviation of
the condensate from the model-independent prediction of
Eq. (2.13) is small ( —10%) up to nuclear matter satura-
tion density.

V. IN-MEDIUM QUARK CONDENSATE:
HADRONIC-MODEL CALCULATIONS

While the quark models considered in Sec. IV include
the physics of chiral symmetry breaking —physics that is
essential to the concept of a quark condensate —they do
not account for the tendency of quarks to cluster into nu-

cleons. Thus the NJL and GML models may give
misleading results. Therefore, in this section, we consider
the in-medium quark condensate using models with ha-
dronic degrees of freedom. We first estimate the in-
medium condensate using a nonrelativistic model of nu-
clear matter with pion and nucleon degrees of freedom.
We calculate the effects of m.-N interactions from the pion
Fock term; this is equivalent to the Pauli-blocking
correction of Ref. [13]. We briefly discuss the effects of
correlations on the result. We also estimate the in-
medium quark condensate with quantum hadrodynamics.

One obtains the in-medium quark condensate from the
Hellmann-Feynman theorem by calculating the energy
density of nuclear matter. From Eq. (2.7), the in-medium
condensate is

dM*

q ps viz

1

pk
(4.22)

dM~ (jg dm

mq m~ mq

By differentiating both sides of the "gap" equation [Eq.
(4.17}] with respect to p~, one can easily solve for
(dM~'/dp~ )„„.One thus obtains the relation

m f
(4.23)

c q

and from this, along with Eq. (4.1), one can readily deter-
mine the mass of the o meson: m =m (/MN/o~

Given the free parameters, we now consider finite-
density matter. The effective quark mass is given by the
"gap" equation [Eq. (4.17)]. In Fig. 1, we plot
(qq)~ /(qq)„„=M'/M vs the "nucleon" density for

selected values of the o. term. The deviation of the quark
condensate from linearity is even smaller than seen with
the NJL model. In Table IV, we give numerical values of
the in-medium quark condensate at nuclear matter satu-
ration density. The GML results are extremely close to
the model-independent results of Sec. II. Even with a o.
term of 60 MeV, the in-medium quark condensate pre-
dicted by the GML model is less than 3%%uo smaller than
the model-independent prediction at saturation density.

aC dg.
Bg~ dms

(5.2)

dm~dM~ 0.~
dm m

'
dm 2mq

(5.3)

where the derivative of the pion mass is valid to leading
order in chiral perturbation theory. We neglect all other
derivatives; therefore, we obtain

&qq &,

&qq)„„
a@ a@ m.+

p$ BMN Bm 2
(5.4)

where denotes contributions from other hadron
masses, coupling constants, etc. In general, one does not
know the quark-mass derivatives in Eq. (5.2). In the case
of the nucleon and pion masses, however, the derivatives
can be obtained by applying the Hellmann-Feynman
theorem and the Gell-Mann —Oakes —tenner
relation. From Eqs. (2.11) and (2.15), these derivatives
are
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We now consider a simple nonrelativistic model of nu-
clear matter in which uncorrelated nucleons interact
through one-pion exchange. The energy density is

[13]. Expanding in powers of the Fermi momentum kF,
assuming kF )&m due to the approximate chiral sym-
metry of QCD, one finds that

f M~+
o (2' ) 2M&

+Fock (5.5)

&qq &„„

&qq &,"=1— +
PN

2 4

+0(p~i') . (5.11)
32rr f~

where y=4 is the spin-isospin degeneracy and @F„k is
the pion Fock (exchange) energy. Note that the Hartree
(direct) energy vanishes for the pion. The Fock energy
can be calculated by standard many-body techniques
[48,49]. I3y performing a nonrelativistic reduction on the
relativistic rr Nint-eraction Lagrangian (with pseudosca-
lar or pseudovector coupling), one obtains the following
nonrelativistic interaction Lagrangian:

(5.6)

X G (k')b, lk —k'), (5.7)

where G(k) and b(k) are the noninteracting nucleon and
pion propagators. We neglect correlations, therefore, we

do not iterate the self-energy in Dyson's equation. From
the self-energy, one can deduce the Fock energy; after
performing a vacuum subtraction, one obtains

2
kF d k (k —k )

(2n. ) o (2n) (k —k') +m„Fock
N

(5.8)

