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Extraction of nuclear spin response functions from spin observables of nucleon quasifree scattering

Munetake Ichimura
Institute ofPhysics, University of Tokyo, Komaba, Meguro ku-, Tokyo 153, Japan

Ken Kawahigashi
Department of Information Sciences, Kanagawa University, Hiratsuka 259-12, Japan

(Received 7 November 1991)

Extraction of spin-longitudinal and -transverse response functions from polarization transfer measure-

ments of nucleon-nucleus quasifree scatterings is discussed. The method proposed by Carey et al. is

reconsidered and more general formulas are presented. Spin-longitudinal and -transverse interactions
are well defined in the nucleon-nucleon scattering t matrix in the nucleon-nucleon center-of-mass frame.

However, observed data are given in the nucleon-nucleus laboratory frame and theoretical analysis based

on the distorted-wave and plane-wave impulse approximations is carried out in the nucleon-nucleus

center-of-mass system, in which the t matrix in a certain optimum frame of the nucleon-nucleon system

is used. Careful consideration is paid for transformations among these reference frames relativistically.

PACS number(s): 24.70.+s, 25.40.Ep, 25.40 kv

I. INTRODUCTION

Extraction of the nuclear spin response functions by
measuring polarization transfers, D;J, of (p,p '), (p, n)

scatterings, etc., in the quasifree scattering region is a
current exciting subject.

For this purpose Carey et al. [1,2] introduced "longi-

tudinal and transverse spin Hip probabilities, "S~ and ST,
as

I
ISL —= —[1 D~tv +(Dss' D—

LL, ')secf)i b]L 4

I
IST =—[1 Dtttt (Dss—' Dt—t )sec8i b]

4

where I is the unpolarized differential cross section and

0~,& is the scattering angle in the laboratory frame. The

quantities D; are the parity-allowed polarization

transfers in the laboratory frame where the left (right)

subscript denotes the initial (final) polarization direction.

N denotes the direction normal to the reaction plane and

L (L') and S(S') denote that of the momentum of the in-

cident (outgoing) nucleon and the corresponding trans-

verse one in the reaction plane, respectively. Recent
measurements [1,2] of SL and ST provoked a very in-

teresting question since it contradicted the theoretical
prediction [3].

Theoretically it is predicted that, for the relatively
large momentum q (=1.5 —2. 5 fm ') region, the spin-
longitudina1 response function RL is enhanced and
softened (energy spectrum being shifted downwards) due
to pionic correlation in the nucleus while the spin-
transverse response function RT is quenched and har-
dened (energy spectrum being shifted upwards) due to the
short-range correlation and therefore the ratio RL/RT
should be larger than unity.

Experimentally the ratio was evaluated in Refs. [1,2]
on the basis of the ansatz of Bertsch, Scholten, and Es-
bensen [4],

IS& =INNS&NNN R (q co)

1ST=I S N RT(q, to),
(1.2)

where the quantities with the superscript NN mean those
for the NN scattering and N, is the effective number of
participating nucleons. Rather than calculate SI and

ST from the phase shift, they assumed that those for the
averaged values of the pp and pn observables can be re-
placed by those of the deuteron, SL and ST, as

Sd SNN
L I. Sd SNN

T T (1.3)

Then, the ratio of the response functions is given by

RL (q, co) SL /SL

R T(q, co)
(1.4)

The ratio thus experimentally obtained was found to be
less than unity [1,2].

After this contradiction was found, many theoretical
refinements [5] were performed, such as inclusion of dis-
tortion effects, surface effects, two-particle —two-hole
configuration mixing, different choices of effective in-

teractions, etc.
In contrast to these works, here we want to reconsider

the validity of the formulas (1.1) themselves. As we will

show in Sec. II, for the free nucleon-nucleon (NN) scatter-
ing the proposed linear combinations of D, , i.e., ISI and

IS&, of Eq. (1.1), exclusively extract the contribution
from the spin-longitudinal part, E'ciao o.&, and the spin-

transverse part, F'o.
o cr&, respectively, of the NN t ma-

trix in the center-of-mass (c.m. ) frame shown in Eq.
(2.10).

The point we want to investigate is whether one can

apply the same relations to the nucleon-nucleus (NA)
scatterings as Carey et aI. did. We will show that their
formulas (1.1) work when the target nucleus is assumed

simply as an ensemble of free nucleons at rest and free
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NN scattering occurs only once between the incident nu-

cleon and a nucleon in the nucleus. However, even in the
simple plane-wave impulse approximation (PWIA), appli-
cability of the formulas to the NA scattering is question-
able and must be reconsidered when we take account of
Fermi motion, binding effects, recoil of residual nucleus,
etc.

