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We study several aspects of a two-color delta model of interacting quarks, with the purpose of extract-
ing information of relevance to real quark models of nuclei. We first describe a BCS treatment of the
quark pair correlations that arise in the model at low densities and demonstrate that the rms radius of
the dominant correlated pairs increases in the presence of the medium. We then consider the applica-
tion of a Dyson boson mapping to the model and show that it incorporates, at the level of the Hartree-
Bose approximation, the pair clustering dynamics of quark BCS. However, the collective bosons that
emerge do not have the same structure as the correlated BCS pairs. The mapping also leads to a short-
range repulsive interaction between the collective bosons, which we derive in both momentum and coor-
dinate space. The additional correlations that result from this repulsive boson interaction can in princi-
ple be incorporated through a Brueckner treatment of the mapped boson Hamiltonian.

PACS number(s): 21.60.Gx, 21.30.+y, 13.75.Cs, 12.40.Aa

I. INTRODUCTION

It is generally accepted that the strong interaction is
responsible both for the clustering of quarks into nu-
cleons and for the interactions between nucleons that
lead to nuclear structure. The traditional philosophy of
nuclear physics has been to view these two problems as
decoupled. However, recent experiments [1] by the Euro-
pean Muon Collaboration (EMC) suggest that, at some
level, such a simple picture may not be adequate. These
experiments indicate that the structure of a nucleon in a
nuclear medium is different from the structure of a nu-
cleon in free space, suggesting that the interactions that
build up the nucleon do not fully decouple from the in-
teractions between nucleons. As a consequence, there is
now great interest in trying to develop methods for deriv-
ing the properties of nuclei directly from the quark and
gluon constituents of the nucleon, thereby avoiding the
decoupling assumption. Such methods, once developed,
would also provide a practical means of identifying where
to look for explicit quark effects in nuclei.

Ideally, one would like to start from QCD which is
generally believed to be the correct theory of the strong
interaction. However, to date, little progress has been
made along these lines. Where some progress has been
made is in the use of constituent quark models, in which
the antiquark and gluon degrees of freedom are
suppressed. Such models have been used with impressive
success to describe one- and two-baryon systems [2], but
they have not yet been implemented for many-nucleon
systems. Recently, a method was proposed [3] for treat-
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ing multinucleon systems in a constituent quark frame-
work using mapping techniques, but so far the method
has only been tested in the context of a simple and not
particularly realistic quark model of nuclei [4]. In partic-
ular, the model used to test the method does not produce
spatially localized nucleons [5].

An important criterion of a realistic quark model of
nuclei is that, at normal nuclear densities, it confines
quarks in spatially localized three-quark clusters without
yielding residual long-range forces between clusters.
There have been several models [6—-8] of interacting
quarks that have been proposed and studied that satisfy
this criterion.

In the present work, we focus on one such model [7,8],
due to Koltun and collaborators, in which quarks (with
color) move in one dimension (1D) and interact through a
residual attractive delta-function potential. Despite the
fact that nuclei live in a three-dimensional world, this
model can, nevertheless, give important insight into how
quarks cluster into nucleons within a nuclear environ-
ment. This model has, in fact, been developed both for
quarks with three colors (as is clearly relevant for both
hadronic physics and nuclear physics) and for quarks
with only two colors. Both versions of the model share
the following attractive features: (i) in the limit of infinite
nuclear (or quark) matter, they can be solved exactly for
the ground-state energy per particle using the Bethe an-
satz, (ii) in the limit of very low density, they lead to spa-
tially localized clusters of quarks (either pairs or triplets
depending on the version) moving freely, and (iii) in the
limit of very high density, they lead to a free quark gas.
We will focus in this work on the two-color version of the
model, since it is more directly amenable to many-body
variational treatments while still providing many of the
important features that would emerge from the more
realistic three-color model.
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To date, the best approximate treatment of the two-
color delta model has been based on the BCS approxima-
tion [9]. As emphasized by Tosa [8], the BCS equations
of this model have a simple scaling property that permits
a systematic solution of the BCS equations in powers of
the density. Such an expansion is of particular interest in
the low-density regime characteristic of real nuclei (or
even real nuclear matter). From this analysis, it is clear
that the BCS approximation, though a good starting
point, does not include all of the relevant dynamics of the
model. In particular, it does not incorporate the effects
of the strong short-range repulsion between correlated
BCS pairs that arises due to the quark Pauli principle.
What is needed, therefore, is a method for going beyond
mean field in a description of such systems.

