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Fusion barriers using the energy-density formalism:
Simple analytical formula and the calculation of fusion cross sections

Rajeev K. Puri* and Raj K. Gupta
Physics Department, Panjab University, Chandigarh 160014, India

(Received 9 October 1991)

Fusion barriers are calculated within the sudden approximation, using the Skyrme interaction energy-
density model. Both the closed and unclosed shell nuclei are considered and the role of spin-density
term is studied in detail. For unclosed shell nuclei, the fusion cross sections are found to decrease by as
much as -50 mb when spin-density effects are included. Very accurate, simple analytical expressions, in
terms of only the masses and charges of the reacting nuclei, are obtained for the barrier heights and posi-
tions. This introduces a great simplification for the fusion barrier calculations.

PACS number(s): 25.70.—z, 25.70.Jj

I. INTRODUCTION

It is now well accepted [1—3] that the fusion threshold
energy or the height of fusion barrier (also called, interac-
tion barrier) cannot be given only by the Coulomb bar-
rier. The nuclear interactions play an equally important
role in determining such a barrier. Thus, in order to be
able to calculate the total interaction potential,
V(R )= Vc(R )+ Vz(R ), analytically, one of the prob-
lems of interest is to obtain an analytical expression for
the equivalent nuclear proximity potential. Some work
was already done [4—7] in this direction, using the
energy-density formalism (EDF). Alternatively, it is of
interest to obtain analytical expressions for the interac-
tion barrier heights and positions, whose predictions can
be compared with the empirical estimates [8] from mea-
sured cross sections. Such information is required for
calculating the excitation functions, etc.

Fusion barriers have been defined in many ways. We
use here the very much used definition [4—8], as the
height of interaction potential V(R), where the slope

dV(R )

dR BR=R
=0, d V(R)

dR R =RB
&0.

This means that the fusion barrier is defined with its posi-
tion at the distance R =Rz, and the height
V(R =Rs)= Vs. Figure 1 illustrates our calculated in-
teraction potential V(R ) for the ' 0+ ' 0 reaction, using
the EDF with Skyrme force parameters of force SIII and
A, =O (see below for notations). The nuclear and Coulomb
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potentials are also shown separately. At R =Rz, the
difference 5 V gives the contribution of nuclear potential
to the fusion barrier Vz. In this figure, we have also
shown the so-called "effective radius, " R,ff. This is
defined as the value of R at which the fusion barrier
Vz = V&, the Coulomb potential. By using this definition,
apparently one almost neglects the contribution of nu-
clear potential and obtains fusion radii larger than Rz.
Defining further,

Z)Z2e
R,ft=r, tt(A I + Az ),

eff
(2)

many experiments have been analyzed [9,10], by taking
Eq. (2) as the efFective interaction barrier. However, r,tt
does not take a constant value (see Fig. 7 below), against
the expectations of these authors.

Using the energy-density formalism, fusion barriers
have been calculated [11,12] for a large number of
target-projectile combinations. Calculations are made
within the sudden approximation, using the energy-
density functionals due to Brueckner et al. [13] and the
Skyrme density-dependent interaction [14]. For the
latter case, fusion barriers are calculated [12] only for
combinations of the closed shell nuclei. This is because
the spin density J=O for closed shell nuclei (called spin-
saturated nuclei) and, until recently, the required expres-
sion of J for unclosed shell nuclei were not available. In a
recent paper [15],we have derived a general expression of
J for nuclei with any number of valence particles (or
holes) outside the closed core. A first calculation of
fusion barriers and cross sections for the spin-unsaturated
nuclei was also published very recently [16].

The aim of this paper is at least threefold: First, we ex-
tend our calculations of Ref. [16] to a larger number of
nuclei, up to about f shell, and to combinations of
very spin-unsaturated nuclei. This allows us to study the
contribution of spin density in fusion barrier heights and
positions. Secondly, almost for the first time, we obtain a
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In Sec. II we give a brief description of the formalism
used and approximations made for the densities and
forces, etc. Section III gives our calculations for (i)
fusion barriers, compared with empirical estimates and
other available calculations, (ii) the analytical formulas
for barrier heights and positions, and (iii) the calculations
of fusion cross sections, compared with experimental
data. In all cases the role of spin-density term is also
studied. A summary of our results is given in Sec. IV.

II THE FORMALISM

The fusion cross section o.i is considered to account
entirely for the process of compound nucleus formation
and is made up of two components: the fusion evapora-
tion o.,„, and fusion fission o.z„. At low incident energies
and for light heavy-ion collisions, o.,„, is taken to
represent the fusion cross section o.I, which for energies
above the barrier (E, ) Vs) is well described by the
sharp cutoff model expression

—20-
0'g =mRs(1 —Vs/E, ) . (3)

-25 '

4

I I

e 9
R(f rn)

10 11 12 13

FIG. 1. Interaction potential V(R ) = V&(R )+ V&(R ) for the
reaction ' 0+' 0, using the energy-density model with Skyrme
force SIII and the surface correction coefficient A, =O. Separate
Coulomb and nuclear contributions are also shown. hV is the
contribution of nuclear potential V& to the barrier V& at
R =R&. The radius R,& is the value of R at V& = Vc.

simple analytical expression for calculating the interac-
tion barriers from the knowledge of only the masses and
charges of colliding nuclei [17]. Finally, we calculate the
fusion cross sections and analyze the role of spin-density
term on the fusion cross sections (see also Ref. [16]).

