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Semiclassical approximation to the two-step
direct nucleon-nucleus reaction
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We extend the semiclassical approach which was implemented successfully for the one-step direct
reaction to the two-step process. Using essentially the same approximations as in a previous paper
by Luo and IKawai, we obtain a closed parameter-free formula for the two-step cross section. This
formula contains experimental nucleon-nucleon cross sections and distorted-wave intensities, and is
physically interpreted.

PACS number(s): 24. 10.—i, 24.50.+g

I. INTRODUCTION AND SUMMARY

In a. previous paper [1], hereafter referred to as I, Luo
and I&awai (one of the present authors) developed a semi-
classical distorted-wave approximation for the one-step
nucleon-i»duced reaction leading to a continuum final
state. The closed expression for the inclusive double-
differential cross section for the (p, p'z) and (n, n'z) re-
actions obtained in this way allowed for both a simple
interpretation and a parameter-free calculation. The re-
sults were in good agreement with data at 62—164 MeV
bombarding energy.

The two-step direct process is almost as important as
the one-step direct process for a quantitative description
of the direct part of nucleon inelastic scattering. In fact,
at large scattering angles at an energy loss in excess of
several MeV it can even dominate. Motivated by this
fact, and encouraged by the success of I, we extend the
approach of I in the present paper to the two-step process.

The starting point for. our derivation is the general the-
ory of precompound reactions and the modern distinction
between multistep direct and multistep compound pro-
cesses [2,3]. Especially for the first few steps of the re-
action, we believe this distinction to be superior to the
older exciton &uodels.

Specifically, we use the result of Ref. [3], hereafter re-
ferred to as II, for the two-step direct reaction cross sec-
tion. This result is based on statistical properties of the
residual nucleus, and on the sudden approximation: Af-
ter t, he first collision of the incident nucleon with the tar-
get, t, he intermediate state of the target is described as
a particle-hole excitation on the ground state of the tar-
get ("sudden approximation") rather than as an eigen-
state of the target nucleus ("adiabatic approximation"
as used in Refs. [2 4]). (The nature of the statistical
assumptions used in various theories [2—4] was recently
discussed in Ref. [5].) The suclden approximation was
justified in Il in t, erms of the characteristic nuclear time
scales. Qualitatively, the cross section derived in II is the

square of a second-order distorted wave Born approxima-
tion (D'tVBA) amplitude multiplied with the density of
two-particle —two-hole excitations in the target nucleus.

In the spirit of I, we reduce this expression to a product
of probabilities. We use the same approximations as in I:
The slow variation in space of the density and the single-
particle potentials for nucleons, the short range of the
nucleon-nucleon interaction, and the summation over ini-
tial and final single-particle orbits allow us to introduce
a local-density (or Thomas-Fermi) approximation for the
nuclear states and a local semiclassical approximation for
the distorted waves, and to neglect all interference terms
and antisymmetrization effects. An additional entity not
encountered in I is the Green function for the fast parti-
cle in the intermediate state. We observe that the optical
potential varies slowly in space, and we therefore use for
the Green function the Eikonal approximation, consistent
with the other approximations mentioned above. As in

I, we neglect the spin dependence of the nucleon-nucleon
interaction and of t, he distorting potentials.

The central result of our work is the expression (3.19)
for the double-diA'erential two-step cross section. As is
the case for the result obtained in I, this expression does
not contain any adjustable parameters if the cross sec-
tions on the right-hand side (rhs) are taken to be ex-
perimental nucleon-nucleon cross sections, and if the dis-
torted waves and t, he damping factor for the Green func-
tion are calclllated from standard optical-model poten-
tials. The cross-section formula (3.19) permits a straight-
forward intuitive interpretation and is in line with (al-
beit a. generalization of) Goldberger's intranuclear cns-
ca.de model [6].