We will consider in this paper the use of boson map-
ping techniques [10] to treat the low-density quark dy-
namics of this model. We will first consider the use of bo-
son mappings coupled with a Hartree-Bose approxima-
tion and show that this leads to precisely the same phys-
ics as the earlier BCS approximation.

The Hartree approximation for bosons describes the
ground state as a condensate of collective bosons in the
lowest available boson state. Clearly, the lowest single-
boson state involves momentum K =0. To improve on
this description, it is necessary to include the excitation
of bosons to states with K0. Such excitations will in-
crease the kinetic energy of the system but at the same
time will reduce the effect of the strong Pauli repulsion
between bosons. The competition between these two
effects dictates the dynamics of the system. The boson
mapping method readily yields the interaction between
all possible bosons, including those with the same inter-
nal structure as the collective K =0 boson but boosted in
momentum. We will derive the form of the collective bo-
son Hamiltonian both in momentum space and in coordi-
nate space. The boson-boson interaction that emerges
contains a strong short-range repulsion, reflecting the
effect of the Pauli principle at the underlying quark level.
An improved treatment of the dynamics of the collective
bosons (beyond that of Hartree Bose or equivalently
quark BCS) will thus require the development of methods
akin to Brueckner theory [11], which is beyond the scope
of the present work.

The structure of the paper is as follows: In Sec. II, we
briefly review the two-color delta model and in Sec. III
describe the BCS treatment of it carried out by Tosa. We
also include a treatment of the structure of the correlated
pairs that emerge from BCS as a function of the density
of the system. In Sec. IV, we describe the application of
boson mapping techniques to this model and demonstrate
the equivalence of a variational Hartree treatment of col-
lective bosons to the quark BCS treatment. Finally, in
Sec. V, we obtain the collective boson Hamiltonian both
in momentum space and in coordinate space and in Sec.
VI make some concluding remarks.

II. BRIEF REVIEW
OF THE TWO-COLOR DELTA MODEL

In this model, a system of N nonrelativistic quarks
with color ¢ (which is allowed to take the two possible
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values =) move in a one-dimensional box of size L sub-
Ject to an attractive delta-function interaction. Letting
ch (gx.) denote the creation (annihilation) operator for a
quark with momentum k and color ¢, we can express the
model Hamiltonian as

_ + G +
H=3% equchc_z > qil.‘qj~cqlfch08i+j,k +1 (1
ke ijkl,c
where €, =k?/2m and m is the mass of the quark.
As noted by Tosa [8], we can go to the limit of an
infinite box (N — o0, L — 0, p=N /L finite) by replacing

L
%—»Efdk,

2r
by —— 8=, @)

G—-g/L .

An attractive feature of the infinite matter limit is that
much of the relevant analysis can be carried out analyti-
cally.

III. BCS TREATMENT OF THE MODEL

For a Hamiltonian of the form (1), we expect strong
correlations between pairs of quarks in a colorless state.
A natural framework in which to describe such a correla-
tion structure is the BCS approximation. The basic idea
is to search for the optimum description of the system as
a vacuum of quasiparticles. Introducing the quasiparticle
transformation

ay=uqh gy , 3)
we obtain, for the expectation value of the Hamiltonian
(1) in the BCS quasiparticle vacuum,

(BCS|H|BCS) =23 €, 07 — G (upv v +oivi) .
K ki
(4)