We use this expression in the following, with barrier
heights V~ and positions R~ calculated in Skyrme in-

teraction energy-density formalism [18]. The energy
dependence can also be introduced in the barrier by add-
ing to the potential V(R ) the centrifugal potential VI due
to angular momentum l. The effect of this term on Eq.
(3) is known [19] to reduce the fusion cross sections and
in the following we take l =0 for simplicity.

Using the Skyrrne interaction, Vautherin and Brink
[14] have derived the energy-density functional H(r) for
a system whose ground state is represented by a Slater
determinant and the subspace of occupied single-particle
states is invariant under time reversal. For an even-even
spherical nucleus, this has the form (the subscripts n and

p refer to neutrons and protons, respectively)

H(p, r, J)= r+ —,'to[(1+ —,'xo)p —(xo+ —,')(p„+p )]+—,'(t, +t~)pr
2m

+—,'(tz t, }(p„r—„+p~r~ )+ —,', (t2 —3t, )pV p+ —,', (3t, +t2)(p„V p„+p~V p~ )

+ ,'t3p„p p+ —,', (t, —t2)(J„+J}——,
' —Wo(pV J+p„V J„+ppV Jp) . (4)

Here, to, xo, t„ t2, t3, and Wo are the Skyrme interaction parameters, obtained by different authors [14,20—26] to fit

the various ground-state properties of the nuclei and p=p„+p, ~=~„+~,and J=J„+J .
Knowing H(r), the energy-density model defines the nucleus-nucleus interaction potential as the difference between

the energy expectation value E= jH(r)dr of the colliding nuclei at a finite separation R and at infinity,

Vz(R ) =E(R ) —E( oo ) =f [H(p, r, J)—[H, (p, ,r, ,J, )+H2(p2, w2, Jz)] ]dr . (5)

This means that the two nuclei form a composite system
at R and are completely separated at infinity. Also,

p =pI +p2 &=7 I +72 J=JI +J2 refer to the sudden ap-
proximation, which means neglecting exchange effects

due to antisymmetrization. Brink and Stancu [6,12] have
shown that such antisyrnmetrization effects can be as-
similated reasonably well by using for ~, the Thomas-
Fermi (TF) kinetic energy density rT„corrected for addi-
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TABLE I. Calculated fusion barrier heights and positions in energy-density model using Skyrme force SIII (A, =O), compared with
the empirical data and the models other than the energy-density model. The systems are listed with respect to their increasing Z1Z2
values.

System Z1 Z2
Vc

Present
Vw Va Vg

Empirical Ref. Other models
V~ R~

Ref.

12C+ 12C

12C+ 160

12C+ 18Q

16Q+ 16Q

Mg

12( +26Mg
' 0+
' C+ S1
' 0+ Mg

16Q +26M g
1 8Q +24M

g

"C+40Ar
160+28S1

180+28S1
' 0+ Ar

Mg+ Mg

4Mg+ Mg
160+40Ca

24Mg+ 8Si
2 Mg+ S

Mg+ S
Mg+' S
Mg+ S

' Si+ Si
Ne+40Ca

32S+40C

'Si+' Ni
28S1+62N1

Si+64Nj
30S +58N
' Si+ 'Ni
' Si+ Ni

Ca+ Ca

40Ca+44Ca

36

48

64

72

72
80
84
84
96

96
96

100
108
112

112
144
144

144
160

168
192

192
192
192
196

196

196
200
320

392
392
392
392
392
392
400

6.91

8.98

8.66

11.67

12.45

12.28
13.77
14.31
14.22
16.40

16.00
15.86

16.49
17.59
18.86

18.06
23.19
23.14

22.86
25.77

26.94
30.42

29.78
30.05
29.43
31.02

30.50

30.32
31.29
48.51

58.01
57.02
56.82
57.10
56.14
55.95
59.50

58.05

—0.46 6.45

—0.57 8.41

—0.61 8.05

—0.92 11.53

—0.94
—0.96
—1.11
—1.14
—1.33

11.34
12.81
13.20
13.08
15.07

—1.17
—1.31

14.83
14.55

—1.31
—1.22
—1.61

15.18
16.38
17.25

—1.38
—1.77
—1.96

16.68
21.42
21.19

—1.98
—1.79

20.88
23.98

—2.55
—2.74

24.39
27.68

—2.41
—2.76
—2.43
—2.90

27.37
27.29
27.00
28.12

—2.68 27.82

—2.78
—2.64
—4.21

27.54
28.64
44.30

—5.34
—4.96
—5.07
—5.00
—4.63
—4.73
—5.25

52.67
52.06
51.76
52.10
51.51
51.22
54.26

—4.64 53.41

—0.70 10.97

7.50

7.70

7.98

7.90

8.33

8.44
8.37
8.45
8.51
8.43

8.64
8.71

8.73
8.84
8.55

8.93
8.94
8.96

9.07
8.94

8.98
9.09

9.29
9.20
9.40
9.10

9.26

9.31
9.21
9.50

9.73
9.90
9.93
9.89

10.05
10.09
9.68

9.92

5.80+0.3
6.37
7.70+0.4
7.94+0. 15
7.70+0.2
7.55+0. 11

11.20+0.6
10.91
11.00
11.60+0.5
12.23+0.3
11.50+0.5

13.40
12.59+0.3
13.20
15.90+0.9
16.00
16.50+0.9
14.90+0.9
14.80
15.20
16.20+0.2
17.23

