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Predictions relevant for exploring color transparency in (p, 2p) nuclear reactions are often made by
using simplified treatments of nuclear dynamics. We examine the extent to which the earlier predictions
are valid by carrying out calculations using an improved treatment of the proton scattering wave func-
tions, nucleon Fermi motion, and the effects of long- and short-range nuclear correlations. The conse-
quences of two existing models of color transparency are also presented.
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I. INTRODUCTION

It has been suggested [1,2] that hadrons participating
in high-momentum-transfer nuclear reactions undergo
small initial- and final-state interactions with the nuclear
medium. This unusual phenomenon, called color tran-
sparency, has generated much interest from theorists
[3—10] and experimentalists [11—13], because it seems to
be a testable prediction of quantum chromodynamics
(QCD). The phenomenon is closely related to issues con-
nected with the role of perturbative QCD in proton-
proton scattering [14]. In this work we present predic-
tions relevant for exploring color transparency in the
semiexclusive (p, 2p) reaction on nuclei [15].

We begin by reviewing the arguments for observing
color transparency of the (p, 2p) reaction. Consider
nucleon-nucleon elastic scattering at large momentum
transfer, where the amplitude is believed to be dominated
by components of the nucleon wave function of small
spatial extent. Each proton may be thought of as being a
small colorless object just before or just after the high-
momentum-transfer process takes place. The interaction
cross section cr,ff for such a small colorless object with an
ordinary nucleon is small because of the color screening
effects of quantum chromodynamics. One way to test
this interpretation is to consider the process in which the
target nucleon is bound in a nucleus. The small size of
o,~ is manifest by the diminishing of initial- or final-state
interactions as the beam energy increases. To understand
the energy requirement, consider that a small component
evolves into a nucleon of a standard size in a characteris-
tic quark orbital time (ro in the rest frame). At high ener-
gies time dilation effects increase this time to a value
~=@~0. If ~ is much longer than the time needed for the
object to pass through the nucleus, the object can remain
small while traveling the nucleus. In that case initial- or
final-state interactions are expected to be small. Thus, at
sufficiently high energies, the effects of color transparency
should be observed and the semi-inclusive (p, 2p) reaction
on nuclei is very close to the free pp elastic scattering

averaged over the nuclear momentum distribution.
We shall be concerned with the following questions.

How does this novel phenomenon emerge as the incident
proton energy increases? What are the experimental sig-
natures? The only published experiment seeking color
transparency in the (p, 2p) reaction is that of Carroll et al.
[11]. More accurate experiments are expected in the near
future [12].

A rigorous QCD prediction of the (p, 2p) reaction
seems inaccessible in the foreseeable future. But two
complementary theoretical efforts can be used to explore
and perhaps verify the existence of color transparency.
First, it is necessary to establish the predictions expected
in the absence of color screening effects. This requires
the use of the best available nuclear theory. In particu-
lar, we need to know how the observables of interest [see
Eqs. (11) and (12) below] are related to the well-
established nuclear models. It is necessary to exclude the
possibility that some observed features of the (p, 2p) reac-
tion, unexpected in simplifying estimates, might simply
be the manifestation of well-understood nuclear effects.
Second, it is necessary to make a model with plausible as-
sumptions, guided by QCD, for color transparency and
thereby predict observables. For the (p, 2p) reaction this
has been pursued by several groups [3,7,8,10]. In these
exploratory attempts, the calculations were carried out
with various simplifications of nuclear dynamics. It is
necessary to reexamine the consequences of these models
within well-established nuclear theory.

In this work we carry out the standard nuclear physics
calculations of the ' C(p, 2p) reaction using the distorted-
wave impulse approximation (DWIA). The terminology
applies to calculations using the free nucleon-nucleon in-
teraction to describe the process that knocks a bound
proton out of the nucleus. Furthermore, the free proton-
nucleon interaction is used to describe the proton-nucleus
initial- and fina-state interactions. Thus the incoming
and outgoing protons are not plane waves, but are "dis-
torted" by the interactions.