Furthermore, the average number of particles in the
quasiparticle vacuum is

(BCS|N|BCS)=23 v? . (5)
k
The BCS approx1matlon involves mlmmlzmﬁ
(BCS|H —AN|BCS) (A is the chemical potential and

is the number operator) subject to a constraint that
(BCS|N|BCS)=N. This results in the well-known sys-
tem of equations

(57

=— ———————— | (number equation) ,
P 21:’ (@ + A% !
. (6)
‘_—E m (gap equation) ,
where €, =€, —A—GN/2, A=G3 u, vy, and

p=(2/L)3 v} is the density of the system.
Since the system of equations (6) scales [8] with p/mg,
we introduce an expansion
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vi=bptep’+ o, -
up=1=bp—ep’+ -+,

where (in the infinite matter limit) the density p is given
by

1 +
p=;f_ao v2dk

1 + oo +
=;[f_wbkdkp+f_wckdkp2+~-- .®

From (8), we see that the expansion coefficients b, and c;
must satisfy

[ bdk=m, [ e dk=0. 9)

We also introduce density expansions for the pairing gap
A and the chemical potential A:

A’=Alp+A%p?+ -,
A=RotAp+ - .

(10

Inserting (7)-(10) into the number and gap equations
(6) and equating powers of p leads to the following re-
sults:

m3g3
b= ,
ko 4(k2+m2g2/4)
o= 3m4g4 . 3m2g2
Mk 4+ m2%g2 /4 8(k +migl/a)
_ 3m6g6
16(k2+m?g?/4)* ’
2
m
}\0__ g >
M=5 (11)
3
2 mg
A==
3 2
aj=—=%

As is well known, the BCS quasiparticle vacuum can be
expressed as

IBCS)=c exp(T'1)|0) , (12)
where
v
Iﬁ:z ichqT—k~c (13)
ke Uk

is the correlated pair that dominates in the description of
the ground state of the system. Denoting W(k)=v, /u,
and expanding

V(k)=V(k)+¥ik)p+ - , (14)

we obtain

0, =
Yo(k) Ve
. (15)
1 kT Ck
Yik)=—= ——
(k) AL Vb,

Next we consider the structure of the dominant corre-
lated pairs in coordinate space. Carrying out a Fourier
transformation of W(k) [(14) and (15)], we obtain

W(x)=¥x)+Wix)p+ -, (16)
where
\I/O(x)=“1/2e —ulx| s
(17)
3 1,

1 —,, 172, —ulx| __+2 2
Yix)=pu!"% » 4|x| x|

and

pn=mg/2 .

The correlated-pair wave function [(16) and (17)] is
only normalized at p=0. Its norm to first order in p is
given by

3
4

Finally, we can evaluate the rms radius of the dom-
inant correlated pair as a function of density (still assum-
ing that the density is low enough that it suffices to con-
sider the linear correction to the collective wave func-
tion). The resulting expression is

n(p)zf_+:‘ll*(x)‘ll(x)dx=l+ 0. (18)

(xz>1/2=‘/_E
mg

14+ -

amg | (19)

We see from (19) that the presence of the medium in-
creases the rms radius of the dominant correlated pair.
This occurs even though, as we will show in Sec. V, the
residual interaction between correlated pairs is repulsive.
The rms radius only gives the average size of the corre-
lated diquark pair. In Fig. 1, we plot the density distribu-
tion W*(x)W(x)/ [ W*(x)W(x)dx of the correlated pair
for mg =20 and for p=0 and 2. From this figure, we see
that there are several effects of the finite density medium
on the structure of the correlated pair: (i) the wave func-
tion decreases very slightly in the region from roughly
x =0 to 0.04; (ii) it then increases in the region from
roughly x =0.04 to 0.25; (iii) beyond x =0.25, there is in-
itially a decrease in the wave function and then the ap-
pearance of additional nodes at large values of x. The ad-
ditional nodes that show up are a reflection of partial
deconfinement of the correlated pairs due to the medium;
however, they have no influence on the rms radius of the
correlated pair since they are so small in magnitude. In
Fig. 2, we show a blowup of Fig. 1 in the important re-
gion from x =0 to 0.4. The net increase in the rms radius
can be traced to the fairly small rise that occurs in the
window from x =0.04 to 0.25, which dominates over the
decreases that occur for other x values. We conclude
that the overall change in the size of the correlated BCS
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FIG. 1. The density distribution ¥*(x)¥(x)/ f W*(x)W(x)dx of correlated pairs that arise in a BCS treatment of the two-color
delta model. Results are shown for mg =20 and for p=0 (solid curve) and p=2 (dashed curve).
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FIG. 2. A blowup of Fig. 1, focusing on the region of x values from x =0 to 0.4.
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pair, as measured by its rms radius, involves a subtle
competition between several different effects.