16.90
21.00+0.3
21.53+0.5
22.30+0.4
20.80+0.5
23.70+1.0
23.70
24.64+0.6
28.10+1.6
27.93

27.38
27.48
27.11
28.89
28.95+0.7
29.13
28.28XO. 7
28.54
28.60
43.30+4.5

53.80+0.8
52.89
52.40+1.1

52.20+1 ~ 2
52.20+0.9
51.20+0.9
50.60+2.8
52.30+0.5
55.60+0.8
51.70+1.2

6.50+0.4
7.34
7.50+0.3
7.23+0.24
7.90+0.3
7.45+0.20
7.60+0.4
8.20
7.60
7.50+0.3
7.97+0.2
8.40+0.3
8.22
7.42+0.2
8.39
8.40+0.4
8.48
8.70+0.4
7.80+0.3
7.82
8.42

7.98

8.76

8.37+0.2
8.90+0.3
8.33+0.2
9.00+0.4
9.03
8.11+0.2
8.70+0.3
9.20

9.40
9.36
9.50
8.94
8.25+0.2
8.86
8.47+0.2
9.06
9.32
9.00+0.7

9.00+0.9
9.89
9.20+1.0
8.30+1.1

9.70+1.0
9.40+0.8
9.50+0.5
8.80+0.5
9.10+0.6
8.50+0.5

[30]
[8l

[30]
[41]
[30]
[41]
[30]
[43]
P2]
[44]
['45]

[44]
[48]
[45]
[8]

[44]
[43]
[44]
[30]
[43]
[48]
[56]
[43]

[8l
[56]
[45]
[44]
[45l
[30]
[43]
[45]
[44]
[42]

[42]
[42]
[421
[50]
[45]
[50]
[45]
[50]
[49]
[30]

[55]
[55]
[55]
[55]
[55]
[55]
Pol
[53]
P7l
[53]

6.32
5.61
8.00

7.80

10.86
10.40
11.10

16.00
13.13
15.00
15.87
17.09
14.70

17.20
18.18
16.20

23.70
24.63

28.18
29.40
28.80
27.88
27.80
27.50
29.60
29.83
29.27
29.38
28.64
28.23
45.80
42.50
54.44
53.74
53.42
53.82
53.15
52.84
55.03
53.20

54.35
55.00

7.42
8.77
7.90

8.10

7.67
8.10
8.31

7.57
9.08
8.60
7.97
8.10
8.70

8.60
8.46
9.44

8.90
8.59

9.10
8.52
8.90
9.21
9.24
9.35
9.08
8.63
8.82
8.75
9.02
9.64
9.30
9.26
9.56
9.70
9.76
9.68
9.82
9.88
9.74

9.88

[8]
[8]

[43]

[43]

[47]
[43]
[46]

[46]
[46]
[43]
[47]
[46]
[43]

[43]
[471

[43]
[47]

[42]
I:47]
[11]
[42]
[42]
[42]
I.50]
[50]
[50]
[5ol
[50]

[11]
[51]
[55]
[55]
[55]
[55]
[55]
[55]
[52]
[54]

[52]
[53]
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TABLE I. (Continued).

System Zl Z2 Present
Vx Va

Empirical Ref. Other models
V~ R~

Ref.

40Ca+48Ca

S+ Ni

32S +64Ni

34S+ 58N

"S+"N
S+ Ni

36S+64N

~Ar+ "Nj
Ar+ Ni

40Ar + 62N j
Ar+ Ni
Ca+ "Ni

40Ca+ 62Nj
' Ni+ "Ni
58Ni+ 64N

Ni+ Ni

448

448
448
448
448
448

504
504
504
504
560
560
784
784
784

57.23

65.56

64.23
64.93
63.00
63.68
62.43

71.01
70.77
70.54
69.62
80.48
79.14

110.04
106.87
104.84

—5.86 59.70

—5.55
—5.89
—4.94
—5.23
—4.93
—5.73
—5.83
—5.96
—5.40
—7.32
—6.80

—11.01
—9.57
—9.15

58.68
59.04
58.06
58.45
57.50
65.28
64.95
64.57
64.22
73.16
72.34
99.03
97.30
95.69