A question is the following. Theoretical analysis is
usually carried out in the c.m. frame of the NA system,
and calculated results are then to be expressed by ob-
served quantities in the NA laboratory frame or vice ver-
sa. The relations between D;.'s in the NA c.m. and in the
NA laboratory frame are not the same as those between

D, 's in the NN c.m. and in the NN laboratory frame in
general. The difference gives rise to questions about the
applicability of the formulas (1.1). We derive the general
formulas valid for the transformation from the NA labo-
ratory to the NA c.rn. frame, and consider some limiting
cases in Sec. II.

Another question is as follows. In impulse approxima-
tion, the driving force that excites the nucleus is the NN
scattering t matrix. It can be on shell as well as off shell
and depends on the momentum of the collided nucleon in
the nucleus, over which one must integrate. In the
distorted-wave impulse approximation (DWIA) more
complicated integrals are involved. It is a general prob-
lem to approximate the t matrix by the known on-shell
free NN t matrix in the NN c.m. frame and to carry out
the integral.

For this purpose, an optimum factorization procedure
is usually adopted, by which the t matrix is replaced by
the on-shell t matrix in a certain special frame (the op-
timal frame) and is factored out from the integral. For
instance, the t matrix in the Breit frame is often used for
the elastic scattering [6]. For inelastic and charge-
exchange reactions with large energy transfer, it has been
pointed out that the optimal frame could be much
different from the NN c.m. frame and the Breit frame and
that more elaborate consideration is required [7,8].

If the t matrix in the NN c.m. frame or in the NN Breit
frame is used, one knows what linear combinations of D;.
in the NA c.m. frame isolates the spin-longitudinal and
-transverse parts in PWIA. However, one must ask what
kinds of combinations should be utilized for inelastic and
charge-exchange reactions when one takes account of the
proper choice of the optimal frame. This problem is dis-
cussed in Sec. III. We treat the frame transformations re-
lativistically and thus the relativistic spin rotations
(Wigner rotations) are taken into account. A summary is
given in Sec. IV.

tively, and the momentum and energy transfer to N by

q=k' —k, b, =E(k') —E(k), (2.1)

with E(k)=+k +m where m is the nucleon mass. We
also use the notation co ( = —b, ) for the energy transfer to
X. We then introduce the unit vectors

q kXkq= , n= , , p=qXn,
Iql

' IkXk'I ' (2.2)

which form a Cartesian frame. The directions of them
are denoted by q, n, and p, respectively.

The scattering T matrix in this frame is generally writ-
ten [9] as

T(k, k') = f'p+ 1'„op„+f'qo pq+ 1'per()p, (2.3)

(2.4)

with the kinematical factor

PiPf k' 1

(2qr)z k 2(2J»+1)
(2.5)

where Jx is the target spin. The relativistic reduced
masses, p; and pf, are given by

E(k)E» E (k')E$

E(k)+E» E(k')+Ef (2.6)

where E» (Eg) is the energy of the initial (final) state of
X. The symbol Tr means the trace of the spin substates
of the scattering nucleon and Tr' symbolically denotes
the summation of all allowed initial and final states of X,

Tr'[TT ]=+(f~T~i )(i~Tt~f )5(co (Eg E»)) . —(2.7)—

One then obtains

where 0.0; is the projection to direction i of the Pauli ma-
trix of the scattering nucleon and f' s are the operators
on the target X. In this paper we suppress the isospin de-

gree of freedom. It can be included straightforwardly if
necessary.

The unpolarized differential cross section I and the po-
larization transfer D; are given by

II. KINEMATICAL CONSIDERATION

Let us consider elastic, inelastic, or charge-exchange
nucleon scatterings with a target X which can be a nu-
cleon or a nucleus,

N+X —+N+X* .

I=2KTr'[f'pf'p+f'„F„+f' f' +1~f~],
ID„„=2KTr'[1'p1'p+ f'„f'„1' f' f' f' ], — —

ID =2K Tr'[1'pf'p —f'„f'„+f' 1 —f' f' ], (2.8)

First we discus the scattering in the c.m. frame of the
NX system. In this frame we represent the rnomenta of
the incident and outgoing nucleons by k and k', respec-

Bleszynski et al. [9] introduced the observables D, ,
which isolate the strength Tr'[T, Tt], as
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IDp =—[1+D„„+D +D „]=2KTr'[TpTp],
4

ID„=—[1+D„„D— D—] =2K Tr'[T„T„],
4

ID =—[1 D„—„+D D—]=2K Tr'[T T ],q 4 nn

(2.9)