IV. DYSON BOSON MAPPING APPLIED
TO THE MODEL

The BCS approximation incorporates the pairing
correlations between quarks and includes the effects of
the medium on these correlations. However, this is not
the whole story. The exact Bethe ansatz results suggest
that there is a residual short-range repulsion between the
BCS pairs that arises from the Pauli principle at the
quark level. Indeed, Pauli repulsion between composite
objects built up out of fermions is quite common in phys-
ics; the interaction between hydrogen atoms in a hydro-
gen molecule is perhaps the best known example. The
mean-field BCS approximation is unable to accommodate
these further correlations. Clearly, what is needed is a
scheme that, on the one hand, reduces to BCS while, on
the other hand, permits additional correlations beyond
mean field to be incorporated. In this section, we suggest
that boson mapping techniques are naturally suited for
this purpose. As mentioned in the Introduction, map-
ping techniques were recently proposed as a general
framework in which to describe colorless three-quark
clustering in real 3D nuclei.

We will consider the use of the Dyson boson mapping
[10], which has the attractive feature that it maps finite
quark Hamiltonians onto finite boson Hamiltonians. On
the other hand, it leads to non-Hermitian boson Hamil-
tonians; we will see, however, that this is not a major
complication.

A. Boson mapping of the Hamiltonian

The Dyson boson mapping is based on the requirement
that the commutation algebra of operators in the original
quark space should be preserved. Introducmg the boson
creation and annihilation operators Bc,c ; and B,
(c#c¢') which take the place of the quark pair operators
9:9.; and g.q.;, respectively, one can show that the
commutation algebra is exactly preserved if operators are
mapped according to

qc:'ch'j cxc ‘j -—E chc chT'jcch'kcl ’ (20)
qci9c'j _’BCJa' ’ (21)
and
qgiqc’j-’acc'z Bcz'c’chjc’k . (22)
k

Applying the Dyson mapping (20)-(22) to the Hamil-
tonian (1) leads to the following boson Hamiltonian:

Hp=3¢; Bc:—cj ci—cj ZBC"CJ C’»*018i+1""+'
ije uklc

L 2 Bct—cm —cjan—cmanck—c18i+j,k+1 .

ijklmnc

(23)

1875

Note that it contains only one- and two-boson terms and
is inherently non-Hermitian.

It is useful to transform to a representation involving
bosons with definite color. In this representation, only
colorless (C =0) bosons contribute. We denote the color-
less boson creation and annihilation operators by y;'j and
vij» respectively. They are related to the earlier color-
uncoupled operators by

7?'} =3 (% —c|OO)Bc,
c

—j s
(24)
=3 (tei—cl00)B,_,; ,
[
and satisfy the commutation relation
(75 Y 1= 808+ 8.8 - (25)

The Hamiltonian expressed in terms of these colorless bo-
son operators takes the form

27’1}7/(1 i+jk+1

HBzzei‘yZiYij
ij Uk

+% 2 Yj‘m'}/}‘n'}’mn‘}/klsiﬁ’j,k-#l . (26)

ijklmn
The structure of the dominant colorless bosons is
governed by the relative motion only. Thus, we next in-
troduce a transformation to relative and total momenta,

K=k +ky, k=L(k —k,). 27)