Consistent with the nonrelativistic limit, we have neglect-
ed recoil, which introduces terms that are of higher order
in 1/MN. The Fermi momentum kF is related to the nu-

cleon density by the usual relation, pN =2kF /3n .
Combining Eqs. (5.5) and (5.8) and inserting the result

into Eq. (5.4), one obtains the in-medium quark conden-
sate, which, for this simple model, is given by

&qq &,

&qq &„„
PN 3 kF=1— 1—

10 M~

3 2 3 2

p%Mx 2f~

2

(5.9)

We have introduced the integrals

"F d k "F d k' (k —k')
I„—=

(2n. ) o (2m. ) [(k—k') +m ]"

It is instructive, although somewhat misleading (see
below), to consider the density dependence of this result

where g„=13.5 is the ~NN coupling constant, X and m,
are nonrelativistic Geld operators for the nucleon and
pion, and i and a are spatial and isospin indices. Using
this interaction Lagrangian, the one-pion-exchange con-
tribution to the nucleon self-energy can be determined
through the application of standard Feynman-rule tech-
niques, resulting in

d4k'

2M~ (2m)4

TABLE V. Hadronic-model predictions of (qq )~ /(qq )„.,~N

at nuclear matter saturation density for selected values of o &.

o ~ (MeV)

30
45
60

0.807
0.694
0.580

QHD

0.761
0.642
0.523

Thus the contribution to the in-medium condensate from
the pion Fock term, which is 0 (pN ), is the next term in

the density expansion following the model-independent
result. The contribution from the nucleon kinetic energy
is 0 (p~ ). Other contributions are of higher order in the
nucleon density.

We show the in-medium condensate versus the nucleon
density in Fig. 1 for selected values of the 0. term. Note
that the sign of the deviation is the opposite of that ob-
served with the NJL and GML models. However, as
with the NJL and GML calculations, the pion Fock term
contribution leads to small deviations from the linear pre-
diction for the in-medium quark condensate. In Table V,
we give numerical values for the in-medium condensate
at saturation density. For the range of the cr term under
consideration, we find that the in-medium condensate
predicted by this simple pion Fock term calculation is
6—13%%uo larger than the model-independent prediction at
saturation density. Thus, in this approximation, the
efT'ects of the N-N interactions and kinetic-energy contri-
butions are fairly modest. We have also considered rela-
tivistic corrections, which are numerically small.

In the preceding discussion, we have neglected
dg„/dm, which makes even this simple calculation am-

biguous. Note, for example, that we might have chosen
to neglect the derivative of the pseudovector coupling
constant g /2MN instead. In this case, the I, term in

Eq. (5.9) would be absent, which would slightly reduce
the deviation from the model-independent result.

In any event, the simple pion Fock term calculation is

clearly not a complete treatment of nuclear matter. A
fundamental weakness of this calculation is the lack of
tensor correlations, which, in the conventional nonrela-
tivistic picture, are essential to the physics of saturation.
Moreover, the fact that the pion Fock term contribution
to the quark condensate is 0(p~~ ) is an artifact of the

overly simple choice of the nuclear wave function. At the
Fock level, the maximum momentum carried by a pion is

2kF. Iterations of the potential, however, lead to a non-

trivial fraction of the wave function at larger momenta,
and thus kF does not necessarily fix the density depen-

dence of the pionic contributions in a simple fashion.
What can be learned about the in-medium quark con-

densate from more complete treatments of nuclear
matter? The pion Fock term calculation can be refined
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by considering a more realistic treatment of N-N interac-
tions. Using a model of nuclear matter based on N-N po-
tentials, one can calculate the change in the energy densi-
ty due to a change in the pion mass. One can estimate
this effect using a correlated nuclear wave function based
on the Bethe-Goldstone equation. Such calculations for
finite nuclei have been done by Banerjee [50]. He finds
fairly modest results: the pionic effects lead to an in-
medium condensate that is larger than the model-
independent prediction by a few percent. These results
are consistent with those of the pion Fock term calcula-
tion discussed above.