9.84

10.04
9.94

10.24
10.13
10.33

10.22
10.25
10.29
10.42
10.02
10.19
10.26
10.56
10.77

59.80+ 1.4
59.50
58.10+0.7
58.40+ 1.4
57.20+0.6
58.00+ 1. 1

56.70+ 1.0
65.30+0.5
65.50+0.6
65.10+0.6
63.90+0.5
73.36
72.30
97.90
96.00
93.50

—4.63 52.60 10.06 51.30+ 1.0 7.80+0.3

8.60+0.9
8.50+0.3
8.80+0.5

7.50+0.9
8.90+0.6
7.50+0.6
8.80+0.6

10.20
10.35
8.30
8.20
8.60

54.00
54.08
54.30
61.80
59.20
60.36
60.88
59.78
60.30
59.24

[53]

[55]
[46]
[55]
[55]
[55]
[55]
[55]
[56]
[56]
[56]
[56]

[8] 73.57

[8] 72.87

[57] 95.90
[57] 94.10
[57]

9.93

9.70

9.88
9.79
9.99
9.90

10.09

10.31
10.42

[53]

[43]
[11]
[34]
[55]
[551
[55]
[55]
[55]

[8]
[8]

[54]
[54]

tional surface eft'ects. We take

(Vp)
7 TF+

P

where rT„=—,'( —', m. ) p
~ and the surface correction is

due to von Weizsacker [27], with A, having values be-
tween —' and —,', . Equation (6) makes the energy density
(4) a functional of p and J only, which allows us to calcu-
late (5) simply as

part. Notice that VJ(R ) also depends on p. We have
solved [15] for Vp(R) directly in the proximity force
theorem as

VP(R ) =f IH(p) —[H, (p, )+H2(p2) ] ] dr

c,c,
C+C2

(8)

where C; are the Sussman central radii and the universal
function [28]

V~(R )= Vp(R )+ VJ(R ) . (7)

Here, V~(R ) is the J=O, p-dependent part of the interac-
tion potential and VJ(R), the spin-density-dependent

4(s)= f e(s)ds
$0

=f [H(p) —[H~(p&)+H2(p2)]]dZ . (9)

TABLE II. Comparisons of some theoretical barrier heights and positions calculated in energy-density model, using Skyrme force
SIII.

System Present
R~ V~

Empirical Staucu-Brink [12]
R~ Vg

Brink-Stancu [6]
Rg V~

Behera et al. [58]
R~ V~

16Q+ 16Q

16O+ 40C

7.90 10.97

8.94 23.98

7.60+0.4
7.60
9.00+0.4
9.03

11.20+0.6
11.00
23.70+ 1.0
23.70

7.70

8.50

11.06

25.12

8.10

8.80

10.41

24.04

7.70

8.50 25.19

16O+ 48C

6O+ 56N

40Ca+40ca

40ca+48ca
Ca+' Nj

48Ca +48Ca

48Ca+ 56Ni

9.22 23.20
9.21 32.28
9.68 54.26 8.80+0.5

9.10+0.6
10.06 52.60 7.80+0.3
9.95 73.72

10.45 51.05
10.33 71.50

52.3+0.5

55.60+0.8
51.30+ 1.0

8.80
8.80
9.25

9.60
9.50
9.90
9.90

24.32
33.91
57.76

56.05
78.36
54.58
76.08

9.10
9.10
9.50

9.80
9.80

10.10
10.10

23.33
32.74
55.92

54.31
76.27
53.22
74.11

8.80
8.70
9.20

9.50
9.40

24.50
34.20
58.01

56.52
79.14
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100

90

80

70

60

50)
X
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O

30

20

l0

0
0 10 20 30 40 50 60 70 80 90 100

emp.
V, (Mevj

FIG. 2. Comparisons between the empirical and our calculated barrier heights Vz, using Skyrme force SIII (A, =O). The calculat-
ed data are also given in Table I and the symbols are explained in the body of figure. The solid line is a straight-line fit to the data.

Here, s =R —
C&

—C2, with its minimum value so, and
e(s) is the interaction energy per unit area between two
Hat slabs of semi-infinite nuclear matter with surfaces
parallel to the X-Y plane, moving in the Z direction. For
the nucleon density p, we have used the two-parameter

Fermi density distribution (i = 1,2):

Z; —C;
p, (Z, )=pa; 1+ exp

a;
—~ +Z& oo

(10)

TABLE III. Comparisons of our calculated barrier heights with other model calculations taken from the compilation of Vaz et al.
[8].

System

12C+ 12C

12C+ 16Q
' C+ 'Si

C+ Si
16Q+ 16Q

16Q+ 24Mg
16Q+ 28S1

16Q+40C

18Q+ 28S1

Ne+40Ca
28si+ 28si

S+ Mg
32S+40ca
32S+ 58N

~Ca+' Ni
Ca+ 62N

Present

6.45
8.41

13.20
13.08
10.97
15.07
17.25
23.98
16.68
28.64
28.12
27.68
44.30
59.70
65.28
73.16
72.34

Empirical

6.37
8.09

14.53
13.20
10.85
15.26
17.00
23.06
16.90
28.41
28.67
28.28
43.92
61.91
66.32
73.36
72.30

Krappe

5.96
7.80

13.08
12.92
10.21
14.88
17.15
23.72
16.86
29.24
28.84
28.28
45.20
60.87
66.74
74.75
73.89

Barrier heights Vz
Proximity

6.32
8.25

13.75
13.56
10.78
15.62
17.96
24.72
17.61
30.37
29.98
29.40
46.63
62.41
68.18
76.37
75.39

Ngo et al.