Denoting the creation and annihilation operators for
colorless bosons with relative momentum k and total
momentum K by I IK and Tk, respectively, we obtain
for the boson Hamiltonian

Hy=H,+Vy , (28)
where
H0=kk2K —zl‘mi f—; kk.——z% TixTex » (29)
and
=8

t
B > Lor—v—kr+K/2,q+k

4L
kk'gKK’

XFT—q/2+k’,K'—-qu'K'FkK . 30)
The operators I‘LK and I satisfy the commutation rela-
tion

yre I‘LK']=5KK’(8kk’+5k—k’) . GD

We now introduce a (nonunitary) collective transfor-
mation [12],

A;K = 2 xfTx .
(32)
Ak = % VET kg -

As noted earlier, the coefficients of the collective trans-
formation depend solely on the relative momentum.
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To guarantee that the transformation is canonical, we
impose the commutation relation

[}\‘pK,A;'K']=8pp'8KK’ ’ (33)

whereby the coefficients of the collective transformation
can be shown to satisfy

S =18,

¢ (34)
2x£.y£=%(5kk'+8k_k') .

p

This can be used to invert the collective transformation,
yielding

+
Cix= ZEJ’IfA;K )
4

(35)
FkK ———22)6/}:)»},1( .
p

The basic idea will be to substitute (35) into (28)—(30)
and then to carry out a nonunitary Hartree-Bose varia-
tional treatment [12]. The lowest (p =1) solution will
then define the collective bosons that dominate in the
ground state of the system. For simplicity of notation,
we replace

"
Ap=lK—’A;< R

A‘p=1K__))\’K ’

x£:1—>xk N
P Sy

The boson Hamiltonian, expressed in terms of the collec-
tive bosons and their structure coefficients, is given by

Hy=H,tVy, (37)
where
4k*+K? 2
Hy=3 EZ—J’kxk_ngkak‘ Akrg . (38)
K |k m kk'

4g
VB_‘E D (2Ver—k—kr+k2Y —qr+ i XXk ]
KK'q |kk'

XA} Ak hghg (39)

B. The Hartree-Bose variational approximation

The Hartree-Bose variational approximation is based
on a boson condensate trial state

|®0) :CXP(VVBA}=O)|O) Py

(Wol =(0lexp(V/'Ngrk_o) ,
where Np=N/2. The trial state does not contain a
definite number of bosons. Thus, as in BCS, we must in-
troduce a constraint that ensures that it has the correct

number on the average. The variational condition is
therefore to minimize

Eo(M)=(Wo|Hg — AN |®y) /{¥,|D,) ,

(40)

subject to the constraint that {(W|Nz|®,)/ (¥, ®,)
=N /2 (one-half the total number of quarks). The energy
functional E (1) is given by

k2 N
Eo()\.)-_-Nz?xkyk _2N}\.2xkyk _gTE kayk.
k k k k'

N2
+E - plxex, - @1)
kk'

To establish contact with quark BCS, we introduce v,
and u, coefficients according to

x,=V1/Nvguy, yk=\/1/_NZ—k. 42)
k
There is still an overall undetermined constant for u,,
which can be fixed by imposing the condition that the bo-
son images of q:,-qcr ; and g.;q.; have the same expectation
values in the trial state [12]. This leads to the following
relation between the x; and y, coefficients:

X =y — Nyix - 43)

Substituting (43) into (42), we find that v, and u, satisfy
the relations

S vi=N, vitul=1, (44)
k

exactly as in BCS.
If we now substitute v, and u, for x; and y, in (41), we
obtain for E(A) the following result:

EoM=3(e, —AM0i— &S upvupvp (45)
k L kk'

which is precisely the BCS expression, except that it does
not contain the Fock term —2GN (= —2gp).

Even though the energy functional (45) does not con-
tain the Fock term of BCS, a minimization of it with
respect to the v, coefficients nevertheless leads precisely
to the gap and number equations (6). Thus, the occupa-
tion amplitudes v? and u? that emerge are identical to
those of BCS.