Our first objective is to present predictions for the ob-
servables that can be compared with the data of Carroll
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et al. [11]and could be relevant for planning experiments
to be performed in the near future [12]. Our second ob-
jective is to examine the extent to which the
simplifications used in earlier (p, 2p) calculations of color
transparency are valid and provide more accurate com-
parisons with the standard nuclear physics predictions.

In Sec. II we present the DWIA formalism and estab-
lish the quantity of interest for exploring color tran-
sparency. The results and discussions are in Sec. III. A
brief summary is presented in Sec. IV.

II. DWIA FORMULATION

It has been well established that the nuclear reactions
at sufficient high energies can be described by the
distorted-wave impulse approximation (see, for example,
Refs. [16—18]). At GeV energies it is also known that the
distorted waves can be calculated from the eikonal ap-
proximation [18].

In the DWIA the transition amplitude for the ex-
clusive (p, 2p) reaction on nuclei can be written as

T~; = g ( fib li ) f dk) dk2dk) dk5(k' +)k' —
2 k) —k}yp "(k'))yp "(k2)t(k'„k2k„ks (Pok))yp+)(k))i}I) (k),

where i and f denote, respectively, the initial nuclear
state of A nucleons and the final nuclear state of (A —1)
nucleons. The nuclear structure information is described
by the spectroscopic factor (f Ib li ) and single-particle
wave function (I) (k), where a denotes the shell-model or-
bital of quantum numbers (nljm). The spectroscopic fac-
tor is the amplitude that the removal of a proton from
the initial state i leads to the final state f. The incoming
and outgoing protons are described by the distorted
waves y' +—'(k). The proton-proton (pp) transition ampli-
tude t is evaluated at an invariant mass squared s, evalu-
ated from the incident nucleon momentum po, momen-
tum k and energy of the struck nucleon in the target nu-
cleus.

Expression (1) can be simplified when evaluated at high
energies. First, we use the factorization approximation:
The off-shell amplitude t in Eq. (1) is evaluated by ap-
proximating the momenta of the incoming and outgoing
nucleons by their on-shell values

p (k)=
3 fe+'"'p (r)dr .

1
(4)

Substituting Eqs. (2}—(4) into Eq. (1), we obtain

T&,
——Q(fib. Ii) f dk 5(k —(p, +p, —p, ))F (k)

Xt(P), P2~po k s (Po, k}),
with

F (k)=(2m)f d.r y( )"(r)y' )*(r}y'+'(r)P (r) . (6)

Next, we employ the eikonal approximation to calculate
the distorted waves from the nuclear density p(r) and
proton-nucleon total cross section 0."'. The distorted
wave of a given momentum p is expressed in terms of the
longitudinal coordinate variable z& and the impact pa-
rameter bz defined by

t(k'„kz, k„k,s (Po, k) )—et(P „P2,Po, k, s (Po k) ) . (2a)
r=z +b' Ipl

(7a)

For our later discussions, it is useful to write down here
the kinematic variables in the right-hand side of Eq. (2a).
They are evaluated from the four-momentum p of the
struck nucleon with a binding energy of e in the nucleus,

with

r
Ipl

(7b)

p —= (m —e,k),
and the four-momentum of the projectile,

(2b) The distorted incoming wave is then of the following
form:

Po=((t)2 +Po) Po} . (2c)
1 —ipo. r —A(r, po)

po
(r= e (8a)

Here m is the mass of the nucleon. The corresponding
Mandelstam variables are

with

s =(p +po) (2d)

(2e)

tot Po

A(r, po)= f p(z', b )dz' . (8b)

The distorted waves and single-particle wave function
in coordinate space are defined by

e -'"'q(+-)(r) d r,P (2 )3/2

Similarly, we have, for the outgoing protons,

+(
—)e( )

i' ' iip,. r —B(r,p,. )

P; (2 )3/2

with

(8c}
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tot

B(r,p, )=. f p(z', b~ )dz',
l

(8d)