+ E 0 )q0 pq +F cT )p 0 pp (2.10)

where o.„ is the projection to direction i of the Pauli ma-
trix of the target nucleon 1. We denote the NN t matrix
in general by (kp, k', ~t~kp, k, ) for the NN scattering with
momentum change kp, k, ~kp, k', . Then one gets

Tp= A +C 0'~ T =B (7& +C
(2.11)

T =E'0.), T =F'o,

The t matrix in the NN c.m. frame is related with the
standard form [10] of the NN scattering amplitude
M(k, k') as

M(k, k')= — (k', —k'batik, —k)E(k)
4a

= A +Bo,„op„+C(o &„+op„)

+Eg jqopq+Fo]popp (2.12)

and thus Eqs. (2.9) and (2.11) give the well-known formu-
las

D =/A/ +/C[ I~ D
(2.13)

D =/E/ I D =/F/~
q 7 p

Here we see that I D and I D exclusively ex-
tract the contribution from the spin-longitudinal part,
Eo

&q
0 pq, and that from the spin-transverse part,

Fo. , opp, of the NN c.m. amplitude, respectively. To
separate

~
A ~, ~B~, and ~C, one needs to observe anoth-

er spin observable such as

ID = [1 D„Dq&+D ]=2K Tr'[T T ]p 4 nn qq

For the case of nucleon-nucleon scattering, namely, X
being a nucleon, the NN-scattering T matrix is written as

T(k, k') = (k', —k'~ t~k, —k &

= A '+ B'o,„crp„+C'(o, „+o p„)

sin8
tan(8 —8„b—0)=

y cos8+ /, (2. 16)

in contrast with the well-known relation between 8 and
8i.b:

sin8
tan8), b

=
y, (cos8+P, /P)

' (2.17)

where p, is the velocity of the c.m. frame relative to
the laboratory frame, y, =(1—p, ) '~, and p is the
velocity of the outgoing nucleon in the c.m. frame and
y =(1—p )

'~ . Note that when mass of X is equal to m
one gets P=P, and thus 0=8—28„b.

From Fig. 1 one sees

Ltt =E=cos8 p
—sin8 q,

Sz =S=sin8 p+cos8 q,
L~ =cos(8 —8„b—Q)p —sin(8~ —

8&,b
—Q)q,

S~ =sin(8~ —8),b —0 )p+ cos(8~ —8),b —0 )q;

(2.18)

hence one gets the relations between D," in the c.m. frame
and those in the laboratory frame as

tation will be investigated in the next section. From the
experimental difhculty of separating C terms as was men-
tioned above, we will henceforth only consider the Dq
and D observables.

A problem we have to solve is to express the spin ob-
servables in the c.m. frame by those in the laboratory
frame for arbitrary X, including the effect of relativistic
spin rotation. In the laboratory frame, we denote the
unit vector to the beam direction by L and that of the
outgoing nucleon by L'. The unit vector normal to the
reaction plane is written as N ( =L X L'/~ L X L'

~ ) and
those of the sideway direction by S=N X L and
8'=N X L'. In the relativistic kinematics, the spin in the
L' direction in the laboratory frame corresponds to that
in the L~ direction in the c.m. frame, due to the spin ro-
tation by angle 0 around the axis n. Figure 1 illustrates
relevant directions, where the scattering angles in the
c.m. and laboratory frames are denoted by 8 and 8&,b, re-
spectively, and 8 represents the angle between incident
beam direction and the unit vector p defined in Eq. (2.2).

The relativistic spin rotation angle 0 is given by [12]

Tr Tr'[Tcr, op T cr& op ]
C

Tr Tr'[ TT ]

by which ~C~ is evaluated as [11]

(2.14)

(2.15)

To observe C, one needs the polarized target as well

as the polarized beam and has to measure the polariza-
tion of the recoil nucleon as well as that of the scattered
nucleon.

Even for an arbitrary target X, we may expect ID and
ID to exclusively represent the spin-longitudinal and
spin-transverse responses if we adopt PWIA. This expec-

L

e(ab

N

FIG. 1. NN scattering kinematics in the c.m. and laboratory
frames.
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NN nn

Dss

DLS'

DsL'

'cosO cos(8» —O„b—Q)

sinO& sin( 8 —
8&,b

—Q )

COSO~sin(8 —
8&,b

—Q )

sinO cos(8„—O„b—Q)

Dqq
X

w

sinO~ sin( 8~
—

8&,b
—Q )

cosOp cos( Op Oi» Q )

—sinO~COS(8 —O„b
—Q)

—cosO sin(8 —O„b—Q)

—cosO sin(8 —
O„b—Q)

sinO~ cos(8~ —
8&,b

—Q )