5.61
7.37

12.47
12.36
9.69

14.20
16.40
22.84
16.20
28.23
27.82
27.26
43.96
59.68
65.78
73.57
72.87

Ngo-Ngo

5.91
7.75

13.04
12.89
10.18
14.86
17.14
23.75
16.84
29.33
28.94
28.36
45.48
61.37
67.32
75.47
74.54

Folding

6.27
8.07

13.47
13.33
10.40
15.05
17.40
23.83
16.81
29.04
29.19
28.28
45.00
60.94
66.51
74.72
73.64
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with Z2=R Z] for motion in the Z direction in a
plane. This density gives results that are identical with
the microscopic shell-model density and is more realistic
for heavy-ion collisions because it does not drop sharply
to zero like the TF density distribution. We obtain [15]

2

4(s ) —— ( —Ir ) I[5/3]+ —toI[2]3 2 2/3 3

+ I6 t3I[3]+ —,'6 (3tI +5tz )—', ( —', Ir ) I[s/3]

+4, +4,
with

I[.]=f [p"—[pl+pzljdzI,

f [P [Pl +P2 ]]dzl

Bpp'=, etc. ;
1

Notice that here we have not included the term
—,', (t, —t2)( J„+J~ ), since its contribution is found to be
small [29]. In terms of the single-particle orbitals P, , that
define a Slater determinant, the spin density J is defined
as

J (r)=( i —
) g p,*(r, s, q)[VQ;(r, s', q)X( s~ IT~s')] .

I, S,S

(13)

Here, s and q ( =n or p) represent the spin and isospin in-
dices, respectively, and the summation i runs over all the
occupied single-particle orbitals. For P;, we use the an-
satz [14,15]

R (r)
(l ,'mtm—, ~jm ) Yt '(r)y (s)y (t)

S
ml m,

(14)

(9t I 5t2 )IlIo

4„=—,', (3t, +5t, )A,4,

+" x f2m p

r2 ~2
Pi P2

P& P2
dZ)

This equation is solved numerically for the Fermi density
(10), using p„=p~. For the spin-density-dependent part
of the interaction potential, using p„=p~ =(—,'p), we get
from (4) and (5)

I +1 —vrwhere a= q, n, l—and R (r)=C„tr'+'e "" v„t(2vr~) is the
shell-model, normalized radial wave function with
v=mto!2' (fm ). The constant CoI varies smoothly
with mass number A of the nucleus, only within a shell

[7]
For an even-even nucleus with n„valence particles (or

holes) outside the closed shells, we divide [15] J (r) into
two parts (for q =n or p): one due to the core consisting
of closed shells and another due to the valence n, parti-
cles (+sign) or holes ( —sign),

VJ(R )=f [H(J)—[H, (J )+IH (Jz)]2]dr

= ——,'8'o f (p2V J, +p, V J2)dr . (12)
J(r)=JC(r)+J„(r) . (15)

Considering that valence nucleons couple to zero angular
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FIG. 3. The deviations between the calculated and empirical

barrier heights Vz as a function of Z&Z2, for various model cal-

culations. The data are from the compilation of Vaz et al. [8]

and are also given in Table III.
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FIG. 4. Same as Fig. 2, but for barrier positions Rz. The
multiple empirical estimates are joined by straight lines.
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TABLE IV. Effect of spin-density term on fusion barriers, for the Skyrme force SIII (A, =O). The systems are listed with respect to
their increasing Z, Z2 values.

System Z1Z2
Without spin-density

V~ R~
(MeV) (fm)

With spin-density
V~ R~

(MeV) (fm)
hV~

(MeV)
ERE
(fm)

12C+ 12C

12C+ 18O

Mg
C+ Si

' 0+' Mg
Mg+ Mg
Mg+ S

26Mg+ 32S

Ne+ ~Ca
Si+ "Ni
Si+ Ni
S+"Ni
Ar+ "Ni

~Ar+~Ni
ssNi+ 58Ni

Ni+ Ni
Ni+ Ni

'Ca+ Zr

36
48
72
84
96

144
192
192
196
200
392
392
448
504
504
784
784
784
800

6.43
8.02

11.47
13.02
15.05
20.76
27.25
27.13
27.89
28.59
51.74
50.95
59.29
64.97
64.01
98.15
96.67
95.25
96.88

7.50
8.08
8.33
8.61
8.53
9.17
9.29
9.30
9.20
9.21
9.99

10.19
9.94

10.22
10.42
10.46
10.66
10.87
10.96

6.45
8.05

11.53
13.08
15.07
20.88
27.37
27.29
28.12
28.64
52.10
51.22
59.70
65.28
64.22
99.03
97.30
95.69
97.33

7.50
7.98
8.33
8.51
8.43
9.07
9.29
9.20
9.10
9.21
9.89

10.09
9.84

10.22
10.42
10.26
10.56
10.77
10.86

0.02
0.03
0.06
0.06
0.02
0.12
0.12
0.16
0.23
0.05
0.36
0.27
0.41
0.31
0.21
0.88
0.63
0.44
0.45

0.00
—0.10

0.00
—0.10
—0.10
—0.10

0.00
—0.10
—0.10

0.00
—0.10
—0.10
—0.10

0.00
0.00

—0.20
—0.10
—0.10
—0.10

momentum, we get

J„(r)= [j(j+1)—l(1+1)——3]R&(r) .
4~r4

(16)

tions. Also, the contribution of spin-density-dependent
potential on fusion cross sections is analyzed.