=Ig, , I+.(k)l'
d

(s. &)p2dJ2dk

X5(p, +p2 —
pe

—k)

X5(E(p, )+E(p2) —E(k) —E(pe)), (9a)

where der~~/d Q(s, t ) is the spin-averaged elementary pp
differential cross section with s and t evaluated accord-
ing to Eq. (2) and

and i =1,2. We take o."' to be the total proton-nucleon
cross section and use a value of 40 mb. The above formu-
la can be used to obtain the scattering amplitude of the
plane-wave impulse approximation (PWIA) by simply
setting 0."'=0. Then the functions A and 8 vanish and
the distorted waves g' —' reduce to plane waves. In the
PWIA calculation, the initial- and final-state proton-
nucleus interactions are therefore neglected.

One computes the cross section by taking the absolute
square of Tf;, multiplying by the appropriate phase
space factors, and summing over the final states f that
are allowed by conservation of four-momentum. We as-
sume that the excitation energies of the states f is small
compared to all other energies appearing in the phase-
space factors. The neglect of the excitation energy allows
us to use completeness (closure) to make the sum over all
final states f. We stress that within this so-called closure
approximation the dependence of the proton-nucleon
transition matrix on the target nucleon momentum is re-
tained. The collision invariant mass s for each single
nucleon orbital a needs to be evaluated according to Eq.
(2). This is an important feature of the present study
since we are interested in the energy dependence of the
(p, 2p) reaction and a careful treatment of the s depen-
dence of the input proton-nucleon amplitude is essential.

By using the closure approximation [18] to sum over
all final nuclear states f and nucleon spin variables, we
then obtain the coincidence cross section of the semi-
exclusive (p, 2p) reaction

d 0'

d 01d02dp1

momentuin of the struck nucleon k=0) the scattering an-

gle of the elementary pp scattering is 90' in the pp center-
of-mass frame. This choice is made in order to compare
our predictions with the data from Carroll et al. [11].
The calculated values of 0 for the incident proton labora-
tory energies E1,b 40 GeV are displayed in Fig. 1. Note
that at very high energies 0 is essentially constant at
about 10', but varies significantly in the region of the ex-
periment of Carroll et al. [11]. In previous estimates

[3,8, 11] of transparency, this dependence is neglected by
assuming 01=02=0'. We will examine below how accu-

rate this simplification is (see Fig. 5).
With the above choice of (p, 2p) kinematics, we can use

the Ralston-Pire [5] parametrization of the 90' pp
differential cross section. Normalizing their parametriza-
tion to the data [19],we find

dC7 = 16.51 pb (sr GeV )
dt

' 10
11.303 GeV

s
S

(10)

where s and t are the pp Mandelstam variables and
' 1/2 2

P1 ScosP(s)+—
4 GeVf (s) = 1+pi

GeV

with

60

50'—

P(s)= ln[ln[s/(0. 01 GeV2)] j
—2,

0.06

and p&=0.08. The value of s is s as required by Eqs. (2)
and (9).

It is important to note that the expression Eq. (10)
varies as s ' times a strongly oscillating function of s.
The s ' factor can be explained in terms of quark count-
ing rules [20], but the QCD interpretation of the oscillat-
ing function 8(s) is much more complex [14]. Equation
(10) provides a good description of the pp data and hence
can be used in the present semiexclusive (p, 2p) calcula-
tion.

n =(2j +1)' (0)(b b [(0} (9b)
400

ec.m. =go

is the number of particles occupying the orbital a. The
investigation of color transparency amounts to studying
the relation between d /dQ, dQ2dp, and the elementary

pp cross section.