COSO~ cos( 8~
—

O„b—Q )

—sinO sin(8 —
8&,b

—Q)

—sinO cos(8 —
8&,b

—Q)
'

cosO sin(8 8, b Q)
—sinO~ sin(8 —O„b—Q )

cosOpcos(8~ Oi~b Q )

(2.19)

From Eqs. (2.9) and (2.19), D and D~ are expressed as

Dq =
—,[1 Dtqtq + (—Dss DLL )c—os(28~ —

O~,b
—Q )—(Dts. +DsL. }Sin(28~ —8~» —Q) ],

(2.20}
D~ =

—,[1 Dtqtq
—(Dss.—DLL, .)—cos(28~ 8„„—Q)+(—DLs'+DSL, )sin(28~ —8„„—Q)] .

In the nonrelativistic limit, the recoil particle is emitted to the direction of —q in the laboratory frame, therefore

0+0 =—,7T

p (2.21)

where 8„ is the recoil angle in the laboratory frame. Since Q =0 in this limit, the relations (2.19) become

nn

DLL. 'SinO„sin(8„+Oi b) cosO.cos(8. +Oi b) sinO. cos(8. +Oi b)

Dss cosO, cos( 8„+O~,b ) sinO„sin(8„+ 8&» ) cosO„sin( 8„+8~»)

Dts sinO„COS(8„+8& b} cosO.sin(8. +Oi b) sinO. sin(8. +Oi b}

DsL, cosO„sin(8„+O„b) —sinO„cos(8„+O„b) —COSO„COS(8„+8&,b)

They coincide with the formulas derived by Moss [13] [see Eq. (7) of Ref. [
actly hold [14]only for the elastic scattering. Then D and D are given by

—cosO„sin(8„+O„b)

sin 8„cos(8„+O„b )

—cosO„cos(8„+O„b)

sinO„sin(8„+ 8&,b)

Dqq

Dw

D

(2.22)

13]],if one assumes Dz +D~ =0 which ex-

Dq =—[1 Dtqtq (Dss' DLL )cos(28„+8~ b) (DLs'+DsL, )sin(28„+8&»)]

D~ =
—,
' [1 Dtqtq + (Dss —DLL. )Cos(28„+O„b)+ (DLs'+DsL, )sin(28„+ 8&,b) ]

(2.23)

Dq & [1 D»+Dss DtL ]

Dt, =
—,
' [1 DtqN, Dss. +DL—L.], — (2.24)

which coincide with Eq. (2.14) of Bleszynski et al. [9].
For the nucleon-nucleon elastic scattering,

0p =
& Q =0 20&&br Dpq +DE =00

2' (2.25)

then one gets from Eq. (2.19)

We note that the recoil angle 0„and consequently 0&
rather strongly depend on the energy transfer m.

If one further assumes that the mass of X is infinitely
heavy and neglects the energy transfer (co=0), one gets
0=0),b and 0p =0/2 and

Dq =
—,
' [1 Dtqtq+(Dss —

DLL )secOt, b]

D~ =
—,
' [1 DNtq (Dss DL—L,

.)secB—
I b] .

(2.26)

These equations are nothing new but the formulas (1.1)
by identifying D and D to SL and ST of Eq. (1.1).

From the above consideration, one can say that
Carey's formulas (1.1) work only in the approximation
where a nucleus is treated simply as an ensemble of free
nucleons at rest and only one free NN scattering occurs in
the quasifree scattering. They do not hold in general. An
important difference between Eq. (1.1) and our exact ex-
pression (2.20) is that even for a given 8&,b, the angles 8
and 0 still depend on the energy transfer co and affect the
energy spectra of D and D in Eq. (2.20) but their energy
dependence disappears in Eq. (1.1).

In Table I the relevant angles are shown at several en-
ergy transfers co for Ca(p, p') with the incident energy
500 MeV and the fixed angle 0&,b=18.5, which corre-
sponds to the LAMPF experiment [1,2]. For this exam-
ple, the spin rotation angle 0 is small enough to be
neglected but 0 strongly depends on co and this effect
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TABLE I. Rotation angles associated with the transforma-
tion from the NA c.m. to the laboratory frame for Ca(N, N')
with the incident energy 500 MeV and the scattering angle
0),b=18.5'.

must be taken into account. Unfortunately observed
values of D; have not fully been reported. Therefore we
cannot see the effect at the moment.