A. Fusion barriers

Here, l and j refer to the shell containing the n„nucleons.
Since a core consists of a-closed shells and for a closed
shell n„=2j+ 1, we get from (16)

Table I gives our results of calculation for the barrier
heights and positions, using Skyrme interaction SIII with
A, =O, compared with available empirical estimates and

Jc(r)= g(2j +1)[j (j +1)
4m-r4

—l (l~+1)——', ]R (r) . (17)

100-

90-

This equation gives J=O for a nucleus with completely
filled major shells, i.e., both j=l+—,

' shells filled. For the
nucleon density p in Eq. (12) for Vz(R ) we have also used
the Fermi density (10) since, as stated before, the shell-
model density rnatch very well the Fermi density, at least
in the physically interesting tail region. The calculated
VJ(R ) are also identical [15] for the two density distribu-
tions.

Finally, on adding the Coulomb potential Vc
(=Z, Z2e /R) to nuclear potential VN, we get V(R)
which gives the height Vz and position R~ of the interac-
tion barrier for each target and projectile combination.

III. CALCULATIONS

In this section, we discuss our calculations of fusion
barrier heights and positions, their dependences on
masses and charges of colliding nuclei, and use in calcula-
tions of excitation functions. Our calculations are com-
pared with the available data and other model calcula-

80-

70-

60-

50-
Z

I, o-

30-

20-

10-

0& I I I I I I I I I

&0 20 30 70 80 90 10040 50 60

Z) Z2/( A) y A2)

FIG. 5. The variation of our calculated barrier height Vz
with Z, Z2/(A1 + A2 ) for a large number of reactions. The
solid line is a best fit to the data in terms of a second order poly-
nomial.
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FIG. 6. The variation of our calculated barrier position R& with A, A2 for a large number of reactions. The solid line is a least-
squares fit with a polynomial of degree three.

theoretical calculations based on models other than EDF.
Table II gives a similar comparison with other available
calculations using the EDF and Skyrme force SIII. The
contribution of spin-density-dependent potential is, how-
ever, not present in these earlier calculations based on
EDF. Our results clearly show that we are able to repro-
duce the empirical barrier heights Vz better and within
+1 MeV. This is further demonstrated in Fig. 2 where
V~"'"'"' is plotted versus Vz '"'". The straight-line

description of the data in this figure clearly shows the
success of our model calculation. We have carried out
this comparison further by comparing in Table III and
Fig. 3 the barrier height predictions of the various model
calculations. The data are taken from Vaz et al. [8].
Once again the deviations, Vz"'""" —Vz ~'""', lie closest
to zero in our case. Figure 4, however, depicts that the
situation does not remain the same when we compare our
calculations of barrier positions Rz with the empirical

TABLE V. Comparisons for the interaction barriers, calculated on the actual {marked exact) and the simple analytical formula,
using Skyrme force SIII {A,=O}.

System
Exact Analytical

V~ Rg System Vg

Exact Analytical
V~ Rg

12C+ 12C

12C+ 160
12C+ 180
12( +26Mg

12C+30S1
' C+ Ar
160+160
' 0+ Ne
' 0+ Mg
' 0+ Mg
160+28S.

160+40Ar

160+40ca
180+24Mg
' Ne+ Ca

Mg+ Mg
24Mg+ 28S1

4Mg+ S
Mg+ S
Mg+ S

6.45
8.41
8.05

11.34
13.20
13.08
16.38
10.97
12.81
15.07
14.83
17.25
21.42
23.98
14.55
28.64
21.19
24.39
27.68
27.37
27.29

7.50
7.70
7.98
8.44
8.45
8.51
8.84
7.90
8.37
8.43
8.64
8.55
8.94
8.94
8.71
9.21
8.96
8.98
9.09
9.29
9.20

6.72
8.56
8.39

11.83
13.65
13.47
16.45
10.94
13.22
15.42
15.20
17.56
21.25
23.71
15.13
28.93
21.90
25.02
28.08
27.77
27.71

7.78
7.91
7.97
8.21
8.27
8.32
8.58
8.07
8.23
8.38
8.45
8.51
8.89
8.89
8.48
9.14
8.77
8.94
9.10
9.17
9.19

Mg+ S
28SI+ 28S1

28S1+S8N1

28Sj+ 62Ni
' Si+' Si
30S1+S8NI

32S+40Ca

32S+ '8Ni

S+ Nj

34S +64N

"S+"N1
40Ar+ s8Ni

Ar+ Ni
Ca+ Ca

40ca+48Ca
Ca+' Ni
Ni+ Ni

' Ni+ Ni
Ni+ Ni

27.00
28.12
52.67
52.06
27.54
52.10
51.51
44.30
59.70
58.68
59.04
58.06
58.45
65.28
64.95
54.26
52.60
73 ~ 16
99.03
97.30
95.69