In view of the above-mentioned approximations, our
final result, is not expected to be quantitatively reliable
at low bombarding energies. All our approximat, ions be-
come more reliable with increasing bombarding energy.
Still, it is dificult to predict precisely when our a.pproa. ch
becomes adequat, e. We believe that at a few 100 MeV the
error incurrecl should be in the 10% range. This, however,
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may well be too pessimistic a view. It is quite possible
that the present approach is useful already below 100
MeV. This will have to be checked by a comparison of
results obtained from Eq. (3.19) with an evaluation of the
two-step formula of II. In addition, there are several cor-
rections at lower energies that need to be examined, such
as the use of the t or G matrix for the nucleon-nucleon
interaction, the nonlocality of the distorting potentials,
and exchange efkcts between the incident and the target
nucleons.

In Sec. II, we give a simple derivation of the two-step
DWBA formula, for the cross-section, referring to II for a
more detailed and complete argument. This brief section
is included to make our paper self-contained. The case of
a channel-dependent optical potential, not envisaged in
II but potentially important for practical calculations, is
treated in Appendix A where we show that the two-step
DWBA formula. remains unchanged under this modifica. -
tion. The naain argument is developed in Sec. III which
ends with a physical interpretation of the central result,
Eq. (3.19). One of the main approximations, the neglect
of interference terms and antisymmetry, is investigated
and justified in Appendix B.

II. THE TWO-STEP CROSS SECTION
The starting point for our approximation scheme is

the formula, for the quantum-mechanical two-step cross

H = (H l" 1+t +U) +V (2.1)

wl"ere V = (V —U), and calculate the cross section to
second order in V. Let p,

+ and p& be the scattering
eigenstates of (Ht 1+t+U) with A nucleons in the initial
and the final state of the target, respectively, and subject
to the usual incoming or outgoing wave boundary con-
ditions. They are normalized to a delta function in en-
ergy and carry normalization factors (pk, /2irh ) f and
(pkf /2s h )'f'-, respectively. Then, the two-step cross-
section ha.s the form

section. We present a brief and simple derivation of this
formula. We also indicate why this formula holds more
generally than the derivation suggests.

We consider a target nucleus with A nucleons governed
by the Hamiltonian H( &. This target is hit by a nucleon.
The Hamiltonian for the (A+ 1) particle system has the
form B = H( ) + t + V. Here, t is the operator of kinetic
energy of relative motion and V the (effective) nucleon-
nucleon interaction between the target and the nucleon.
To account for absorption eA'ects on the incident nucleon,
we introduce a complex optical-model potential U, con-
sisting of the mean field, the imaginary potential, and
the dispersion integral giving a. correction to the mean
field. We write H in the form

2

~;",'=a;"-) (p', ' v(z+ —e(") —~ —rr) v qI+') s(E, -z, ). (2.2)

Here, p is the reduced mass, hk; and hid are the initial and final momenta, and the delta function guarantees energy
conservation.

Equation (2.'2) can be simplified by assuming that the states of the target can be approximately described by the
shell model, that the ground state is doubly magic, that in the collision of the incident nucleon with the target, an
ever-increasing number of particle-hole pairs is created, and that the collision is "sudden" in the sense that in the
denominator of Eq. (2.2) Ht~l can be replaced by the mean-field approximation. The last assumption was justified
in II, tlie rest is standard in the field. M, e denote by 4, , 4y the i&iit, ial and final states of the target, given by

lc'f) =
l IPi) IP» ' )g

jul, 2

(2 3)

Here, A is the antisymmetrisation operator, of denotes the states below the fermi surface, ki;, and pi, p2 (ai, nz) are
the particle states (the hole states) generated by the twofold action of V. We have

(+& ,(+&4, (-) (-)@,
(2 4)

where y, , yf are scattering eigenstates of the one-body operator (t+ U). Using the above-mentioned assumptions,(+),( —)

and Eqs. (2.3), (2.4), we find that Eq. (2.2) can be simplified as follows:

2

+fi ki ) ) hf I f Ivl@~)&~(E' ~ )(I~ Iv lgI+ I i) b(@f Ei) &

f m
(2.5)
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where v denotes the two-body effective interaction, the
round bracket an integration over A nucleons, and 4 is
one of the four possibilities

~4 ) =
~ ~Pb) ~nI), a and 6 equal to I or 2.

g(kp A

(2 6)

Moreover, G„,(E, — e„,) is. the operator (E+
—t —fI), and e„, the sum of the energies of the

particle state Pb and of the hole state n, in ~4 ). In
the approximation scheme leading to Eq. (2.5), the delta
function is now interpreted as the two-particle —two-hole
level density in the Fermi-gas model at the excitation
energy AE defined by the energy loss of the incident nu-

cleon.
We can considerably improve on this brief derivation

without, changing the form of the result, Eq. (2.2). One
such improvenlent removes the assumption that the ta.r-

get is iil a pure shell-nlodel state, and that the effect
of the residual interaction on nucleons in the orbitals
(nI), ~Pi), and ~P2) is altogether negligible. The deriva-
tion is given in II. Using the "sudden approxinlation'
(which it justifies) and statistical assumptions on the
eigenstates of the fiinal nucleus, this paper yields an equa-
tion like (2.2), with b(EI —E; ) replaced by the full (non-
Fermi-gas) two-particle —two-hole density at, energy EI . If
that level density can be ~veil approximated by the Fermi
gas expressioii we retrieve Eq. (2.2). We expect such
an approxinlation to hold for excitation energies AE of
the residual ilucleus which are in excess of several MeV.
Incidentally, the derivatioil of II shows why there is no
interference between one-step and two-step processes. A

III. THE APPROXIMATIONS

We now introduce the central approximations needed
to writ, e Eq. (2.5) in semiclassical form. EVe proceed in
close a,nalogy to I. To ma. ke the argument transparent,
we defer to Appendix B the justification of the main ap-
proximation (the iieglect of interference terms).

Writing the absolute square in Eq. (2.5) as a double
sum over the four values of 7n and n~,

' each, we neglect
the interference terms with m g m'. EVe likewise neglect
the antisymnletry between the incident nucleon and the
nucleons in the target. We use the identity, valid for any
function F(E),

F(E —c„,) = dE„,6(E„,—E+ e„,)F(E„,) (3 I)

With Ii' g 6 and a' g a , we a. lso have, in coordinate
I'epi'ese i i t, a.t, loll,

(C' lvl@ ) = d t if'', (ri)v(ri —r;)n, (ri),

(3.2)

(C'Jl v I+.) = d t zP& (rz)v(rz —rI)ci (1'z).

Using the coordinate representation also for the Green
function G„, , we obtain

second improvement, relates to the fact that the opt, ical
model depends upon energy; this fact was not taken into
account, in our derivation. In Appendix A, we show t, hat,

Eq. (2.2) can be derived even when U depends on tlie
cha, nnel.

l=i, f, l, 2

d 7'1 d'«XI '(i'I)X& '(rI ')X,'+'(r )X,'+'"(r ')G(&I &" E )G'(rI ' ''
x v(ri —r;)v(ri ' —r, ')v(1'z —rI) v(1"s 1I ') It i(ri, ri ')I&2(rz, rz ') . (3.3)

VVe have defined

I~i(ri, ri') = ) oi(ri)n*, (ri')P,*(ri)Pi(ri ')b(E„, + cp, —e, —E;), (3.4)

and similarly for Ifz. The sum in Eq. (3.4) over ni (Pi)
is over occupied (empty) states.