(MeV)

30
60
90

120
150

Op

(deg)

15.72
22.39
29.09
35.65
41.94

0
(deg)

0.24
0.24
0.23
0.23
0.22

20p-0) b-0
(deg)

12.70
26.03
39.44
52.58
65.16

III. OPTIMAL FACTORIZATION IN
THE IMPULSE APPROXIMATION

In this section we discuss the nucleon-nucleus inelastic
and charge-exchange reactions in PWIA. Therefore X in
the preceding section represents a nucleus with the mass
number A. As is depicted in Fig. 2, the T matrix in the
NA c.m. frame is written in terms of the NN t matrix as

A A

T,o(k' k)=A f Pd'p;d'p, '+„*(,p', p', , p' )(k', p'ltlk, p )+o, (p, p, . . . , p )g~(p'; —p;), (3.1)

in the momentum representation where p; (p,') is the momentum of the ith nucleon in the initial (final) state of the nu-

cleus with respect to the NA c.m. frame. The wave function '0„p represents the nuclear state with the center-of-mass
momentum P and the internal state n and is written as

p ~ ) =& gp; —P @'.(pl p"~ » (3.2)

with

p,'—=p,- —P/A, (3.3)

where p,
" is the momentum of the ith nucleon with respect to the center of mass of the nucleus. Here nucleons in the

nucleus are treated nonrelativistically. The T matrix is rewritten as

A

T„(k',k) = A f gd p,"@„'(p",—q+q/A, p2+q/A, . . . , p"„+q/A)

X(k', p&
—q —k/A~t~k, p", —k/A )40(p&, pz, . . . , p"„)5 gp," (3.4)

The integration over p& is cumbersome since it appears in t as well as in the wave functions. Furthermore, the t ma-
trix is off the energy shell in general. A way to deal with these diSculties is an optimum factorization approximation,
in which p", in the t matrix is replaced by a certain averaged value p" so that it becomes on-shell. Then the t matrix is
factored out from the integral as

T„o(k',k) = g (k', s', p', s', t~k, s, p, s, )F„o ' (q),
I

$),$ )

(3.&)

with

kP=P (3.6)

and the nuclear transition form factor
I

S
AS(F„,' '(q)=A gd'p, "4„*(p",—q+q/A, si, pz+q/A, . p~ q/A)@o(pi si p~ . . p~@ Xp (3.7)

Here only the spin projections, s,s', s&, s&, of interacting
nucleons are explicitly written. Hereafter when these s's
are suppressed, t and F are understood as matrices with
respect to the spin projection.

For NA elastic scattering, the optimum momentum p
is usually chosen [6] so that the scattering, (k, p~k', p'),
becomes the one in the Breit frame, namely,

1P=2

with

k+k'
a

——=—q—

(3.9)
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(K, K ItIK, K) = A'+B'o, „op„+c'(cr&„+crp„)

+E 0 )q cToq +F cT )p cTpp
C C C C

(3.16)

-0
FIG. 2. PWIA in the N A c.m. frame.

qc KXK

Iq, I

'

ka
p, =q, Xn, =

C

with

(3.17)

Here we represent the momenta of the incident and out-
going nucleon in the NN c.m. frame by K and K', respec-
tively, and introduce the three orthnormal vectors

E(k)+E(p) =E(k')+E(p')

with a special choice

k,

(3.10)

This choice is often used even for inelastic scatterings,
but it is questionable for large energy transfer processes.

The choice of the optimum momentum ff for inelastic
scatterings was carefully discussed by Gurvitz [8] non-
relativistically in the NA laboratory frame, and by Zhu,
Mobed, and Wong [7] relativistically for infinitely heavy
target. Here we follow Gurvitz's argument but in the
NA c.m. frame and treat the interacting NN system rela-
tivistically as Zhu et al. did. In their formalism the op-
timum momentum p is chosen to satisfy the on-shell con-
dition

q =K K k =K+K (3.18)

E =E(k)+E(P)=E(k')+E(P'),
K—=k+p=k'+p',
E —=E (k) —E (y') =E (k') —E (p),

(3.19)

K =k —P'=k' —p,
and Lorentz invariant variables

To relate the above t matrices we need the rotation an-
gle P from the q„n„p, to q, n, p triad and the relativistic
spin rotation angles y, y' for the initial and final states of
the incident nucleon and p, p' for those of the target nu-
cleon. To obtain them it is convenient to introduce four-
vectors (E,K) and (E,K) in the rt frame as

and thus

k,p'= ( ,'+n)q—- (3.12)

$ ff E K Q ff (3.20)

The four-vectors (h, q), (E,K), and (E,K) correspond

to the four-vectors (O, q, ), (Qs, tt, 0), and (O, k;) in the NN
c.m. frame, respectively. Therefore the relations

Then g is given by

E, 1 1 k,+ —— Pl +
q Aq 4 t,ff

with

E2g2
a

A q

(3.13)

Eh —K q=O, Eh —K q=O, EE—K.K=O,

t,tt= —(q, ), u,s= —(k;)

hold. Noting the identity

A —1- 2Ag
A+1 A+1

(3.21)

E(k)+E(k')
(3.14) it is helpful to introduce another four-vector in the g

frame

where the relation E,h —k, q=O is used. For the elastic
scattering 5=0 and thus g =0, hence the given optimum
frame becomes the Breit frame as is usually used.