9.40
9.10
9.73
9.90
9.31
9.89

10.05
9.50
9.84

10.05
9.94

10.24
10.13
10.22
10.25
9.68

10.06
10.02
10.26
10.56
10.77

27.41
28.63
52.14
51.44
27.94
51.57
50.89
44.06
58.99
57.83
58.40
57.27
57.85
64.63
64.20
53.86
52.10
72.57
98.90
97.07
95.30

9.26
9.12
9.91
9.96
9.28
9.96

10.00
9.69

10.00
10.05
10.03
10.07
10.06
10.09
10.10
9.90

10.02
10.09
10.30
10.51
10.90
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FIG. 8. Comparisons of our calculated excitation functions with the available experimental data [30—33] and other model calcula-
tions [34,35], for '60+'60 reaction.



1846 RAJEEV K. PURI AND RAJ K. GUPTA 45

data (Table I). The straight-line description is now rather
approximate and does not go through the origin. In this
context, it is relevant to note that the empirical data for
fusion barriers are also always obtained in a model-
dependent way [8].

In Table I, we have also listed our calculated Coulomb
and nuclear potentials, V~ and VN, respectively, at
R =R~. We observe that V~ increases as Z, Z2 in-
creases. This is an expected result [11], since for larger
Z&Z2 values, more and more nuclear interactions are
needed to balance the Coulomb repulsion.

Finally, in Table IV we have analyzed the effects of the
spin-density-dependent term VJ in the potential Vz on
the barrier heights and positions. We notice that the
effect of spin-density term on barrier height V~ is to in-
crease it by as much as —1 MeV ( —1%) and shift the
barrier position Rs (inside) by 0. 1 —0.2 fm. The barrier
height seems to increase (almost} consistently with in-
creasing Z, Z2 value. The interesting point is that such
small changes in V~ and Rz due to VJ result in a de-
crease of fusion cross sections by as much as -50 mb.
This is discussed further in Sec. III C.

1500—
12C +, 180

Skyrme force S [$&

(A=0)

1000—

E

b

500—

10

E, (Ve V)

20

FIG. 10. Same as Fig. 8 but for ' C+' 0 reaction. The ex-
perimental data are from Refs. [30] and [41]. No other earlier
calculation is available.

B. Simple yarametrization of fusion barriers

Figures 5 and 6 show the variations of barrier heights
Vz and positions Rz with relevant quantities in terms of
only the masses and charges of colliding nuclei. The
height Vz is plotted as a function of Z

& Z2/
(A I~ +A2 ) since the major contribution to barrier
comes from Coulomb potential. The choice of Rz as a
function of A

& A2 stems from our earlier experience [7]
with a similar parametrization of the repulsive barrier po-
sition of spin-density-dependent potential Vz(R). Both
the Sgures show very little scatter of the data and are

+( l.3+0.25}X 10
2Zlz2

w'"+a'"
1 2

(18a)

Rs =7.359+3.076X 10 ( A, A~)

—1.182X10 (A, A2} +1.567X10 ' (A) A2)

(18b)

nicely represented by the second and third order polyno-
mials, respectively, as

Z1Z2
Vs =(0.845+0.020)

+22

103
" Co + " Ca 10

26~g + '4S

Skyrme force S!!!
(~ = 0)

102 6)

7)

38)

10
3

N go et. at.
Panda et. al. 39)

—- — Frobrich 102

Ve

50 55
I
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E {MeV)
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25 30

FIG. 9. Same as Fig. 8 but for Ca+ Ca reaction. The ex-
perimental data are from Refs. [36—38] and other model calcu-
lations are from Refs. [4,39,40].

E, (MeV)

FIG. 11. Same as Fig. 10 but for Mg+ S reaction. The ex-
perimental data are from Ref. [42).
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Equations (18a} and (18b) represent, respectively, a best
fit and a least-squares fit to the data in Figs. 5 and 6. We
have also attempted a least-squares fit to the data in Fig.
5 but that led to an unphysical result of negative barrier
( Vs = —0.9 MeV, instead of zero) for zero Coulomb bar-
rier. It is relevant to note that Eqs. (18) are obtained for
light colliding nuclei with charges up to Z=28 and
masses up to A =64 for each reaction partner.

We have also tested the accuracy of Eqs. (18}. This is
illustrated in Table V. We notice that barrier heights are
given within about 0.5 MeV and the barrier positions
within -0.25 fm. Ngo et al. [11] and later Brink and
Stancu [12] have also suggested a similar but graphical
method to calculate V~ and R~. These authors plotted a
parameter rs [ =Rs /( A I

~ + A z~ ) ) as a function of
Z, Zz/(AI +A&~ ) and Vz at R=R~ as a function of
rz. However, the parameter rz as a function of
Z, Zz/(A I + Az ) shows a larger scatter of the calcu-
lated data around the mean curve, as illustrated in Fig.
7. Thus, Eqs. (18) give almost for the first time an analyt-

ical simple method to calculate the fusion barriers from
the knowledge of only the masses and charges of reaction
partners.