C. The structure of the collective bosons

In quark BCS, the correlated pairs that dominate the
ground state are defined by (13), and thus their structure
coefficients are given by v, /u;,. In the Hartree-Bose
(HB) approximation, the collective boson is defined by
(32), which for p =1 and K =0 reads

A= xTlo, A= »iTio - (46)
k k

Thus, there are distinct structure coefficients for the
operator that creates the collective boson and the opera-
tor that annihilates it. The operator that annihilates the
collective boson has the same structure as the correlated
BCS pair, namely, v, /u,. However, the operator that
creates the collective boson has structure coefficients
v, u,. Note that this difference reflects the manner in
which quark Pauli effects are transmitted to the collective



45 BOSON MAPPINGS APPLIED TO THE TWO-COLOR DELTA MODEL

1877

Collective Boson Wave Function(s)

FIG. 3. The collective boson wave functions in coordinate space calculated for p=2 and mg =20. The solid curve gives the wave
function W(x) corresponding to the annihilation of a collective boson and the dashed curve the wave function ®(x) corresponding to

the creation of a collective boson.

bosons by the Dyson mapping.

It is interesting to examine this difference in coordinate
space. To do so, we Fourier transform the wave func-
tions associated with the creation and annihilation of a
collective boson. The structure of the collective boson
annihilation operator is, as noted above, identical to that
of the correlated BCS pair, and is thus given by the same
W(x) as in Egs. (16) and (17). The structure of the collec-
tive boson creation operator, on the other hand, is de-
scribed by a relative wave function

O(x)=d%x)+ D (x)p+ - -, 47
where ®°%(x)=W¥%x), as given by (17), and

R

Dl(x)=—y!”? —plx|
(x) n'“exp s |2

(48)

In Fig. 3, we show the wave functions ¥(x) and ®(x),
corresponding to the annihilation and creation of a col-
lective boson, respectively, for p=2 and mg =20. These
results illustrate the effect of the Pauli principle on the
structure of the collective bosons in the presence of a
medium.

The spatial wave functions describing the creation and
annihilation of a collective boson satisfy

[T v e =1, 49)

and thus are binormalized for all p.
Next, we evaluate the rms radius of the collective bo-
son which, because of the condition (49), is given by

© 1/2
Gye= | [T wr et | (50)
The resulting expression through first order in p is
(x2>1/2=ﬁ 1___2& . (51)
mg 8mg

Thus, in contrast to the correlated BCS pair, the rms ra-
dius of the collective HB boson decreases in the presence
of the medium.

V. THE COLLECTIVE BOSON HAMILTONIAN
INCLUDING K #0 BOSONS

In this section, we derive the structure of the collective
boson Hamiltonian that would apply in an extension
beyond mean field where collective bosons with momenta
other than K =0 contribute. Our basic assumption will
be that the collective bosons retain their internal struc-
ture when they are boosted in momentum. We first con-
sider the structure of the collective boson Hamiltonian in
momentum space; this can be obtained directly from the
preceding analysis. We then derive the collective boson
Hamiltonian in coordinate space.

A. The collective boson Hamiltonian
in momentum space

The general form of the collective boson Hamiltonian
was given in (37)-(39). The Hartree-Bose approximation
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yields, for x; and y,, the following expressions:

1

xszbk/L 1+‘£

Ck
by by |p

(52)

— 1
y.=V'b, /L I+ p

>

Ck
—+b
b, X

where b, and ¢, are given in (11). Inserting these results
into (37)-(39) and carrying out the integrations over rela-
tive momenta (k and k') yields the following expression
I

_amtgS  (@PFHAT—qA+12mg?)(1+8,08,08,a)

for the collective boson Hamiltonian:

Hy=Hy,+Vy, (53)
where
2
Hy= |- 7 K2\ pip (54)
e 4 4m
Vp= X f(q’A)Ajrf»KA}(Jrqu)‘KwLAA'K ) (55)
q,AK

and

L  [(g—A)P+4m*g*)(g*+4m?g

Note that the interaction strength depends on A and on g
but not on K.