One of the central approximations of this paper, kin to
the local density approxinlation or the Thomas-Fermi ap-
proxima. t.ion, is based on the following approximation, ex-
ploited already in I: The potential v has a short range of
about 1 fm. And the function I~i is a short-ranged func-
tion of ~ri —ri '~ with approximate range KF (ri), where
hKF is the local Fermi momentum. Only the region of ri
values with sufficiently high nucleon density contributes

significantly to oI, . Here, i ~(ri) does not differ signifi-
(' &)

ca.ntly froni the nuclea. r nla. tter value kF = I fm '. The
same argument, applies to I~2. This shows that the inte-
grand in Eq. (3.3) is significantly different from zero only

whell 1'& 1'~ —i. ' = 1' and 1'2 = 1'2 = 1'f = 1'g . We
therefore approximate the expression (3.3) by locally ex-

panding the integrand around the points of coincidence
of each of tlie two sets of vectors (ri, ri ', r, , r; ') and

(rz, r~ ', rI, rI '). This approximation is expected to be
valid for heavy nuclei with radii large in comparison v, ith
1 fnl. Iil inllilementing the local expansion, we assunle
that locally both single-particle wave functions and the
distorted waves can be approximated by plane waves. We

denote the local momenta. appearing in the exponents by

the symbol v, with k- real or complex (as the case may
be) and in any case depending on the position. The in-

tegrals appearing on the rhs of Eq. (3.2) take the form

(X:1 i —i',')
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In the local approximation, we assume U (r) to vary so
little that the path in (3.9) is straight and, with r =
-'(rg + r, ),

= exp [i(gh;, —3;i, ) r, ] d z Pi, (x)v(x)o, (x) (3.5) S (ry, r;) =- ~„,(r) ~ry —r;~. (3.1 1)

yI+ (r;') = gI+ (r;) exp(i~; s;, ), (3.6)

where i.; has the direction of the local Aux and t, he mag-
nitude

with r~, toy real. With r; ' = r; + s; and ~; complex, we

have similarly for y,
+ (r; '),

We note that Eq. (3.11) goes beyond the previous local
approximation. For G'(ry ', r, ', E~) we proceed analo-
gously, writing r; = r; + s;, etc. as before. Then, with
tc in the direction of (ry —r, ),

~, = Ir, ——zU;(r, ).2 g 2p
h

(3.7) p g ~K rrt ) I'f —I,')
exp [—inc (sg —s, )].

27rh

We proceed analogously for y& (ry'), introducing Ecy.

For the Green function, we use the eikonal approximation

p exp [i S (rg, r)]
~rg —r;)

where the complex phase S is given by
I'f

S (ry, r, ) = ds ~ (s).
I'i

(3.8)

(3.9)

rc„, = —„[E„,—U,„(r)].2p

h
(3.10)

The integration is taken along the classical path, with
the direction of v given by the tangent to the path or,
equivalent, ly, by the flux at s, and the magnitude of v
is given by

(3.12)

In the spirit of these local approximations, the summa-
tions in Eq. (3.4), when written in terms of local mo-
ments, are constrained by the condition Kgt ( KF ( gg, &.

To further simplify the resulting expressions, it is nec-
essary to assume that U, = U~ = Uf. More precisely, we

assume that in the integration over s;, with an integrand
given by the exponential of is; (3c; + ic, —m —v&),
the imaginary parts of v; and v~ cancel to the extent
that the result in good approximation is (23r) times a
delta, function of (g;+ v, —3g. —ic(, ), and similarly for
sf. By the same token, we replace the argument of the
delta function in Eq. (3.4) by its local equivalent, i. e. , by

(3 /2ts) (n" —n,".„q- ns —n, ) . Using nii thisin Eq. (3.3),
we obta. in

dsf j j ' 171

x )
K. , &KF(I,) &Kt, ,

~(pi~ v ~ni)[ (23r) b (r.b, + E „,(r) —~„—~;)

x ) [(p2~v [n2)( (23r) b ()q;i,, +3cg —N;„—~~(r))
~ &KF(I f )&Kq

(3.13)

To arrive at the final formula of this section, we connect each of the terms in curly brackets in Eq. (3.13) with the
nucleon-nucleon cross section. To this end, we write