Next we should express the t matrix at the optimum
frame (to be called g frame), (k', p'ItIk, p), in Eq. (3.5) by
the known one at the NN c.m. frame, (K, K ItIK, K).
The former has the general form

((,0)=(E,K)— (E,K)+ (b„q),A+1 ' A+1
which corresponds to

A —1 k, 2Art
A+1"'+ A+1 q'

(3.22)

(k', p'ItIk, p) = A "+B"o &„op„+C[lo p„+C2o &„
in the NN c.m. frame. So one gets s,tt=E( Using this, .
one can write

+D ) o )pcJpq +D)cJ )qlTpp

+E 0 )qo oq +F cT )pcTop

while the latter has [see Eq. (2.10)]

(3.15)
(E,K)—( $,0)=(EP,',K ), (3.23)

where P, =K/E is the velocity of the c.m. frame with
respect to the g frame. This corresponds to
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A —1 ~ 2Agcg+1c
in the c.m. frame. The Lorentz transformation of the
four-vectors (b„q ) and (EP, , K) in the rt frame to those
in the c.m. frame gives

As q, -k, =0, the angle between q and q„which is the ro-
tation angle g, is given by

—(A —1)Ebtang= Q u efflt eff
( A +1)vr s,ff(+s,ff+E)—2A rtEA

(3.25)

K,
Qs,ff+E

A —1, 2A rI +seff
3+1 ' 2+1 ' E

(3.24)

Relativistic transformation of the t matrix in one frame
to that in the other is explained in detail by McNeil, Ray,
and Wallace [15] and by Zhu et ol. [7]. We follow the
latter below.

Let M be the relativistic invariant scattering matrix,
the t matrix component in any frame is given by

(kp sp k] s] ~t~kp sp k] s] ) y y (kp k]~ t~ kpk])y

2

u, (kI])u', (k'])M 'u (k )u' (k )

QE (kp)E (k, )E (kI])E (k', )

(3.26)

where y, is a Pauli spinor and u, (k) is a Dirac spinor with positive energy which is normalized as uu =1. The Dirac
spinor is expressed as

Xg
u, (k)=L(k} (3.27)

with

L(k)= 1

&2m [E(k)+m]
E(k)+m

cr.k
cr k

E(k)+m (3.28)

Following the procedure of Ref. [7], the t matrix in the g frame is expressed by that in the c.m. frame as

(3.29)(k', p'~t~k, p) =J(k, q, q)exp y'crp„—exp ——p'o]„(a', a'~t~tc, —x)e—xp perp„exp — p—o,„—
with Moiler factor

E (a. )J(k, q, rt) =
+E (k)E (k')E (p )E (p')

(3.30)

The spin rotation angles, y, y', p, p', around the normal n are given by

exp —perp„ 1 =Lp( rc)L p(
—P )Lp(k), —

exp g'cr p„1=Lp(—k')Lp(—P)Lp(a. ),

exp ——po, „ 1 =L, (a }L]( —P)L] (p),
(3.31)

exp — p'cr, „1—=L, ( —p')L, (P)L, ( —a ),

and explicitly written as
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A —1

2 A+1

A —1 2A
2 A+1 A+1

+teff" eff

Seff

Qfcffucff

Seff

Ep+ gs,ff/2+ m +E(k)

E~+Qs,ff/2+m +E(k')
(3.32)

tan
A —1

A+1
2A

A+1
effu cff

Seff Ez+y's, ff/2+m +E(p)

tan
A —1 2A
A+1+ A+1" Seff

E
Ep+Qs, ff/2+ m+E(ff')

where

P=— K, EI, —= E . (3.33)

Now each amplitude of the g frame t matrix is expressed by those of the c.m. frame t matrix as

A"

=J(k, q, rl)
1

cosf'y cos+ y
0 1

sing+ sing+

i sing+cosy+
—i cosy+sing+

Sin+ ~Sing ~

COStP g COS+ ~
0 1

—i cosy+sing+

i sing+cosy+

i sin(go~ —
q i~)

i sin(go~ —
q i~)

cos(p+ p+ )

cos(m+ —V+)

B'
C'

(3.34)

F'9

—cosy sing' sing cosy'
—sing cosy' cosy sing'

=J(k, q, rl)
cosy cosy' sing sing'

sing sing' cosy cosy'

T

Et
F'

where

m+ =(X+X')/» m'- =0+(X—X')/2,

m'+ =(p+p')/» m' =0 (p p')/-2 . — — (3.35)

In Ref. [7], an infinitely heavy target (A ~~) is assumed and the Moiler factor is omitted and the directions of n, q,
and q, are opposite to ours. Some misprints are also corrected.