30'

20

III. RESULTS AND DISCUSSIONS

We present calculations for experiments using in-plane
symmetric kinematics 01=02=0 . That is, the momenta
of the incident and outgoing protons are in the same
plane (with proton 1 on the right and 2 on the left of the
incident beam direction). For each incident proton ener-

gy, 8 is chosen such that at the quasifree peak (the

10'—

00
0

I I

20 30
E (GeV)

I

40 50

FIG. 1. Energy dependence of the (p, 2p) laboratory angles

0=81=02 of symmetric kinematics, defined by 90' pp scattering
in the pp center of mass.
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We take the target nucleus to be ' C, since targets are
readily available and the nuclear wave function is well
studied. Furthermore, the nucleus is large enough to
represent a target of significant size, but small enough for
detailed calculations to be performed in a reasonable
amount of computer time. Our predictions for heavier
nuclei and other scattering kinematics will be published
elsewhere.

We first consider the simplest nuclear shell model for
' C. The nucleons occupy the a=OS&&z, 1P3/2 orbitals,
and the single-particle wave function P (r) is simply the
harmonic-oscillator wave function (HOWF) with a size
parameter b =1.64 fm determined from electron scatter-
ing data. The occupation numbers [Eq. (9b)] are
no& =2 and n&z =4 since only protons contribute to

1/2 3/2

the (p, 2p) knockout process.
The main features of the calculated (p, 2p) coincidence

fivefold differential cross sections [Eq. (9)] can be illus-
trated by considering the knockout of the s-orbital pro-
tons. In the upper half of Fig. 2, we see that the distor-
tion effects drastically reduce the magnitudes of the cross
sections, but only slightly shift the positions of the peaks.
The lower half of Fig. 2 shows the energy dependence of
the DWIA results. As the energy increases, the peak's
magnitude decreases and its position moves to a higher
value of the detected proton momentum p, .

Both the s- and p-orbital knockout are included in all
of the following calculations. We will now focus on the
differential cross section d 0./d Q&d Q2 which is easier to
measure. It is obtained by integrating the fivefold cross
section [Eq. (9)] over the magnitude of the detected pro-
ton momentum p, . Our DWIA and PWIA results for
the scattering angles 0&=02=8 of Fig. 1 are shown in

Fig. 3 ~ This quantity of Fig. 3 is essentially the pp
scattering at a fixed pp center-of-mass angle 0, =90
that occurs in nuclei. Note that the Fermi motion of the
bound nucleons causes the averaging of the elementary pp
cross sections over a range of energies. The distortion
effects reduce the magnitude of the differential cross sec-
tion, but do not significantly change the energy depen-
dence.

The quantity directly rejecting the difference between
(p, 2p) on nuclei and free pp scattering is

(d o /d Q&d Q2)(' C(p, 2p) ) IDWfA, e

Z ( d o /d Q )(pp ~pp ) l e =9O'

where the (p, 2p) scattering angles are 8, = 82 =8,
displayed in Fig. 1. The elementary free pp cross section
is evaluated from Eq. (10), and Z=6 is number of pro-
tons in ' C. Our result for Td;„„ is displayed in Fig. 4.
Note that a very strong oscillatory structure is seen be-
cause the Fermi motion effects cause the numerator of
Eq. (11) to be a smoother function of energy than the
denominator.

From the theoretical point of view (taken by all of the
current investigations of color transparency), the most in-

teresting quantity is the nuclear effect after the effect of
Fermi motion is removed. Therefore it is necessary to
carefully assess the different possible procedures for treat-
ing Fermi motion effects. We proceed by following Ref.
[11]to compute the following quantity:

0.0001—

0-- ~ ~

10.5

OWIA

I

11.0 11.5

(d o /d QfdQ2)( C(p, 2p)) lDwfA, e

(d o /dQ, dQq)(' C(p, 2p))lPWIA, &,HOWF(b=1. 64 f )

(12)
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FIG. 2. ' C(p, 2p) fivefold differential cross section for the
knockout of a proton in the s orbital. The upper half shows the
distortion effect at 20 GeV, and the lower half shows the energy
dependence of the DWIA results,
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FIG. 3. Energy dependences of the ' C(p, 2p) differential cross
sections calculated from DWIA and PWIA.
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FIG. 4. Energy dependence of the transparency Td;„„
defined in Eq. (11).