C. Fusion cross sections

As already mentioned in the Introduction, a first calcu-
lation of the fusion cross sections for spin-unsaturated
nuclei is published as a short Comment in Ref. [16].
There we considered the reactions ' 0+ Ca, Ca+ Ca,
and Ca+ Ni. In these reactions, one of the reaction
partners is always a spin-saturated nucleus. Figures 8 —11
present our calculations for another four reactions
' 0+' 0 Ca+ Ca, ' C+' 0, and Mg+ S. The
first two of these reactions involve only the spin-saturated
nuclei, whereas the other two have both their reaction
partners as spin-unsaturated nuclei. The first two cases
of spin-saturated nuclei are of interest because of their
controversial nature of experimental data. Our calcula-

TABLE VI. Calculated complete fusion cross sections for some systems of highly spin-unsaturated nuclei, at energies E, ) V&.
The barrier heights are given in Table IV.

System

'Si+' Si

Ar+ Ni

E,. (MeV)

28.50
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00
42.00
43.00
44.00

65.50
66.00
67.00
68.00
69.00
70.00
71.00
72.00
73.00
74.00
75.00
76.00
77.00
78.00
79.00
80.00
81.00

56.92
101.79
187.04
266.80
341.57
411.80
477.91
540.24
599.10
654.78
707.54
757.58
805.13
850.36
893.43
934.50
973.70

34.69
78.95

163.05
241.72
315.48
384.76
449.97
511.46
569.52
624.45
676.49
725.86
772.76
817.37
859.86
900.38
939.05

26.55
51.22
99.43

146.23
191.67
235.82
278.72
320.00
360.99
400.46
438.88
476.29
512.72
548.22
582.83
616.56
649.47

11.02
35.80
84.25

131.27
176.93
221.29
264.39
306.30
347.06
386.72
425.32
462.90
499.51
535.18
569.95
603.85
636.91

of„, (mb)
(without VJ) (with VJ) System

ssNi+ 58Ni

E, (MeV)

99.50
100.00
101.00
102.00
103.00
104.00
105.00
106.00
107.00
108.00
109.00
110.00
111.00
112.00
113.00
114.00
115.00
116.00
117.00

46.64
63.60
97.00

129.76
161.87
193.37
224.27
254.59
284.33
313.53
342.19
370.34
397.97
425. 11
451.77
477.96
503.70
528.99
553.85

15.62
32.08
65.51
96.31

127.48
158.06
188.06
217.48
246.36
274.71
302.53
329.84
356.67
383.02
408.90
434.33
459.31
483.87
508.00

of„, {mb)
(without VJ) (with VJ)



1848 RAJEEV K. PURI AND RAJ K. GUPTA 45

300

250—

200—

~ 150-

b

100—

50-

"e
o

98 100 102 104

(M eV)

106

FIG. 12. Calculated excitation functions for "Ni+ "Ni reac-
tion, using Skyrme force SIII (A, =O) with and without spin-
density effects.

tions for E, ~ V~, using the sharp cutoff model expres-
sion (3), give the general trends of the experimental data
rather nicely in all the four cases. For ' 0+' 0 and

Ca+ Ca reactions, in contrast to earlier calculations,
our calculations do not fit one or the other experimental
data, but support their average behavior.

Finally, in order to see the contribution of spin-density

term on fusion cross sections, we have calculated
0 f(E, Vz ), with and without spin-density contribu-
tion, for the reactions Si+ Si, Ar+ Ni, and

Ni+ Ni. The results of this calculation are presented
in Table VI. These reactions use rather highly spin-
unsaturated nuclei. We notice that fusion cross sections
decrease with the addition of spin-density contribution
and these effects increase more and more as we go to-
wards the highly spin-unsaturated system like

Ni+ Ni. This is further illustrated in Fig. 12 for the
case of Ni+ Ni, where the cross sections are shown to
decrease by as much as -50 mb due to the addition of
spin-density effects in the potential. This is apparently a
large effect for comparisons with experimental data.

IV. SUMMARY

We have used the energy-density model, based on
density-dependent Skyrme interaction, for calculating the
fusion barriers within the sudden approximation. The
spin-density effects are also included. Our calculations
are made for light nuclei (each nucleus with
Z ~40, A ~90) and both the closed and unclosed shell
nuclei are considered. We find that our calculated barrier
heights lie within about +1 MeV of the empirical esti-
mates. The role of spin density is found to increase the
barrier heights by as much as —1 MeV and shift the bar-
riers inside by 0. 1 —0.2 fm. Such seemingly small
changes in barrier heights and positions are found to de-
crease the fusion cross sections by as much as -50 mb.
The fusion cross sections, calculated within the sharp
cutoff model for E, V~, are shown to be in nice
agreement with experiments. Finally, simple analytical
formulas are obtained which allow us to estimate the
fusion barrier heights within an accuracy of -0.5 MeV
and positions within -0.25 fm, simply from the masses
and charges of colliding nuclei.

This work was supported in part by the Department of
Science and Technology, and the Council of Scientific
and Industrial Research, Govt. of India.
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