It is worth noting, however, that even the most realis-
tic treatment of nuclear matter does not automatically
lead to a complete treatment of the condensate. As dis-
cussed above, one must calculate the quark-mass deriva-
tive of the nuclear-rnatter energy density to determine the
in-medium condensate. We have estimated this deriva-
tive by using a truncated chain rule that only accounts
for the quark-mass derivatives of the nucleon and pion
masses. There are many other contributions to the
quark-mass derivative, including those from other hadron
masses, coupling constants, and form factors. State-of-
the-art calculations determine nuclear-rnatter properties
such as the energy density with models based on realistic
N-N potentials. These potentials are extracted from
two-body scattering in the physical world, with the quark
masses fixed at their physical values. It is not clear how
these potentials would change if the current quark masses
were changed; unless this is known, the full quark-mass
derivative of the energy density cannot be reliably calcu-
lated. Thus it is difficult to predict the in-medium quark
condensate using a realistic treatment of nuclear matter.

The conventional nonrelativistic treatment is not the
only theoretical approach to nuclear matter. During the
past decade, a relativistic field-theoretic description of
nuclear matter based on nucleon, O.-meson, and co-meson
degrees of freedom has received considerable attention.
This approach is known as quantum hadrodynamics
(QHD). When solved at the mean-field level, QHD has
been successful in explaining a wide range of nuclear phe-
nomena [49]. The mean-field saturation mechanism in
QHD is based on the interplay of Lorentz-scalar attrac-
tion and vector repulsion, and is characteristically
different from the mechanism in the conventional nonre-
lativistic picture. Thus it is of particular interest to use
this model to estimate the interaction effects on the in-
medium condensate. The Lagrangian for this model is

about how the QHD parameters vary to gain intuition
about the problem. For example, we might expect that
the dependence of the o.- and e-meson masses on the
current quark masses resembles that of the nucleon (rath-
er than that of the pion, since the pion is an approximate
Goldstone boson). To explore this possibility, we adopt
the following ansatz, which is motivated by Eq. (5.3):

dm ON dm

dm mq dmq mq
Xg & XQ) (5.13)

These derivatives depend on the parameters y and y;
constituent quark models suggest the values

m m~

M ' MN N
(5.14)

We will neglect any variation of the coupling constants
with the current quark masses in this simple exploration.

Applying Eq. (5.2) to QHD, and using the expressions
for the derivatives in Eqs. (5.3) and (5.13), one obtains the
in-medium quark condensate:

qq)

(qq )„„
ae ae a~

p$ BM~ Bm Bm

The mean-field energy density is [49]

g —
y f (k2+Me2)1/2

'~ d'k
(2~)'

2 2

2g 2m„

(5.15)

(5.16)

where we have defined the effective nucleon mass,
MN=MN —g 0.. The effective mass is determined by
minimizing the energy density, which establishes a self-
consistency relation:

(qq)„„
m

2 (MN —M~)
p

+y (M~ —M~ )

m' o (2~)' (k'+M")' '
The necessary derivatives can now be computed, which
yields

—'8 o.B"u——'m2 o.~ ——'
2 P 2 o' 4 pv

2 2
g coPN

XQ)
m

(5.18)

(5.12)

where P, cr, and co are the fields for the nucleon, o meson,
and co meson.

It is dificult to predict how the parameters of an
effective hadronic model should vary as the quark masses
of the underlying theory (QCD) are changed without un-
derstanding how the effective model is related to QCD.
It is useful, however, to make plausible assumptions

We take m =550 MeV and m„=783 MeV. Assum-
ing that nuclear matter saturates at a density of (110
MeV) and a binding energy of 16 MeV per nucleon, the
coupling constants and effective nucleon mass are
g =10.20, g„=12.55, and MN=514 MeV. In Table V,
we show the in-medium condensate at saturation density
obtained using Eq. (5.18), with y and g given by Eq.
(5.14). The contributions from the cr and co mesons can-
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cel to a large degree —the in-medium condensate predict-
ed by QHD is only about 1% larger than the model-
independent prediction at saturation density. This can-
cellation is fairly insensitive to the exact choice of g and

y . For example, with a 45-MeV o. term, changing both
and y from the estimates in Eq. (5.14) by 30% in op-

posite directions leads to a 13% change in the conden-
sate. Thus, based on the assumptions in Eqs. (5.13) and