The denominator of Eq. (12) is the PWIA result calculat-
ed by using the harmonic-oscillator wave function
(HOWF) with a size parameter 6 =1.64 fm determined
from electron scattering. In the simplest shell model, the
DWIA calculation in the numerator is also calculated by
using the same harmonic-oscillator wave function. The
calculated transparency T is the solid curve in Fig. 5. We
see that it is almost energy independent with very mild
oscillations.

In the previous studies of color transparency [3,8], dis-
tortion effects are estimated by assuming that the outgo-
ing protons are also in the direction of incident proton,
i.e., neglecting the dependences of z and bp on the

l

directions of the outgoing protons [see Eq. (7)]. If we
make the same approximation, we then obtain the dotted
curves in Fig. 5. The differences between two results are
about 10—15% in the considered energy region. The use
of such a forward-angle approximation, which drastically
simplifies the numerical task, is therefore justified in es-
timating the transparency.

Clearly, our result shown in Fig. 5 is very different
from the data of Carroll et al. It has been suggested that

0.6

0.5—

0.4—

0.3—

0.2 —
~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ I ~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ + ~ ~ ~ ~ o ~~ 0 ~ ~ ~

0.1
0

I

10

EL (GeV)
15 20

FIG. 5. Energy dependence of the transparency T defined in
Eq. (12). The solid curve is the T computed with the scattering
angles 0 displayed in Fig. 1, and the dotted curve is obtained by
using the approximation 8=0 . The data are from Ref. [11]

such a large discrepancy can be removed if one assumes
that a broad dibaryon resonance is excited and its propa-
gation is strongly damped by the medium in the vicinity
of resonance energy [4]. Another possibility is the
Landshoff mechanistn of Ref. [5], in which the ejected
wave packet is a mixture of small- and large-sized objects.
Detailed investigations [9] of both mechanisms show that
each provides an improved agreement with the observa-
tions. However, neither effect is significant enough to
reproduce the rapid energy variation of the data. The
proposed more precise and higher-energy version of the
Brookhaven National Laboratory experiment [12] is
therefore of high interest.

Next, we investigate the effects of nuclear correlations
which are beyond the description of the naive shell model
with harmonic-oscillator wave functions. Extensive stud-
ies of nuclear low-lying states have provided us with in-
formation about nuclear correlations relevant for rela-
tively large separations (= 1 fm) between nucleons. Thus
we first consider this most well-known aspect of nuclear
dynamics. The procedure is to include the configuration
mixing caused by residual nucleon-nucleon interactions.
Such interactions are determined by fitting nuclear spec-
tra. We use the model of Cohen and Kurath [21] in
which the nucleons in ' C can also occupy the 1PI&2 or-
bital. The calculated occupation numbers are
significantly different from that of the naive shell model
and are n =2, 3.27, and 0.73 for a=OS, &2, 1P3/2 and
1P,&2, respectively. The correlations also cause the
single-particle wave function to differ from the simple
harmonic-oscillator form. Following previous studies of
reactions in which nucleons are knocked out of the nu-
cleus, we use the wave functions generated from the
well-established [22,23] density-dependent Hartree-Fock
(DDHF) calculations. In Fig. 6 we compare these wave
functions (solid curves) with that of the HOWF (dotted
curves). Note that their differences at large values of r
are most relevant to the present study, since (p, 2p) reac-
tions mainly take place in the region near the nuclear sur-
face.

When the two correlation effects considered above are
included in the calculation, we obtain the solid curve in
Fig. 7. Its difference with the dotted curve of the naive
harmonic-oscillator shell-model prediction is mainly from
the presence of 0.73 proton in the 1PI&z orbital whose
DDHF wave function is significantly different from the
HOWF, as seen in Fig. 6. We have found that if the
configuration mixing leads to significant occupations of
higher orbitals, the calculated transparency will be very
different from that of the naive harmonic-oscillator shell
model. For example, we get a highly oscillating tran-
sparency if we assume that 25% of p-shell nucleons are
moved to 2s orbital. The extensive studies of low-lying
states of p-shell nuclei, however, rule out such a possibili-
ty. We emphasize that any attempt to consider nuclear
correlations should be constrained by well-understood
nuclear properties.