Ke &Kp &Kg

2",) fa..jg.. + f'..
l A

K~ &K~&K~
p

(3.14)

where the factor 2 is due to spin (we take v to be spin independent), where 0/(23r) is a density-of-states factor and
0 the size of the Thomas-Fermi cell volume, and where the indices rg (p) indicate that the struck nucleon is a neutron
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(proton). Locally, we have

l(PI ~ l~) I' =—II ' d zexp [i(v., —vg.]x) v(x) (3.15)

In the two-nucleon c.m. frame and in Born approximation, the nucleon-nucleon cross section is given by

(3.16)

where v is isospin dependent. We introduce the average local nucleon-nucleus cross section in Born approximation by

r' d.
'-'o r.„,(r) r'4n.

qdE'dfI', . r, (r;) i, 3
' ) da, drcr,

do 1
""&)vs

b (vg+ r„,(r) —v, —~, )

xb
I

—rb + r„,(r}—r „—a, (3.17)

and simi]ar]y at point, ry. It, was shown in I that upon replacing (do/dfI)&tv in Eq. (3.17) by an isotropic expression,
g /(4+) wjth g g the experimental total nucleon-nucleon cross-section, the rhs of Eq. (3.17) becomes equal to the cross
section of Kikuchi and kawai [8]. Using Eqs. (3.16) and (3.17), we can expreas the curly brackets in Eq. (3.13) in

terms of the loca] nucleon-nucleon cross section at r, and ri. The normalization factors « IX,+'I' and Ix& 'I' a
rp

I~I+)I2 = (pk, /27rfg )lyI+)I'-, where ); is asymptotically normalized to a plane wave of unit amplitude. We introduce
the local density for protons and neutrons,

2 4m
P» P (2 )3 3 F»P

and find

(3.18)

r' A

t, A+ I) dE„, d r,
r;(r;)/I, t )

'- B o

KJ (rg )/kr BEy dQ

exp [—2p„, (r} Irj —r;I] B'-0 (+)
BE MIrr —r

I
17'l, 171

go

(3.19)

Here, 7t»(r) stan(]s for the imaginary part, of »K(r}, iiith
r = -„'(r, + r) ). The product of the double differen-
tial cross section times p appearing twice on the rlis of
Eq. (3.19) is a shorthand notation for the sum of two
terms relating to neutrons and protons in the target as
in Eq. (3.14).

Our result, Eq. (3.19), has a simple interpretation.
The incident flux, weal'ened by absorption effects and
refracted by the real potential, penetrates into the nu-
clear interior. At point x.; the first nucleon-nucleon col-
lision occurs, described by the product of the double-
differentia] cross section (a local quantity because it de-
pends on the local momenta), and the local density of
nucleons. Then the incident nucleon, having lost some
of its energy, propagates to point ry. The propagation
is described by the geometric factor Ir; —rj I

and by
the factor exp (—2p Ir, —rj I) which accounts for loss
of flux by absorption. At x.j, the second collision takes
place. Eventually, the flux leaves the nucleus in the di-
rection of ky, after it was further deflected and absorbed

as described by the factor l)t f
In applying Eq. (3.19) it is well to remember that after

the first collision the incident nucleon leaves the point x.;

with a local energy that corresponds asymptotically to
the energy E„„the corresponding local energy at point
x~ defines the energy with which the second collision is

initiated. And the direction in which the nucleon leaves
the point, x; is that of the vector x f x.;.
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APPENDIX A: CHANNEL-DEPENDENT
OPTICAL POTENTIAL