Then one gets

Fo =g ( A "I,+C$o,.„)e

A
f' =g (E"o; +D",o; )e

A

1'„=g(B"o;„+C",I;)e

A
f' =g (D2o, +F~a, )e. (3.36)

These equations say that P (f~) does not excite the pure spin-longitudinal (-transverse) mode and consequently ID~
and ID of Eq. (3.5) do not represent exclusively the spin-longitudinal nor spin-transverse nuclear responses but their
mixture.

Now let us set the spin of the target nucleus J to be 0. The spin-longitudinal and -transverse response functions, RL
and R T, are defined as
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2

RL(q, co)=—g &4'„),lgo, e 'l+o „) 5(co (E—„" —E„))
n l

=—g g(o, ), ,F„'0(q) '&(~ —(E„"—E'„)),
n s,s'

2

R (q, )=—g &+., —g lg;, 'I+o, —g) &( —(Eg —E' »2.
(3.37)

1 I

g(o~), ,F„'0(q) '&(~ (E—~ —E~ )) .
n ss'

One can show that the interference part of the response function

R~(q, ~)=g &+o, ~l~, e ""I+.
& &&+„,I«"''I+, , )&(~ (Eg ——Eg))=0, (3.38)

by using the formula for the momentum diagonal part of
the density-current polarization propagator derived by
Alberico et al. [16] [see Eqs. (2.20) and (2.24) of Ref.
[16]]. We remark that R's defined in Ref. [16] are the
above one times q except for the isospin factor. We also
note that in the distorted-wave impulse approximation
(DWIA) the response functions nondiagonal with respect
to q are needed and the interference term R remains in
principle, though it could be small.

From Eqs. (2.29), (3.36), (3.37), and (3.38), ID~ and ID~
are expressed as

IDq 4E(IDPI Rr+ IE"
I Rt )

IDp=4E(ID2II Rt +IF"I Rr) .
(3.39)

holds, then ID and ID exclusively extract the spin-
longitudinal and -transverse strength as ID =4EIE "I RL
and ID =4EIF"

I
R T. If the effect of distortion is simply

represented by the common reduction factor N, due to
absorption, they are approximated as

Though they are not proportional to RL and RT, respec-
tively, one can deduce RL and R T from them by knowing
theoretical values of ID~&l, ID)I, IE",and IF"I .

The undesirable amplitudes D~& and D2" are evaluated

by the rotating angles y and y' as well as the ampli-
tudes E' and F'. If these angles are so small that the ap-
proximation

IE"I = JE'I IF"I =IJF'I ID"
I

=ID"
I

=0 (3.40)

m =I""D"x, I
JI'R„m =I "D"~z, IJI'R

(3.44)

which corresponds to the relation (1.2).
The rotation angles for the case of 500 MeV nucleon

colliding on Ca are shown in Table II for some
transferred energies co and the fixed scattering angle

0&,b=18.5'. For the charge-exchange channel, the g
frame amplitudes near the incident energy E;„,=500
MeV, momentum transfer q=1.75 fm ', and co=70
MeV are estimated from the c.m. frame amplitudes [17]
at 515 MeV as

I
E~

I

2 ID vg

I

2 ID vg
I

2

IF7/I 2 '
IFlyl2

' '
IF7JI2

=2.4, =0.017, =0.007 . (3.45)

Therefore the contribution from the terms with D"'s may
safely be neglected and the approximation (3.40) works
for this case. It was utilized in our previous DWIA cal-
culation [5].

For higher incident energies, one may expect larger
e6'ect of relativistic spin rotations. For a given 0&,b, y s

and p's naturally increase as E (k) does. However, the ra-
tio co/E(k) decrease and consequently rI becomes small-

er. This means that the q frame comes close to the Breit
frame. In this limit, one sees y —y'~0, p

—p'~0, and

$~0 and thus the frame transformation does not affect
the E and F terms. McNeil et al. [15]have given the ex-

plicit formula for the transformation from the c.m. to

m, =4rcx, IE&I'R„m, =4rcx, IF&I'R, .