We now consider in more detail the dynamics of nu-
cleon propagation in the nuclear medium. Repulsive
short-range interactions prevent bound nucleons in nuclei
from occupying the same spatial region. Thus a fast pro-



1868 T.-S. H. LEE AND G. A. MILLER 45

jectile, encountering a target proton, must move through
an average distance of about 1 fm before encountering
another. The calculation of the distortion effects defined

by Eq. (8) neglects this nuclear granularity effect. The
effects of these so-called short-range correlations can be
approximately accounted for [25] by replacing the nu-
clear density function of p in Eq. (8) by

0.6

0.5—

0.4—

p(z', b~) ~p(z', b&)C ( Iz —z'I ) (13)

where C(u) is the correlation function. The value of z in
the argument of the correlation function of Eq. (13) refers
to either the upper [for Eq. (8b)] or lower [for Eq. (8d)]
limit of integration. We use the nuclear matter estimate
of Ref. [24) C(u) = [g(u)]' with

0.2—

0.1
0

I

10 20 30
EL (GeV)

l

40

~ ~~ ~ ~ —~ 1 ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ f ~ ~ ~ ~ ~ I ~ 4 ~

50

g(u)= 1 — [1+f(u)]h(u)
4

where

j, (kFu )
h(u)=3

kFu

(14a)

(14b)

FIG. 7. Transparency T calculated from using DDHF wave
functions (solid curve) is compared with that from using
harmonic-oscillator wave functions (dotted curve). In both cal-
culations the occupation numbers n, of Cohen and Kurath [21]
are used. The data are from Ref. [11].

f(u)= —e "(1—Pu ) . (14c)

0.8—
1/2

0.4

0.2

0.8—
C4

'E 06—

0.4—

The parameters for reproducing the nuclear matter corre-
lation function are a= l. 1 and p=0. 68 fm . The Fermi

momentum is chosen to be kF = 1.36 fm '. This
simplified correlation function agrees well with ones de-
rived from more detailed many-body calculations [25].
The transparency calculated from using Eqs. (13) and (14)
to evaluate distorted waves [Eq. (8)] is the dotted curve in

Fig. 8. We see that short-range correlation effects on nu-

cleon propagation increase the predicted nuclear tran-
sparency. However, the energy dependence remains
essentially unchanged.

The presence of short-range two-nucleon correlations
also influences the nuclear wave function. It induces, for
example, highly excited two-particle-two-hole com-
ponents. If such components are large, the energy of the
struck nucleon could be very different from the typical
single-particle energies used in the present calculation.
Such effects are discussed in Refs. [26]. However, the cal-
culation including these higher-order effects requires a
consistent improvement of the scattering formalism.

1.0

0.2
0,8—

0.8—

0.6

)P1g
0.6—

0.4—

0.4
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00 4
r (fermi)
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0
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I I

10 15
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I

20 25

FIG. 6. Comparisons between the harmonic-oscillator wave
functions (dotted curve) and DDHF wave functions (solid
curve).

FIG. 8. Dotted (solid) curve is the transparency T calculated
with the short-range correlation effects included (not included)
in evaluating nucleon distortions.



45 COLOR TRANSPARENCY AND HIGH-ENERGY (p, 2p ). . . 1869

This is certainly beyond the standard eikonal-DWIA ap-
proach adopted in this work.

Thus the standard eikonal DWIA predicts that the
transparency T for ' C(p, 2p) [as defined in Eq. (12)] is
fairly energy independent up to about 40 GeV incident
proton energy. This means that future data showing a
rise in T with the laboratory energy may be interpreted in
terms of the novel QCD prediction of color transparency.
To illustrate this possibility, we next present calculations
including the effects of color transparency within our
computational scheme. This is done by simply replacing
the quantity o'" of Eqs. (8b) and (8d) by an effective cross
section tr, tr. We consider the models of Ref. [3] (denoted
by FLFS) and Ref. [8] (denoted by JM}. In FLFS the
effective cross section is given by

1.0

0.8—

0.6—

0.4—

0.2—

0 I I

10 15

EL (GeV)

JM

I

20 25

" " (z z')
eff p,.