(5.14), the net effect of the cr and co mesons is fairly small.
Note that the large cancellation of the cr- and co-meson

contributions to the in-medium condensate is a conse-
quence of the built-in cancellation of these contributions
to the energy density. We remind the reader that these
assumptions are unsubstantiated, and also that contribu-
tions due to variations of the coupling constants could, in

principle, be large.
In this section, we have used the Hellmann-Feynman

theorem to relate the in-medium quark condensate to the

energy density of nuclear matter using models with ha-

dronic degrees of freedom. We have considered both
nonrelativistic and relativistic examples. In practice, this
approach is limited because it requires knowledge of how
all model parameters (masses, couplings, etc.) change as
the current quark masses change. While we can reliably
predict the quark-mass dependence of some parameters
(M~ and m ), the behavior of the other parameters is un-

certain. Nevertheless, given plausible assumptions, we

find no examples indicating large deviations from the
linear model-independent prediction for the in-medium

quark condensate at nuclear matter saturation density.

VI. SUMMARY

In this paper, we have studied the in-medium quark
and gluon condensates, (qq )z and ((a, /m)G„', 6'"').

~
.

pN S
J

V ppf

First, we have used the Hellmann-Feynman theorem to
derive expressions for the condensates in nuclear matter
that are model independent to first order in the nucleon

density. It is interesting to extrapolate these low-density

results to nuclear matter saturation density. The shift in

the quark condensate, which depends on the value of the
cr term, is large —the condensate is roughly 25 —50%
smaller than its vacuum value. The shift in the gluon

condensate is estimated from the trace anomaly. At satu-

ration density, the gluon condensate is roughly 3—6%
smaller than its vacuum value. This range is largely due

to the uncertainty in the strangeness content of the nu-

cleon.
For the quark condensate, we have estimated the scale

of the deviations from the linear model-independent rela-
tion by studying a variety of simple models. In particu-
lar, we have considered quark-based Nambu —Jona-
Lasinio and Gell-Mann —Levy models at the mean-field

level as well as models with hadronic degrees of freedom.
It is possible that none of these models is sophisticated
enough to give definitive predictions for the deviation.

Moreover, these models do not agree among
themselves —even the sign of the deviation differs from

model to model. However, we observe that models based
on very different physical assumptions all seem to indi-
cate that the deviation from the linear model-independent
prediction is small ( —10%) up to saturation density.
This suggests that the model-independent relation may be
sufficient for studying ordinary nuclear phenomena.

Although these results are encouraging, ultimately we

would hope to be able to extract the in-medium quark
condensate without relying on simple models. Improving
the models or the approximations used in Secs. IV and V

is unhelpful in the absence of a detailed understanding of
how the models relate to QCD. For example, applying
the Hellmann-Feynman theorem to even the most sophis-

ticated nuclear matter calculation is not conclusive unless

one knows how all of the model parameters depend on

the current quark masses [see Eq. (5.2)]. One possible al-

ternative is a direct lattice calculation of the in-medium

condensate; however, finite-density calculations are not

available at present and are unlikely to be available in the

foreseeable future. Another possible way to obtain infor-

mation about the in-medium quark condensate is through
the study of pionic atoms [51].

What do our results imply about nuclear phenomenol-

ogy? As discussed in the Introduction, the in-medium

quark condensate is an input to a large number of calcu-

lations that describe a variety of nuclear phenomena

[5—10,12,13]. It is clear that the change in the quark

condensate is large and therefore should play an impor-

tant role in describing hadrons in nuclei. However, the
in-medium quark condensate alone does not capture a11

of the physics associated with hadrons in the nuclear

medium. For example, at finite density, the "vector

quark condensate" (q q ) (which vanishes in the vacu-
pN

um) can enter at the same level as the scalar quark con-

densate; nevertheless, ( q q ) is often neglected. The

importance of the vector quark condensate can be seen

explicitly in QCD sum-rule calculations at finite density.

The change in the quark condensate gives rise to a large

attractive scalar self-energy for nucleons; on the other

hand, the vector quark condensate implies a large repul-

sive vector self-energy [12]. The net effect is that the

quasinucleon energy is only slightly charged from its

free-space value, as expected from nuclear phenomenolo-

gy. Finally, we observe that the density dependence of
higher-dimensional condensates is also relevant and

should be studied.
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