We have only presented in (53)—(56) those terms in the
collective boson Hamiltonian that contribute through
O(p) to the energy per particle. The terms linear in p in
the collective boson wave functions (52) also give rise to a
density-dependent contribution to the two-boson interac-
tion, which would contribute in a calculation of the ener-
gy per particle at O(p?).

The residual interaction between the collective bosons
given in (55) and (56) is repulsive, as it arises solely from
quark exchange. Ultimately, it would be interesting to
consider the effect of K0 bosons through an appropri-
ate dynamical treatment that goes beyond the Hartree-
Bose mean-field approximation. The strongly repulsive
nature of the interaction has the physical effect of keep-
ing the collective bosons apart, so that the quarks that
constitute two different bosons can never be at the same
point in space. The situation is very similar to that
occurring in nuclear matter studies based on nucleon-
nucleon interactions with a strongly repulsive core. Ob-
viously, a basis of product wave function obtained, e.g.,
in a Hartree-Bose treatment, is not appropriate, since the
strongly repulsive short-range interaction would lead to
very large matrix elements between product states. In
the nuclear matter problem, we know the correct solu-
tion; it is to use Brueckner theory [11] to extract an
effective G matrix that can be used with product wave
functions. We expect that the same procedure, albeit
modified to composite bosons and a non-Hermitian Ham-
iltonian, should be applicable here as well. In fact, a
Brueckner treatment for bosons should be simpler than
for fermions since no Pauli exclusion of intermediate
states is required.

B. The collective boson Hamiltonian in coordinate space

The strong repulsive interaction between bosons will
induce short-range spatial correlations. It is natural to
try to describe such spatial correlations directly in coor-
dinate space. Thus, in this section we translate the above
analysis (which was carried out in momentum space) to a
coordinate-space framework.

We first introduce operators qc( x) and g.(x) that, re-

2)(A2+4m2g2) :

(56)

—
spectively, create and anmhllate a quark with color ¢ at

the point x. The operators qc( x) and g.(x) are related to
the corresponding momentum-space operators g, and

qck by

T 1 + 0 —ikx
qck=ﬁf7m e *gl(x)dx
1 . (57)
ok :ﬁfﬂo e™q (x)dx ,
and satisfy the anticommutation relation
(g.(x),q} (1)} =6..8(x —y) . (58)

The Hamiltonian (1) can be expressed in terms of these
coordinate-space operators as

__ 1 ()42
H ngch(y)dyzqc(y)dy

—£3 [dyalngtg- gy . (59
c
Carrying out a Dyson mapping of the coordinate- space
operators and truncating to colorless operators y T(x, y)
and y(x,y) leads to the Hamiltonian

2

1 )
Hy= ~%m fdx dyyt(x,y)gy(x,y)

g t
——z—fdx v (x,x)y(x,x)

+%fdx dy dz y*(x,y)yT(x,z)y(y,z)y(x,x) .

(60)

In analogy with the momentum-space treatment, we
now transform to relative and center-of-mass coordinates,
r=x —y and R =1(x +y), for which the colorless boson
creation and annihilation operators will be denoted
r'(r,R) and T'(r,R), respectively. We then truncate to
collective bosons

A'R)= [drx(nT'(nR),

= [dry(rnC(r,R).

(61)
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Note that the structure of the collective bosons, which, as
before, is obtained in the Hartree-Bose approximation,
depends only on the relative coordinate. The structure
coefficients x (r) and y (r) of the collective bosons can be
obtained by Fourier transforming the x, and y, of Sec.
IV. They satisfy the binormalization condition

[y rx(nar=1 . (62)

The collective boson Hamiltonian, expressed in terms
of the coordinate-space creation and annihilation opera-
tors, is given by

Hp=H,+Vy, (63)
where
2 2
__mg __1 tpy 9
H, L e deA(R)aZR AMR), (64)

and
vy=m?g> [ dR dR,dR,

xe—mg§|R3|+iR2—R1+R3I+\R2—R1+2R3I}

X AT (R, +R;)AT(R, —R;)MR A(R,).