Now the ratio RL /RT is given by

R, (q, ~) D ZIE&l' D ZIEI'

R,(q, ~) D, rIF~I' D, RIFI'

Note that for NN scattering,

IN D =IN+sN =4~IE'I

INND NN INURN 4' IF I2 IFI2
p T 7

which coincide with Eq. (2.13), then Eq. (3.41) gives

(3.41)

(3.42)

(3.43)

X X p
(Me V) (deg) (deg) (deg) (deg)

P
(deg) (deg) (deg)

30
60
90

120
150

1.00
2.01
2.90
3.62
4.11

1.11
0.11

—0.80
—1.55
—2.12

2.99
3.90
4.72
5.40
5.89

1.24
0.12

—0.89
—1.73
—2.35

3.29 0.06 2.03
4.24 0.12 4.07
5.07 0.14 5.88
5.71 0.14 7.33
6.12 0.11 8.35

TABLE II. Rotation angles associated with the transforma-

tion from the NN c.m. to the g frame with the incident energy

500 MeV and the scattering angle Ol,b=18.5 .
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the Breit frame in Table III of their paper, and have
shown no change of the E and F terms. From this con-
sideration, the approximation (3.40) may hold for wide
range of energies. On the contrary one must note that
A, B,C terms are affected by this transformation.

IV. SUMMARY

We investigated how to extract information about the
spin-longitudinal and spin-transverse nuclear responses,
RL and R T, from the polarization transfers D; of
nucleon-nucleus quasifree scatterings. The quantities SI
and ST defined by the formulas (1.1) of Carey et al. have
been used for this purpose. We derived the more reliable
formulas (2.20) for the corresponding quantities D and

D, and considered some limiting cases for which they
reduce to those derived by Moss and by Bleszynsky et al.
We pointed out that change of the direction of

transferred momentum as the change of the energy
transfer for a fixed scattering angle must be taken into ac-
count. This effect is missing in Carey's formulas.

We then questioned if D and D truly represent the
spin responses in the framework of the optimum factori-
zation approximation in PWIA. Complete formulas for
the transformation of the NN t matrix from the c.m.
frame to the optimal frame were derived with full con-
sideration of the relativistic spin rotations. We found
that for a wide range of incident energies D and D
reasonably well represent the spin responses RL and RT,
respectively.

Finally, we comment on Eq (1.4) for the ratio RL /Rr.
We recommend use of formula (3.42) with explicit calcu-
lation of

~
E~ and

~
F

~
from the phase shift rather than

using Eq. (1.4) because assumption (1.3) has not yet been
confirmed. The D-state component of the deuteron may
affect the assumption. This must be investigated.

[1]T. A. Carey et al. , Phys. Rev. Lett. 53, 144 (1984).
[2] L. B.Rees et al. , Phys. Rev. C 34, 627 (1986).
[3]W. M. Alberico, M. Ericson, and A. Molinari, Nucl.

Phys. A379, 429 (1982); M. Ericson, in Proceedings of the
International Conference on Spin Excitations in Nuclei,
edited by F. Petrovich et al. (Plenum, New York, 1984),
p. 27.

[4] G. F. Bertsch and O. Scholten, Phys. Rev. C 25, 804
(1982); H. Esbensen and G. F. Bertsch, ibid. 32, 553
(1985).

[5] M. Ichimura, K. Kawahigashi, T. S. Js(rgensen, and C.
Gaarde, Phys. Rev. C 39, 1446 (1989), and references
therein.

[6] A. Picklesimer, P. C. Tandy, R. M. Thaler, and D. H.
Wolfe, Phys. Rev. C 30, 1861 (1984).

[7] X. Q. Zhu, N. Mobed, and S. S. M. Wong, Nucl. Phys.
A466, 623 (1987).

[8] S. A. Gurvitz, Phys. Rev. C 33, 422 (1986).
[9]E. Bleszynsky, M. Bleszynsky, and C. A. Whitten, Jr.,

Phys. Rev. C 26, 2063 (1982).
[10]A. K. Kerman, H. McManus, and R. M. Thaler, Ann.

Phys. (N.Y.) 8, 551 (1959).
[11]J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. (Paris)

39, 1 (1978).
[12] N. Hoshizaki, Suppl. Prog. Theor. Phys. 42, 107 (1968).
[13]J. M. Moss, Phys. Rev. C 26, 727 (1982).
[14] G. G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972).
[15]J. A. McNeil, L. Ray, and S. J. Wallace, Phys. Rev. C 27,

2123 (1983).
[16]W. M. Alberico, A. De Pace, and A. Molinari, Phys. Rev.

C 31, 2007 (1985).
[17]D. V. Bugg and C. Wilkin, Nucl. Phys. A467, 575 (1987)

and private communication.