FIG. 9. Transparency T obtained with the effects of color
transparency included. The solid curve is for the model of JM
[8]; the dotted curve is for the model of FLFS [3]. The data are
from Ref. [11].

+8(Z —
li, ) ', (15)

where n=3 and Z=~z —z'~. This expression is ob-

tained by considering the most important energy denomi-
nator in perturbative QCD diagrams. (kt )'~ =0.35
GeV/c is the average transverse momentum of a parton
in a hadron. The four-momentum transfer is t. The
quantity lz is the propagation distance at which an ex-
panding hadron reaches its normal hadronic size:
lI, —-2p /(0. 7 GeV ), where p is the momentum of the pro-
ton.

The effective cross section of JM is (in its simplest ver-
sion)

existing calculations [3,8,9,25] of transparency in electron
scattering. The major difference is that the computed
values of the transparency are much smaller for the (p, 2p)
than for the (e, e'p) reaction. This is because the (p, 2p)
reaction involves three distorted proton waves. However,
there are some qualitative similarities between the two re-
actions. In both, the use of a standard distorted wave
leads to a transparency that is independent of energy.
The inclusion of color transparency effects leads to a
transparency that rises with energy in both reactions.
The (p, 2p) process is inherently the more complicated of
the two reactions. This is because high-momentum-
transfer process must convert each proton into a small-
sized wave packet if color transparency is to occur.
However, studies of both reactions will be needed if color
transparency is to be verified and understood.

JM( )
tot

1
P t
gy i(p —p )z

eff p,. (16) IV. SUMMARY

In Eq. (16),p, is the momentum of a baryon resonance of
a complex mass (1444+75i MeV) produced at the same
energy as the outgoing proton. This form is obtained by
considering that the high-momentum-transfer process
causes wave packets of small spatial extent to be pro-
duced. Such packets propagate as a sum of baryon reso-
nances which interact with nucleons. The effective cross
section of Eq. (16) arises by taking the coherent sum of
the interactions. The small size of the packet leads to
cancellations that cause

Using the functions cr,tr inside the integrals of (8b) and
(8d) instead of the factor o."' leads to a calculation that
includes the effect of color transparency. The results are
compared with the standard nuclear physics DWIA re-
sult in Fig. 9. We regard the differences between the two
models of color transparency as not very significant.
Both treatments of color transparency yield curves in
better agreement with the data than that of the standard
DWIA. However, it is premature to declare that color
transparency has been unambiguously discovered, before
future high-accuracy experiments are performed.

It is useful to compare the present (p, 2p) results with

In this work we employ the distorted-wave impulse ap-
proximation and eikonal approximation to make predic-
tions relevant to exploring color transparency in semiex-
clusive (p, 2p) reactions. Compared with the previous
works [3,5,7, 11], this work contains a significantly im-
proved treatment of proton scattering waves and nuclear
structure information. Evaluating the scattering ampli-
tude with the correct (p, 2p) kinematics (instead of the
usual forward scattering) changes the magnitude of the
computed ratios of cross sections (transparency) by 10%
or 15% (Fig. 5}, but hardly changes the energy depen-
dence. Including configuration mixing and using the
density-dependent Hartree-Fock single-particle wave
functions to compute the effects of nucleon motion lead
to small differences with the calculations using a naive
harmonic-oscillator shell model (Fig. 7). Including the
effects of short-range correlations on proton propagation
in nuclei changes the calculated transparency by about
30%, but does not change the energy dependence (Fig. 8).
Thus our calculations verify the universal expectation
that conventional mechanisms yield an almost energy-
independent transparency. Our results incorporating the
effects of color screening, displayed in Fig. 9, can be used
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in exploring color transparency in future more precise

(p, 2p) experiments.
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