The residual interaction between collective bosons is
repulsive (as before) and inherently nonlocal. Having the
collective boson Hamiltonian in this form, it may be pos-
sible to carry out the Brueckner treatment directly in
coordinate space.

VI. CONCLUDING REMARKS

In this paper, we have studied several aspects of a
two-color delta model, which exhibits many of the
features characteristic of quark models of nuclei. Despite
the fact that it is a one-dimensional model (whereas nu-
clei are three dimensional) and that it only permits two
colors (whereas quarks can have three), it is, nevertheless,
a good testing ground in which to explore issues such as
(i) the manner in which quarks cluster together to form
nucleons in a nuclear medium, and (ii) the possibility of
developing meaningful approximate techniques to use in
the problem of ultimate interest, the derivation of nuclei
from quarks. Working in the infinite matter limit has the
further attractive feature that much of the analysis can be
carried out analytically.

The first feature of the model that we studied was the
effect of the medium on the structure of the correlated
pairs that dominate the ground-state dynamics of the sys-
tem. We addressed this issue at the level of the BCS ap-
proximation. The BCS approximation was already
developed earlier for this model; however, the effect of
the medium on the structure of the collective pairs was
not considered in those studies. We have shown that the
correlated pairs that emerge in the presence of a low-
density medium have a larger rms radius than those that
emerge for p=0, even though the residual interaction be-
tween the correlated pairs is repulsive.

We then developed the method of Dyson boson map-
pings for this model. We showed that the Dyson method
very naturally reproduces the physics of the BCS approx-
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imation, while, at the same time, providing a framework
with which to incorporate additional correlations. An in-
teresting outcome of the analysis was that the collective
bosons that emerge at the same level of approximation as
BCS have a different internal structure than the correlat-
ed BCS pairs; the rms radius of the collective bosons de-
creases in the presence of a low-density medium.

Finally, we derived a Hamiltonian for collective bosons
whose internal structure is governed by BCS-like correla-
tions but which can be boosted to nonzero total momen-
ta. The collective Hamiltonian was obtained both in
momentum space and in coordinate space. The addition-
al correlations that result from the strongly repulsive in-
teraction between collective bosons can, in principle, be
treated by Brueckner theory.

We have focused on the Dyson boson mapping since it
reproduced the dynamics of the BCS approximation with
only two-boson interactions. However, it leads to non-
Hermitian Hamiltonians and thus to different internal
structures for the operators that create and annihilate
collective bosons. In the generalized Holstein-Primakoff
mapping [10], this would not be the case. Such mappings
are inherently Hermitian; however, to carry out an
analysis in the low-density regime with such a mapping it
would be necessary to truncate the infinite series expan-
sions that arise. When such truncations are imposed, the
connection with standard fermion approximations, such
as BCS, is lost. Nevertheless, such mappings should also
be considered in the future.

As noted in the Introduction, our eventual goal is to
develop a practical method to treat the dynamics of real
nuclei, starting from constituent quarks. In an earlier pa-
per [3], we suggested that mapping techniques might
prove useful in this context and showed how to map from
a problem of interacting quarks to a problem of interact-
ing triplet fermions. A Hartree-Fock analysis in the trip-
let fermion space, which is analogous to the Hartree-Bose
analysis of the present work, would then provide the
structure of the collective fermions that dominate in the
low-lying properties of nuclei, i.e., the nucleons. And,
indeed, such a variational procedure naturally incorpo-
rates effects of the nuclear medium on the collective
structure of the nucleons. For realistic quark Hamiltoni-
ans (assuming that they can be found), the interaction be-
tween collective triplet fermions (nucleons) will most like-
ly contain a strong repulsive core, and thus a Brueckner
treatment will be required. We believe that the insight
gained by treating relatively simple models, such as the
two-color delta model, can be very useful in determining
the feasibility of implementing mapping methods in more
realistic descriptions of nuclei in terms of quarks.
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