We allow for a channel dependence of the optical po-

tential and denote by U, the optical potential in chan-
(+)nel c, by U, its complex conjugate, and by V,
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V —U, the remaining interaction. Let P, be the con-
tinuum eigenfunctions of H( ) + t, products of the tar-
get state 4, and a plane wave of relative motion for the
nucleon in the continuum, orthonormalized in the usual

way. The optical-&saodel distorted wave states p, obey(~)

the Lippmann-Schwinger equation

0) ~otpt) ~ntcrzpqpz) and for m' the sequence
0) ~cr P~) —(ntozPqP2), in obvious notation. With-

out introducing the E integration via Eq. (3.1), we fol-
low the derivation of Sec. III until we arrive at a product
of sums of the type displayed in Eq. (3.4). These now
have the form

~(+) + g+ @( ) ] U(+) ~(+)

(A1)

u1(I'f (Pg

and

crt(rt)o, (r. ')p;(rt)pt(rt ')

(B1)
The full scattering solution 4, obeys both the equa-
tions

(A2) O~(kf (/9~

rr (&'z)&2(r& )p2(r )p2(r2')

and

@(+) p(+) + g+ H
' V(+) p(+)

The transition amplitude is given by

Tg; ——
g V 4( (A4)

In Eq. (A4), we use Eq. (A3) for channel i, then Eq. (A2)
for channel f, and finally Eq. (A3) for channel f This.
yields (we drop the plus sign on U, and V, )

Tg, —— f U;p; + p& V;p;
~(-) V E+ H V. ~(+) (A5)

APPENDIX 8: NEGLECT OF INTERFERENCE
TERMS

It is intuitively clear that the terms with m g m'
should become less important as the incident energy in-
creases. In this appendix, we show that this is indeed
the case, and we give a rough estimate of the bornbard-
ing energy E; where neglect of these terms is justified.

By way of example, let us consider for rn the sequence

Equation (A5) is still exact. We identify the first term
on the r.h.s. with the optical-model contribution to elas-
tic scattering (i = f), and the second term with the
one-step DWBA amplitude. Only the last term can con-
tribute to the two-step amplitude. In the sudden approx-
imation, we neglect the interaction between nucleons in
bound shell-model states and replace in each intermedi-
ate channel m the operator 0 by (e + t + U„,). This
yields the desired generalization of Eq. (2.2).

The terms in expression (Bl) are small unless rt = rt '—
r2' and r~ —r2' = rq'. Together with the conditions
derived from the short range of the potential v(r), these
constraints amount to saying that the essential contribu-
tion to the interference term is due to the integration over
the point where all vectors rq, rq ', rp, r2 ', r;, r; ', r f 1 f

'

(nearly) coincide. This is a stronger constraint than en-
countered for the terms with n~ = m' and qualitatively
accounts for the neglect of interference terms.

Semiquantitatively, we expect the cutoff to be given by
I F . This has to be compared with the integration over

[r, —rg
~

in Eq. (3.19) which is limited by the exponential
damping fact.or in the Green function. The ratio of both
is p/kF = (lkF) t, where t is the elastic mean free path.
Now, / is a function of energy. Because of the exclusion
principle, l reaches a minimum of about 4 fm at an energy
of about 100 MeV, and increases slowly with increasing
energy thereafter [8,9]. The product (kFI) is thus always
larger than unity, especially at, small bombarding ener-
gies. There, however, the interference effects considered
below are important.

There is another type of interference term in which the
integrand is significant only when r~ —rq' and r~ = r~ '.
This constraint is much weaker than in the case discussed
above. Nevertheless, the contribution of this type is small
compared to the terms with m = rn'. Indeed, the con-
straint just mentioned and the short range of v lead to
the condition r; = ry

' and ry = r; ', and to the appear-
ance of the factor yf "(ry)y& (r, )y,

+ (r, )y,
+ '(rg) in

the integrand of 0&; . This factor is an oscillating func-
tion of both r; and ry, especially at high incident energies
and/or deep distorting potentials, in contrast to the pos-
itive definite factor appearing in Eq. (3.19).

In summary, the arguments presented above only in-
dicate that the neglect of interference terms is a fair ap-
proximation at a few 100 MeV, and possibly useful even
below 100 MeV, depending on the required accuracy.
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